Application of SWAT Model for Assessment of Surface Runoff in Flash Flood Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Information on the Lam Saphung River Basin
2.2.2. Information on the Phrom River Basin
2.2.3. Information on the Chern River Basin Part 1
2.3. Estimating Runoff Scenarios
2.3.1. Changes in Land Use to Runoff Volume
2.3.2. Changes in Rainfall in Relation to Runoff
2.3.3. Changes in the Proportion of Land Use in Relation to Maximum Runoff
3. Results and Discussions
3.1. SWAT Model Performance Results
3.1.1. Appropriate Parameters
3.1.2. Calibration and Validation
3.2. Effects of Land Use Changes on Runoff Volume
3.3. Effects of Changes in Rainfall on Runoff Volume
3.4. Results of Changes in the Proportion of Land Use Affecting Maximum Runoff
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asadieh, B.; Krakauer, N.Y. Global change in flood and drought intensities under climate change in the 21st century. Hydrol. Earth Syst. Sci. Discuss. 2017, 253. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Radziejewski, M.; Pinskwar, I. Precipitation extremes in the changing climate of Europe. Clim. Res. 2006, 31, 51–58. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ali, H. Analysis of extreme rainfall events under the climatic change. In Rainfall; Elsevier: Amsterdam, The Netherlands, 2022; pp. 307–326. [Google Scholar] [CrossRef]
- He, J.; Feng, P.; Wang, B.; Zhuang, W.; Zhang, Y.; Liu, D.L.; Cleverly, J.; Huete, A.; Yu, Q. Centennial annual rainfall pattern changes show an increasing trend with higher variation over Northern Australia. J. Hydrometeorol. 2022, 23, 1333–1349. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Jania, J.A. Extreme hydro-meteorological events and their impacts. From the global down to the regional scale. Geogr. Pol. 2007, 2, 9–23. [Google Scholar]
- Ruth, M.; Ibarrarán, M.E. Distributional Impacts of Climate Change and Disasters. Res. Pap. Econ. 2009. [CrossRef]
- Viglione, A.; Rogger, M. Flood Processes and Hazards. In Hydro-Meteorological Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–33. [Google Scholar] [CrossRef]
- Schroeder, A.J.; Gourley, J.J.; Hardy, J.; Henderson, J.J.; Parhi, P.; Rahmani, V.; Reed, K.A.; Schumacher, R.S.; Smith, B.K.; Taraldsen, M.J. The development of a flash flood severity index. J. Hydrol. 2016, 541, 523–532. [Google Scholar] [CrossRef]
- Wright, L.D.; D’Elia, C.F.; Nichols, C.R. Impacts of Coastal Waters and Flooding on Human Health. In Tomorrow’s Coasts: Complex Impermanent; Springer: Berlin/Heidelberg, Germany, 2019; pp. 151–166. [Google Scholar] [CrossRef]
- Wang, X.; Gourbesville, P.; Liu, C. Flash Floods: Forecasting, Monitoring and Mitigation Strategies. Water 2023, 15, 1700. [Google Scholar] [CrossRef]
- Hadjij, I.; Sardou, M.; Missoum, H.; Maouche, S. Flood-related deaths in Northwestern Algeria from 1966 to 2019. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Brooks, H.E.; Stensrud, D.J. Climatology of Heavy Rain Events in the United States from Hourly Precipi-tation Observations. Mon. Weather. Rev. 2000, 128, 1194–1201. [Google Scholar] [CrossRef]
- Larsen, M.C. Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Adv. Geosci. 2008, 14, 147–153. [Google Scholar] [CrossRef]
- Rapant, P.; Inspektor, T.; Kolejka, J.; Batelková, K.; Zapletalova, J.; Kirchner, K.; Krejci, T. Early Warning of Flash Floods Based on the Weather Radar. In Proceedings of the 2015 16th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 27–30 May 2015. [Google Scholar] [CrossRef]
- Sene, K. Flash Floods: Forecasting and Warning; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Basri, H.; Syakur, S.; Azmeri, A.; Fatimah, E. Floods and their problems: Land uses and soil types perspectives. IOP Conf. Ser. 2022, 951, 012111. [Google Scholar] [CrossRef]
- Rusinko, A.; Horáčková, S. Flash flood simulation in the urbanised catchment: A case study of Bratislava-Karlova Ves. Geogr. Cassoviensis 2022, 16, 81–97. [Google Scholar] [CrossRef]
- Zscheischler, J.; Rakovec, O.; Shijie, J.; Joó, A. Identifying drivers of river floods using causal inference. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023. [Google Scholar] [CrossRef]
- Gabr, S.S.; Alkhaldy, I.A.; El-Saoud, W.A.; Habeebullah, T.M. Flash flood modeling and mitigation of Al-Hussainiyah area, Makkah, Saudi Arabia. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Kuksina, L.V.; Golosov, V.N.; Kuznetsova, Y.S. Cloudburst floods in mountains: State of knowledge, occurrence, factors of formation. Geogr. Nat. Resour. 2017, 38, 20–29. [Google Scholar] [CrossRef]
- Mosaad, S. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt. J. Afr. Earth Sci. 2017, 134, 56–72. [Google Scholar] [CrossRef]
- Sebastian, L. Flood control through structural and non-structural amplification approaches. J. Tek. Sipil. 2021, 11, 75–79. [Google Scholar] [CrossRef]
- Savitri, E.; Watershed Management Technology Center; Adi, R.N.; Putra, P.B.; Indrajaya, Y. watershed man-agement approach as an alternative solution for flood problem in northern part of central java (Pendekatan Pengelolaan DAS Sebagai Alternatif Solusi Masalah Banjir di Jawa Tengah Utara). J. Penelit. Pengelolaan Drh. Aliran Sungai 2022, 6, 21–38. [Google Scholar] [CrossRef]
- Angelina, A.; Djibo, A.G.; Seidou, O.; Sanda, I.S.; Sittichok, K. Changes to flow regime on the Niger River at Koulikoro under a changing climate. Hydrol. Sci. J. 2015, 60, 1709–1723. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhao, Y.; Long, Y. Using SWAT Model to Assess the Impacts of Land Use and Climate Changes on Flood in the Upper Weihe River, China. Water 2022, 14, 2098. [Google Scholar] [CrossRef]
- Boithias, L.; Sauvage, S.; Lenica, A.; Roux, H.; Abbaspour, K.C.; Larnier, K.; Dartus, D.; Sánchez-Pérez, J.M. Simulating Flash Floods at Hourly Time-Step Using the SWAT Model. Water 2017, 9, 929. [Google Scholar] [CrossRef]
- Luo, L.; Zhou, Q.; He, H.S.; Duan, L.; Zhang, G.; Xie, H. Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China. Sustainability 2020, 12, 6423. [Google Scholar] [CrossRef]
- Phomsouvanh, V.; Phetpaseuth, V.; Park, S.J. Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People’s Democratic Republic. J. Korean Geogr. Soc. 2016, 51, 779–797. [Google Scholar]
- Shelton, S. Evaluation of the Streamflow Simulation by SWAT Model for Selected Catchments in Mahaweli River Basin, Sri Lanka. Water Conserv. Sci. Eng. 2021, 6, 233–248. [Google Scholar] [CrossRef]
- FZhao, F.; Wu, Y.; Qiu, L.; Sun, Y.; Sun, L.; Li, Q.; Niu, J.; Wang, G. Parameter Uncertainty Analysis of the SWAT Model in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [Google Scholar] [CrossRef]
- Almeida, R.A.; Pereira, S.B.; Pinto, D.B.F. Calibration and validation of the swat hydrological model for the mucuri river basin. Eng. Agric. 2018, 38, 55–63. [Google Scholar] [CrossRef]
- Xiao, C.; Kawanisi, K.; Al Sawaf, M.B.; Zhu, X.H. Assessment of flood dynamics in a mountain stream using high-resolution river flow records. Hydrol. Process. 2023, 37. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Ajmal, M.; Achite, M.; Kim, T.-W. Comprehensive Review: Ad-vancements in Rainfall-Runoff Modelling for Flood Mitigation. Climate 2022, 10, 147. [Google Scholar] [CrossRef]
- Anselmo, V.; Galeati, G.; Palmieri, S.; Rossi, U.; Todini, E. Flood risk assessment using an integrated hydrological and hydraulic modelling approach: A case study. J. Hydrol. 1996, 175, 533–554. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Moradkhani, H.; Pappenberger, F.; Moftakhari, H.; Bates, P.; Abbaszadeh, P.; Marsooli, R.; Ferreira, C.; Cloke, H.L.; Ogden, F.; et al. Recent Advances and New Frontiers in Riverine and Coastal Flood Modeling. Rev. Geophys. 2023, 61. [Google Scholar] [CrossRef]
- De Wrachien, D.; Mambretti, S. Mathematical Models in Flood Management: Overview, Laboratory Tests and Case Study; WIT Press: Southampton, UK, 2011. [Google Scholar] [CrossRef]
- Falter, D.; Schröter, K.; Dung, N.V.; Vorogushyn, S.; Kreibich, H.; Hundecha, Y.; Apel, H.; Merz, B. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. J. Hydrol. 2015, 524, 182–193. [Google Scholar] [CrossRef]
- Xu, R.; Qiu, D.; Wu, C.; Mu, X.; Zhao, G.; Sun, W.; Gao, P. Quantifying climate and anthropogenic impacts on runoff using the SWAT model, a Budyko-based approach and empirical methods. Hydrol. Sci. J. 2023, 68, 1358–1371. [Google Scholar] [CrossRef]
- Amiri, S.N.; Khoshravesh, M.; Valashedi, R.N. Assessing the effect of climate and land use changes on the hydrologic regimes in the upstream of Tajan river basin using SWAT model. Appl. Water Sci. 2023, 13, 1–13. [Google Scholar] [CrossRef]
- Yonaba, R.; Mounirou, L.A.; Tazen, F.; Koïta, M.; Biaou, A.C.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. Comptes Rendus Geosci. 2023, 355, 1–28. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.D.; Verma, M.K. An Assessment of Ongoing Developments in Water Resources Management Incorporating SWAT Model: Overview and Perspectives. Nat. Environ. Pollut. Technol. 2022, 21, 1963–1970. [Google Scholar] [CrossRef]
- Prasanchum, H. Risk assessment of flash flood situation under land use change using daily SWAT streamflow simulation in Loei Basin, Northeastern, Thailand. IOP Conf. Ser. 2023, 1151, 012015. [Google Scholar] [CrossRef]
- Chen, M.; Cataldi, M.; Francisco, C.N. Application of Hydrological Modeling Related to the 2011 Disaster in the Mountainous Region of Rio De Janeiro, Brazil. Climate 2023, 11, 55. [Google Scholar] [CrossRef]
- Takele, G.S.; Gebre, G.S.; Gebremariam, A.G.; Engida, A.N. Hydrological modeling in the Upper Blue Nile basin using soil and water analysis tool (SWAT). Model. Earth Syst. Environ. 2021, 8, 277–292. [Google Scholar] [CrossRef]
- Buakhao, W.; Kangrang, A. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT. Adv. Civ. Eng. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R.; Ramanarayanan, T.S.; Arnold, J.G.; Bednarz, S.T.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Ávila, A.D.; Carvajal, Y.E.; Justino, F. Representative rainfall thresholds for flash floods in the Cali River watershed, Colombia. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 4095–4119. [Google Scholar] [CrossRef]
- Payrastre, O.; Ayral, P.A.; Barachet, V.; Borell, V.; Boudevillain, B.; Bouvier, C.; Brunet, P.; Cantet, P.; Coussot, C.; Delrieu, G.; et al. Hydrological Post Event Survey after the Autumn 2014 Floods in the Cévennes Region in France: Results and First Hydrological Analyses. In Proceedings of the 9th HyMeX Workshop, Mykonos, Greece, 21–25 September 2015; Available online: https://hal.science/hal-02905117/ (accessed on 1 December 2023).
- Malik, M.A.; Dar, A.Q.; Jain, M.K. Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Model. Earth Syst. Environ. 2021, 8, 1203–1213. [Google Scholar] [CrossRef]
- Lin, K.H. Comparative Analysis of Swat Cup and Swatshare for Calibrating Swat Models. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2020. [Google Scholar] [CrossRef]
- Nguyễn, T.T.Ấ.; Nguyễn, D.L.; Nguyễn, K.L. Ứng dụng mô hình SWAT và công nghệ GIS đánh giá lưu lượng dòng chảy trên lưu vực sông Đắk Bla. VNU J. Sci. Earth Environ. Sci. 2013, 29. Available online: https://js.vnu.edu.vn/EES/article/view/1099 (accessed on 1 December 2023).
- Benedini, M.; Tsakiris, G. Model Calibration and Verification. In Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.; Hunt, R.J. Chapter 9—Model Calibration: Assessing Performance. Appl. Groundw. Model. 2015, 375–441. [Google Scholar] [CrossRef]
- Liang, P.; Xin, H.; Li, Z. Quantifying the Contribution of Climate Change and Human Activities to Runoff Changes in the Source Region of the Yellow River. Pol. J. Environ. Stud. 2023, 32, 1661–1674. [Google Scholar] [CrossRef]
- Ogden, F.L.; Crouch, T.D.; Stallard, R.F.; Hall, J.S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 2013, 49, 8443–8462. [Google Scholar] [CrossRef]
- Dai, Z.; Du, J.; Li, J.; Li, W.; Chen, J. Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and the impounding of the Three Gorges Dam. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Long-term runoff dynamics assessment measured through land use/cover (LULC) changes in a tropical complex catchment. Environ. Syst. Decis. 2019, 39, 16–33. [Google Scholar] [CrossRef]
- Zhou, M.; Qu, S.; Chen, X.; Shi, P.; Xu, S.; Chen, H.; Zhou, H.; Gou, J. Impact Assessments of Rainfall–Runoff Characteristics Response Based on Land Use Change via Hydrological Simulation. Water 2019, 11, 866. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Liu, X.; Zhang, J. Quantifying the effect on flood regime of land-use pattern changes via hydrological simulation in the upper Huaihe River basin, China. Nat. Hazards 2016, 84, 2279–2297. [Google Scholar] [CrossRef]
- Harvey, J.T. Implementation of Zero Runoff to Reduce Runoff Discharges in Timbang Langsa Village, Langsa City. In Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment, 21–22 November 2023, Indonesia; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H. Dynamics of land use land cover and resulting surface runoff management for environmental flood hazard mitigation: The case of Dire Daw city, Ethiopia. J. Hydrol. Reg. Stud. 2019, 22, 100598. [Google Scholar] [CrossRef]
- Mohammady, M.; Moradi, H.R.; Zeinivand, H.; Temme, A.; Yazdani, M.R.; Pourghasemi, H.R. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models. Theor. Appl. Climatol. 2018, 133, 459–471. [Google Scholar] [CrossRef]
- Dasanto, B.D. Evaluasi dampak perubahan penggunaan lahan terhadap volume limpasan studi kasus: Das ciliwung hulu, jawa barat (evaluation of landuse change impact on run-off volume case study: Ciliwung hulu watershed, west java). Agromet 2006, 20, 1–13. [Google Scholar] [CrossRef]
Data Sources During the Years 2006–2021 | |
---|---|
DEM | Department of Land Development |
Soil Type Map | Department of Land Development |
Land Use Map | Department of Land Development |
Meteorological Data | Meteorological Department |
Runoff | Department of Irrigation |
No. | Land Use | Area (km2) | |||||
---|---|---|---|---|---|---|---|
2006 | 2008 | 2010 | 2015 | 2017 | 2019 | ||
1. | Lam Saphung | ||||||
Agricultural land | 25.8 | 25.7 | 29.8 | 30.3 | 30.7 | 33.1 | |
Forested land | 639.5 | 639.4 | 632.2 | 628.0 | 628.1 | 625.6 | |
Urban and built-up land | 1.1 | 1.1 | 1.2 | 1.3 | 1.3 | 1.3 | |
Water body | 1.1 | 1.2 | 3.8 | 3.8 | 3.8 | 3.7 | |
Other | 75.9 | 75.9 | 76.4 | 79.9 | 79.4 | 79.7 | |
Total | 743.4 | 743.3 | 743.3 | 743.3 | 743.3 | 743.4 | |
2. | Nam Phrom | ||||||
Agricultural land | 769.8 | 769.5 | 770.2 | 770.5 | 795.8 | 809.4 | |
Forested land | 1287.1 | 1286.5 | 1267.5 | 1265.8 | 1257.8 | 1243.1 | |
Urban and built-up land | 51.3 | 51.3 | 61.0 | 61.2 | 65.0 | 68.0 | |
Water body | 36.7 | 36.7 | 56.6 | 56.6 | 56.1 | 58.5 | |
Other | 119.1 | 119.6 | 108.3 | 109.6 | 89.1 | 84.8 | |
Total | 2263.9 | 2263.7 | 2263.7 | 2263.7 | 2263.7 | 2263.7 | |
3. | Chern Part 1 | ||||||
Agricultural land | 755.4 | 756.9 | 760.3 | 763.9 | 783.7 | 786.2 | |
Forested land | 902.6 | 894.4 | 877.1 | 860.4 | 854.3 | 847.3 | |
Urban and built-up land | 90.4 | 90.3 | 98.1 | 105.5 | 109.5 | 115.5 | |
Water body | 19.2 | 18.7 | 29.1 | 32.3 | 33.2 | 36.1 | |
Other | 131.2 | 138.2 | 134.0 | 136.4 | 117.9 | 113.4 | |
Total | 1898.7 | 1898.5 | 1898.5 | 1898.5 | 1898.6 | 1898.5 |
No. | Parameter | Description | File Type | Ranking Range | Optimal Value | ||
---|---|---|---|---|---|---|---|
E.83 | E.93 | E.85 | |||||
1. | Cn2 | Initial curve number (II) value | .Mgt | 0.1–0.1 | 0.045766 | 0.0458 | 0.0093825 |
2. | Sol_Awc | Available water capacity [(mm water) (mm soil)−1] | .Soil | 0–0.7 | 0.7476 | 0.7476 | 0.6941 |
3. | Esco | Soil evaporation compensation factor | .hru | 0–0.2 | −5.67 | −5.67 | 0.19005 |
4. | Gwqmn | Threshold water depth in the shallow aquifer for flow [mm] | .gw | 0–500 | 500 | 500 | 500 |
5. | Gw_Revap | Groundwater ‘revap’ coefficient | .gw | 0.6–0.95 | 0.191 | 0.191 | 0.7614 |
6. | CH_N2 | Manning’s N value for the main channel | .rte | 0–0.3 | 0.6 | 0.6 | 0.0999 |
7. | Gw_Delay | Groundwater delay [days] | .gw | −15–15 | 0.6941 | 0.6941 | 0.57 |
8. | Alpha_Bf | Baseflow alpha factor [days] | .gw | 0–1 | 0.0555 | 0.0555 | 0.7476 |
Watershed | Interval | Year (B.E.) | Average Runoff (m3) | Index | ||||
---|---|---|---|---|---|---|---|---|
Observed | SWAT | R2 | PBIAS | RMSE | NSE | |||
Lam Saphung | Calibration | January–September 2021 | 2977.83 | 1762.78 | 0.84 | 40.80% | 15.61 | 0.654 |
Validation | October–December 2021 | 2118.65 | 2389.61 | 0.60 | 12.81% | 21.57 | 0.608 | |
Total | January–December 2021 | 5096.48 | 4152.39 | 0.65 | 17.31% | 17.31 | 0.637 | |
Nam Phrom | Calibration | January–September 2021 | 2478.59 | 2347.074 | 0.88 | 5.31% | 7.95 | 0.874 |
Validation | October–December 2021 | 4856.31 | 3733.487 | 0.82 | 57.02% | 23.20 | 0.737 | |
Total | January–December 2021 | 2377.72 | 6080.561 | 0.81 | 25.25% | 13.53 | 0.795 | |
Chern Part 1 | Calibration | January–September 2021 | 3646.84 | 4034.21 | 0.79 | 10.62% | 15.37 | 0.783 |
Validation | October–December 2021 | 2316.92 | 3357.38 | 0.74 | 44.63% | 33.91 | 0.205 | |
Total | January–December 2021 | 5963.76 | 7391.60 | 0.72 | 23.83% | 21.60 | 0.604 |
Watershed | Rainfall (Year) | Land Use Map (Year) | Period of Occurrence | Maximum Runoff (m3) |
---|---|---|---|---|
Lam Saphung | 2021 | 2019 | 10 October | 169.3 |
2017 | 169.1 | |||
2015 | 169.1 | |||
2010 | 168.7 | |||
2008 | 168.0 | |||
2006 | 168.0 | |||
Nam Phrom | 2021 | 2019 | 10 October | 157.0 |
2017 | 156.6 | |||
2015 | 156.1 | |||
2010 | 156.0 | |||
2008 | 154.8 | |||
2006 | 154.8 | |||
Chern Part 1 | 2021 | 2019 | 10 October | 299.8 |
2017 | 299.0 | |||
2015 | 298.3 | |||
2010 | 296.3 | |||
2008 | 294.3 | |||
2006 | 293.3 |
Watershed | Land Use Map (Year) | Rainfall Data (Year) | Maximum Runoff (m³) | Period of Occurrence |
---|---|---|---|---|
Lam Saphung | 2021 | 2019 | 9.8 | 10 October 2019 |
2017 | 81.6 | 4 October 2017 | ||
2015 | 88.3 | 19 September 2015 | ||
2010 | 316.1 | 18 October 2010 | ||
2008 | 162.8 | 20 September 2008 | ||
2006 | 258.6 | 21 October 2006 | ||
Nam Phrom | 2021 | 2019 | 9.25 | 11 October 2019 |
2017 | 115.2 | 5 October 2017 | ||
2015 | 88.3 | 19 September 2015 | ||
2010 | 222.6 | 20 October 2010 | ||
2008 | 164.7 | 21 September 2008 | ||
2006 | 162.0 | 4 October 2006 | ||
Chern Part 1 | 2021 | 2019 | 63.4 | 26 September 2019 |
2017 | 215.7 | 5 September 2017 | ||
2015 | 140.6 | 19 September 2015 | ||
2010 | 498.2 | 18 October 2010 | ||
2008 | 273.3 | 19 September 2008 | ||
2006 | 387.5 | 4 October 2006 |
Watershed | Land Use Area (km2) | |||||
---|---|---|---|---|---|---|
2006 | 2008 | 2010 | 2015 | 2017 | 2019 | |
Lam Saphung | 1.1 | 1.1 | 1.3 | 1.3 | 1.3 | 1.3 |
Nam Phrom | 51.3 | 51.33 | 61.0 | 61.2 | 65.0 | 68.0 |
Chern Part 1 | 90.4 | 90.3 | 98.1 | 105.5 | 109.5 | 115.5 |
Watershed | The Maximum Runoff Volumes (m3/s) | |||||
---|---|---|---|---|---|---|
2006 | 2008 | 2010 | 2015 | 2017 | 2019 | |
Lam Saphung | 4.5 | 4.5 | 8.0 | 9.7 | 9.8 | 9.8 |
Nam Phrom | 7.2 | 6.4 | 9.4 | 9.8 | 9.5 | 9.6 |
Chern Part 1 | 59.3 | 59.2 | 63.6 | 63.5 | 66.4 | 60.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannachai, L.; Sriworamas, K.; Sivanpheng, O.; Kangrang, A. Application of SWAT Model for Assessment of Surface Runoff in Flash Flood Areas. Water 2024, 16, 495. https://doi.org/10.3390/w16030495
Suwannachai L, Sriworamas K, Sivanpheng O, Kangrang A. Application of SWAT Model for Assessment of Surface Runoff in Flash Flood Areas. Water. 2024; 16(3):495. https://doi.org/10.3390/w16030495
Chicago/Turabian StyleSuwannachai, Lakkana, Krit Sriworamas, Ounla Sivanpheng, and Anongrit Kangrang. 2024. "Application of SWAT Model for Assessment of Surface Runoff in Flash Flood Areas" Water 16, no. 3: 495. https://doi.org/10.3390/w16030495
APA StyleSuwannachai, L., Sriworamas, K., Sivanpheng, O., & Kangrang, A. (2024). Application of SWAT Model for Assessment of Surface Runoff in Flash Flood Areas. Water, 16(3), 495. https://doi.org/10.3390/w16030495