Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. In Situ Groundwater Observations
2.2.2. GLDAS-2.2 Groundwater Storage
2.2.3. Meteorological Data
2.2.4. Land Cover Data
2.3. Methods
2.3.1. Spatiotemporal Kriging Interpolation
2.3.2. Drought Index Calculation
Meteorological Drought Index
Groundwater Drought Index
- Sort the groundwater sequences for individual grid points from largest to smallest;
- Perform a rank (rank) transformation on the sorted data by replacing the original value of each data point with its percentile rank in the sorted data (see Equation (5));
- Use a CDF with a standard normal distribution (mean 0, standard deviation 1) to convert the percentile rankings to normally distributed percentile values, and the replaced series is the standardized groundwater drought index [49]. This approach is employed to transform the percentile rankings into a normally distributed set of percentile values. As such, the resultant index values facilitate the comparison of drought conditions over different time periods and geographical areas, regardless of the original data distribution.
2.3.3. Run Theory and Threshold Method
- Drought index < R0 is initially recognized as a drought event;
- Eliminate short-term weak drought events with a drought duration of only 1 month and a drought index > R1;
- When the interval between the first and last two droughts is only 1 month and the drought index of the interval month is <0, then two slightly intermittent droughts are fused into one drought event;
- Calculate the cumulative frequency F, average duration , and average severity of the drought event.
2.3.4. Quantification of Drought Propagation
3. Results
3.1. Spatial and Temporal Variations in Groundwater Depth
3.1.1. Spatial Patterns of Groundwater Depth
3.1.2. Long-Term Dynamics of Groundwater Depth
3.2. Groundwater and Meteorological Drought Traits
3.3. Meteorological–Groundwater Drought Propagation Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, Y.; Ma, N.; Song, P.; Tian, J.; Zhang, X.; Xu, Z. Diverse responses of canopy conductance to heatwaves. Agric. For. Meteorol. 2023, 335, 109453. [Google Scholar] [CrossRef]
- Lawrence, S. Encyclopedia of climate and weather (2nd edition). Ref. Rev. 2012, 26, 36–37. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Y.; Liu, S.; Cheng, S.; Zhang, Y.; Pan, Y.; Wang, L.; Dokuchits, E.Y.; Nkwazema, O.C. How 2022 extreme drought influences the spatiotemporal variations of terrestrial water storage in the Yangtze River Catchment: Insights from GRACE-based drought severity index and in-situ measurements. J. Hydrol. 2023, 626, 130245. [Google Scholar] [CrossRef]
- Meresa, H.; Zhang, Y.; Tian, J.; Faiz, M.A. Understanding the role of catchment and climate characteristics in the propagation of meteorological to hydrological drought. J. Hydrol. 2023, 617, 128967. [Google Scholar] [CrossRef]
- Singh, J.; Ashfaq, M.; Skinner, C.B.; Anderson, W.B.; Mishra, V.; Singh, D. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nat. Clim. Chang. 2022, 12, 163–170. [Google Scholar] [CrossRef]
- Chu, J. Spatio-Temporal Evolution Characteristics of Groundwater Drought in Northwest China and It’s Response to Meteorological Drought and Temperature Index. Master’s Thesis, Northwest Agriculture & Forestry University, Xianyang, China, 2022. [Google Scholar]
- Cao, Y.; Jie, L. Research status and frontier analysis of meteorological drought at domestic and abroad. China Flood Drought Manag. 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; You, J.; Duan, Q. 2015–16 floods and droughts in China, and its response to the strong El Niño. Sci. Total Environ. 2018, 627, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Mckee, T.B.; Doesken, N.J.; Kleist, J.R. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Lin, S.; Xu, Y.; Tian, Y.; Lou, Z. Spatial and temporal analysis of drought in qiantang river basin based on z index and spi. J. Hydroelectr. Eng. 2012, 31, 20–26. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Weng, S.-P. Constructing a 1-km Gridded Multi-Scalar Drought Index Dataset (1960–2012) in Taiwan Based on the Standardized Precipitation Evapotranspiration Index-SPEI. Terr. Atmos. Ocean. Sci. 2016, 27, 625–648. [Google Scholar] [CrossRef]
- Yang, B.; Kong, L.; Lai, C.; Huang, D.; Cheng, X. A Framework on Analyzing Long-Term Drought Changes and Its Influential Factors Based on the PDSI. Atmosphere 2022, 13, 1151. [Google Scholar] [CrossRef]
- Li, Y. Research on the Drought Assessment, Propagation, Driving, and Prediction under the Climate and Land Use Landcover Change Scenarios. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2018. [Google Scholar]
- Cui, Y.; Zhang, B.; Huang, H.; Wang, X.; Zeng, J.; Jiao, W.; Yao, R. Identification of Seasonal Sub-Regions of the Drought in the North China Plain. Water 2020, 12, 3447. [Google Scholar] [CrossRef]
- Zhao, A.; Xiang, K.; Zhang, A.; Zhang, X. Spatial-temporal evolution of meteorological and groundwater droughts and their relationship in the North China Plain. J. Hydrol. 2022, 610, 127903. [Google Scholar] [CrossRef]
- Day, J.B.; Rodda, J.C. The effects of the 1975–76 drought on groundwater and aquifers. Proc. R. Soc. Lond. A Math. Phys. Sci. 1978, 363, 55–68. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Calow, R.C.; Robins, N.S.; Macdonald, A.M.; Macdonald, D.M.J.; Gibbs, B.R.; Orpen, W.R.G.; Mtembezeka, P.; Andrews, A.J. Groundwater management in drought-prone areas of Africa. Int. J. Water Resour. Dev. 1997, 13, 241–262. [Google Scholar] [CrossRef]
- Van Lanen, H.; Peters, E. Definition, effects and assessment of groundwater droughts. In Drought and Drought Mitigation in Europe. Advances in Natural and Technological Hazards Research; Vogt, J.V., Somna, F., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Peters, E.; Torfs, P.J.J.F.; van Lanen, H.A.J.; Bier, G. Propagation of drought through groundwater—A new approach using linear reservoir theory. Hydrol. Process. 2003, 17, 3023–3040. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A.; Versace, P. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate. J. Hydrol. 2008, 357, 282–302. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Marchant, B.P. Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, H.; Jakeman, A.J.; Chiew, F.H. Multi-timescale Performance of Groundwater Drought in Connection with Climate. Water Resour. Manag. 2023, 37, 3599–3614. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M. Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J. Hydrol. 2015, 526, 78–88. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Huang, Q.; Leng, G.; Wang, H.; Bai, Q.; Zhao, J.; Ma, L.; Wang, L.; Du, M. Propagation dynamics from meteorological to groundwater drought and their possible influence factors. J. Hydrol. 2019, 578, 124102. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wen, J.; Sun, J. Temporal and spatial changing features of climate in north china plain. Geoscience 2015, 29, 299–306. [Google Scholar]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Peng, S. 1 km Monthly Precipitation Dataset in China (1901–2022); National Tibetan Plateau Scientific Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Peng, S. 1 km Monthly Mean Temperature Dataset for China (1901–2022); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Peng, S. 1 km Monthly Potential Evapotranspiration Dataset in China (1990–2021); A Big Earth Data Platform for Three Poles: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Remote Sensing Monitoring Data Set of Land Use and Land Cover in China. Resource and Environmental Science Data Registration and Publication System. 2018. Available online: http://www.resdc.cn/DOI (accessed on 10 January 2023).
- Serrano, S.E. A simple approach to groundwater modelling with decomposition. Hydrol. Sci. J. 2013, 58, 177–185. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian. Comput. Model. Eng. Sci. 2021, 127, 012595. [Google Scholar] [CrossRef]
- Leaf, A.T.; Fienen, M.N. Modflow-setup: Robust automation of groundwater model construction. Front. Earth Sci. 2022, 10, 903965. [Google Scholar] [CrossRef]
- Kilibarda, M.; Tadić, M.P.; Hengl, T.; Luković, J.; Bajat, B. Global geographic and feature space coverage of temperature data in the context of spatio-temporal interpolation. Spat. Stat. 2015, 14, 22–38. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, C.; Zhao, J.; Wang, D. Short-Term Time Wind Speed Forecasting Based on Spatio-Temporal Geostatistical Approach and Kriging Method. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, S0218001421590254. [Google Scholar] [CrossRef]
- Snepvangers, J.; Heuvelink, G.; Huisman, J. Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 2003, 112, 253–271. [Google Scholar] [CrossRef]
- Júnez-Ferreira, H.E.; Hernández-Hernández, M.A.; Herrera, G.S.; González-Trinidad, J.; Cappello, C.; De Iaco, S. Assessment of changes in regional groundwater levels through spatio-temporal kriging: Application to the southern basin of mexico aquifer system. Hydrogeol. J. 2023, 31, 1405–1423. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-temporal regression kriging for modelling urban NO2 concentrations. Int. J. Geogr. Inf. Sci. 2020, 34, 851–865. [Google Scholar] [CrossRef]
- O’rourke, S.; Kelly, G.E. Spatio-temporal Modelling of Forest Growth Spanning 50 Years—The Effects of Different Thinning Strategies. Procedia Environ. Sci. 2015, 26, 101–104. [Google Scholar] [CrossRef]
- Guo, L.; Lei, L.; Zeng, Z.-C.; Zou, P.; Liu, D.; Zhang, B. Evaluation of Spatio-Temporal Variogram Models for Mapping Xco2 Using Satellite Observations: A Case Study in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 8, 376–385. [Google Scholar] [CrossRef]
- Hu, H. Spatiotemporal Regression Kriging Forestimating pm2.5 Concentrationusing Aerosol Optical Depth Remotesensing Data. Ph.D. Thesis, Wuhan University, Wuhan, China, 2018. [Google Scholar]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A.; Miller, D. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55). J. Appl. Mech. 1965, 32, 239. [Google Scholar] [CrossRef]
- Bogner, K.; Pappenberger, F.; Cloke, H.L. Technical Note: The normal quantile transformation and its application in a flood forecasting system. Hydrol. Earth Syst. Sci. 2011, 16, 1085–1094. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, L.; Kang, L.; Chen, H.; Guo, J. Drought risk analysis based on multivariate copula function in Henan Province, China. Geomat. Nat. Hazards Risk 2023, 14, 2223344. [Google Scholar] [CrossRef]
- Burka, A.; Biazin, B.; Bewket, W. Drought characterization using different indices, theory of run and trend analysis in bilate river watershed, rift valley of ethiopia. Front. Environ. Sci. 2023, 11, 1098113. [Google Scholar] [CrossRef]
- Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Assessing droughts using meteorological drought indices in Victoria, Australia. Hydrol. Res. 2015, 46, 463–476. [Google Scholar] [CrossRef]
- Panu, U.S.; Sharma, T.C. Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J. 2002, 47, S19–S30. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef] [PubMed]
- Entekhabi, D. Propagation in the Drought Cascade: Observational Analysis Over the Continental US. Water Resour. Res. 2023, 59, e2022WR032608. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, P.; Zhang, Q.; Zou, Y.; Lv, Y.; Li, H.; Chen, D. The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sens. 2022, 14, 1097. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, R.; Qi, J.; Zeng, J.; Wu, J.; Shui, W.; Wu, X.; Li, J. An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Sci. Data 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- van Langen, S.C.H.; Costa, A.C.; Neto, G.G.R.; van Oel, P.R. Effect of a reservoir network on drought propagation in a semi-arid catchment in Brazil. Hydrol. Sci. J. 2021, 66, 1567–1583. [Google Scholar] [CrossRef]
- He, S.; Zhang, E.; Huo, J.; Yang, M. Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment. Atmosphere 2022, 13, 1531. [Google Scholar] [CrossRef]
- Duanmu, H.; Wu, Y.; Fangqu, N.; Wen, Y.; Yuanyuan, H. Multi-model fusion extraction method for chinese text implicative meteorological disasters event information. J. Geo-Inf. Sci. 2022, 24, 2342–2355. [Google Scholar] [CrossRef]
- Liu, P.-W.; Famiglietti, J.S.; Purdy, A.J.; Adams, K.H.; McEvoy, A.L.; Reager, J.T.; Bindlish, R.; Wiese, D.N.; David, C.H.; Rodell, M. Groundwater depletion in California’s Central Valley accelerates during megadrought. Nat. Commun. 2022, 13, 7825. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Huang, S.; Zhao, J.; Leng, G.; Huang, Q.; Zhang, H.; Li, Z. Long-chain propagation pathways from meteorological to hydrological, agricultural and groundwater drought and their dynamics in China. J. Hydrol. 2023, 625, 130131. [Google Scholar] [CrossRef]
- Gong, R.; Chen, J.; Liang, Z.; Wu, C.; Tian, D.; Wu, J.; Li, S.; Zeng, G. Characterization and propagation from meteorological to groundwater drought in different aquifers with multiple timescales. J. Hydrol. Reg. Stud. 2023, 45, 101317. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, B.; Zhong, Y.; Deng, H.; Chang, L. Can GRACE and CMIP6 historical data identify groundwater drought in North China Plain? Theor. Appl. Clim. 2023, 152, 1203–1219. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Vervoort, R.W. Spatial and Temporal Global Patterns of Drought Propagation. Front. Environ. Sci. 2022, 10, 788248. [Google Scholar] [CrossRef]
- Bai, M.; Li, Z.; Huo, P.; Wang, J.; Li, Z. Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China. J. Arid. Land 2023, 15, 523–5444. [Google Scholar] [CrossRef]
- Ma, L.; Huang, Q.; Huang, S.; Liu, D.; Leng, G.; Wang, L.; Li, P. Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales. Hydrol. Res. 2021, 53, 193–205. [Google Scholar] [CrossRef]
- Bhavanam, N.S.; Kumaran, S.T.; Nagendra, K.V.; Mathapati, M.; Babu, C. Groundwater mapping process for using gis and the rs data, involves performing multicollinearity analysis is performed in order to find out relation between parameters and to know their usage, multivariate models named as frequency ratio. IN202041035289-A, filed and issued.
- Brakkee, E.; van Huijgevoort, M.H.J.; Bartholomeus, R.P. Improved understanding of regional groundwater drought development through time series modelling: The 2018–2019 drought in the Netherlands. Hydrol. Earth Syst. Sci. 2022, 26, 551–569. [Google Scholar] [CrossRef]
- Goodarzi, M.; Abedi-Koupai, J.; Heidarpour, M.; Safavi, H.R. Development of a new drought index for groundwater and its application in sustainable groundwater extraction. J. Water Resour. Plan. Manag. 2016, 142, 04016032. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. Grace groundwater drought index: Evaluation of california central valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Minea, I.; Iosub, M.; Boicu, D. Groundwater resources from eastern romania under human and climatic pressure. Sustainability 2020, 12, 10341. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, H.; Jakeman, A.J.; Chiew, F.H. Multi-timescale performances of groundwater drought in connection with climate. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Zavareh, M.M.; Mahjouri, N.; Rahimzadegan, M.; Rahimpour, M. A drought index based on groundwater quantity and quality: Application of multivariate copula analysis. J. Clean. Prod. 2023, 417, 137959. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Colombia, MA, USA, 1965.
- Jie, W.; Zhuguo, M. Comparison of palmer drought severity index, percentage of precipitation anomaly and surface humid index. Acta Geogr. Sin. 2003, 58, 117–124. [Google Scholar]
- Ju, X.; Yang, X.; Chen, L.; Wang, Y. Research on determination of station indexes and division of regional flood/drought grades in china. J. Appl. Meteorol. Sci. 1997, 8, 26–33. [Google Scholar]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q.I. An evaluation of the standardized precipitation index, the china-z index and the statistical z-score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Lu, E. Determining the start, duration, and strength of flood and drought with daily precipitation: Rationale. Geophys. Res. Lett. 2009, 36, L12707. [Google Scholar] [CrossRef]
- Atif, I.; Iqbal, J.; Mahboob, M.A. Investigating snow cover and hydrometeorological trends in contrasting hydrological regimes of the upper indus basin. Atmosphere 2018, 9, 162. [Google Scholar] [CrossRef]
- ur Rahman, A.; Dawood, M. Spatio-statistical analysis of temperature fluctuation using mann–kendall and sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
Features | Description |
---|---|
Provinces and cities | Beijing, Hebei, Tianjin, Henan, Shandong |
Total covered area | 538,000 km2 |
Longitude | 110~123° E |
Latitude | 32~43° N |
Mean elevation | 312 m |
Annual mean precipitation | 340~910 mm |
Annual mean temperature | 10~15 °C |
Proportion of land cover | Cropland (85.2%), forest (9.8%), grassland (2.2%), urban areas (2.1%), water bodies (0.6%), bare areas (0.1%) |
Monitoring well count | 1826 |
Staple crop | Winter wheat, summer corn, spring corn |
Area of crops most affected by drought | 4.3 million hectares (2009) |
Population with drinking water difficulties due to drought | 3.3 million (2010) |
Large livestock with difficulty in drinking water due to drought | 1.3 million (2006) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, Y.; Tian, J.; Tang, Z.; Wang, L.; Yang, X. Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain. Water 2024, 16, 501. https://doi.org/10.3390/w16030501
Chen Y, Zhang Y, Tian J, Tang Z, Wang L, Yang X. Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain. Water. 2024; 16(3):501. https://doi.org/10.3390/w16030501
Chicago/Turabian StyleChen, Yuyin, Yongqiang Zhang, Jing Tian, Zixuan Tang, Longhao Wang, and Xuening Yang. 2024. "Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain" Water 16, no. 3: 501. https://doi.org/10.3390/w16030501
APA StyleChen, Y., Zhang, Y., Tian, J., Tang, Z., Wang, L., & Yang, X. (2024). Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain. Water, 16(3), 501. https://doi.org/10.3390/w16030501