Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater
Abstract
:1. Introduction
2. Global Distribution of Geogenic High-Arsenic Groundwater
Country | Study Area | Max As conc. (µg/L) | Samples | Environmental Condition and/or Enrichment Mechanism | References |
---|---|---|---|---|---|
Afghanistan | Ghazni and maidan Wardak provinces | 990 | 746 | The weathering and leaching action | [39] |
Argentina | Santiago del Estero Province | 14,969 | 40 | Volcanic ash sedimentary environment; agricultural irrigation | [40] |
La Pampa | 5300 | 44 | The geological factors; weathering of volcanic ash and loess; oxidizing condition | [41] | |
Australia | Stuarts Point coastal | 85 | 140 | Desorption of As from Al-hydroxides and As-enriched Fe-oxyhydroxides; high concentrations of HCO3− and PO4− | [42] |
Bangladesh | Noakhali | 4730 | 52,202 | Eroded by flood plain rivers | [25] |
Bolivia | 364 | 24 | The alteration of volcanic rocks; evaporation and redox reactions | [43] | |
Botswana | Botswana | 116 | 20 | Delta; evaporation concentration; weakly alkaline environment; pH 6.29–8.60 | [44] |
Brazil | 2980 | Anthropogenic; volcanic activity and weathering of rocks | [43] | ||
Burkina Faso | 1630 | 45 | Zones of gold mineralization in volcano-sedimentary rocks | [45] | |
China | Datong Basin | 1932 | 1022 | The weak alkaline reductive environment; high HCO3− concentration; water–rock interactions | [46] |
Hetao Basin | 572 | 63 | The reducing conditions; the dissolved organic; the competitive effects of other anions | [47] | |
Jianghan Basin | 2330 | 34 | The high HCO3− concentrations; microorganisms and exogenous substances; the seasonal variation; strongly reducing environment; reducing environment | [48] | |
Taiwan (Lanyang and Chianan Plain) | 1010 | Alluvial plain; high DOC; strong reducing conditions | [49] | ||
Tarim Basin | 91.2 | 233 | Reducing environment; the dissolved organic; reductive dissolution release; | [50] | |
Yinchuan | 177 | 92 | Agricultural irrigation; the reductive dissolution of Fe oxides; the high PO4− concentrations | [51] | |
Pearl River Delta | 161 | 18 | Reductive environment; the high NH4+ concentrations; high concentrations of NH4+ and organic matter | [52] | |
Cambodian | 1610 | 207 | Holocene alluvial sediments; reducing environment | [53] | |
Costa Rica | Northern Costa Rica | 29,100 | 35 | Associated with the volcanic rock | [43] |
Czech Republic | Mokrsko | 1690 | 62 | pH > 9 | [54] |
Ecuador | 969 | 67 | In hot springs | [43] | |
Ethiopia | Southwestern Ethiopia | 184.5 | 44 | pH < 7 | [55] |
Ghana | 1760 | 357 | Spillages of the mines; pH 4.8–6.99 | [56] | |
Hungary | Southern Hungary | 260 | 73 | At a depth of 0.8–2.4 km and containing CH4 | [57] |
India | Bhair | 1466 | 1365 | Ganga Plain; Holocene newer alluvium and the Pleistocene older alluvium | [58] |
Shahpur block, Bhojpur district, Bihar state | 1805 | 4704 | Ganges plain | [28] | |
Punjab | 3192 | 4780 | Alluvial aquifers | [58] | |
Iran | Kurdistan Some villages | 1500 | 27 | Mining and sedimentary environment | [59] |
East Azarbaijan-Tabriz Plain | 2000 | 18 | Hydrogeological and environmental reducing conditions | ||
Ardabil-A city | 5834 | 163 | Interaction of hydrothermal fluids with the rocks and geogenic source-geological structure | ||
Mazandar an-Haraz River | 110 | 20 | Geogenic source and mining | ||
Tabas South Khorasan | 53 | 29 | Weathering | ||
Razavi Khorasan Chelpu Kashmar | 606 | 12 | Geogenic Origin sedimentary environment | ||
Isfahan Mutehgold mining district | 1061 | 17 | Weathering and mining | ||
Japan | 38 | 136 | Reducing environment and factory blowdown | [26] | |
Korea | Geumsan County | 113 | 150 | Oxidation reaction of sulfide minerals in metasedimentary rocks and desorption process under high pH conditions | [60] |
Nigeria | Warri-Port Harcourt, Ogun State, Kaduna | 750 | 20 | Alluvial sediments, reducing environment, slightly acidic | [16] |
Pakistan | Kasur, Shhiwal, Bahawalpur, and Rahim Yar Khan | 3090 | 395 | Irrigation and factory sewage | [61] |
Lahore municipality | 85 | 41 | Topsoil and extensive irrigation of unconfined aquifers, reductive dissolution | [32] | |
Mailsi | 812 | 44 | Human activity | [49] | |
Paraguay | 120 | 37 | Human activity and volcanic ash deposition environment | [43] | |
Lao PDR | Vientiane | 24.4 | 3 | Reducing environment | [17] |
Borikhamxay | 30 | 7 | Reducing environment | ||
Champasack | 25.6 | 27 | Reducing environment | ||
Attapeu | 31.6 | 10 | Reducing environment | ||
Myanmar | Ayeyarwady | 630 | 55 | Reductive dissolution of Fe oxyhydroxides | [49] |
Mexico | La Laguna Region | 5000 | 29 | Adsorption or coprecipitation on iron oxides, clay-mineral surfaces, and organic carbon | |
Zacatecas | 75.4 | 182 | Geological origin, water–rock interaction | [49] | |
Nepal | Nawalparasi | 2620 | 18,000 | Seasons and climate change, water–rock interaction | |
Pakistan | Larkana Sindh, | 318 | 58 | pH 6.8–8.1 | [62] |
Punjab | 655 | 141 | pH 7.0–9.3 | [63] | |
Spain | Duero Cenozoic Basin | 613 | 514 | pH 5.87–1.58 | [64] |
Thailand | Suphan Buri | 5000 | 21 | pH 5.20–5.90; Eh 250–370 mV | [16] |
USA | San Joaquin Valley, California | 148.5 | 4983 | Arid and semi-arid basins; alluvial, fluvial, and lacustrine deposits; pH > 7.8; reducing conditions | [65] |
Lahontan Valley, in Churchill County, Nevada | 4100 | 59 | Lacustrine sediments | [66] | |
Vietnam | Mekong Delta | 850 | 109 | pH 7.22–8.63 | [49] |
3. Health Risks
3.1. Health Risk Assessment
3.1.1. Deterministic Risk Assessment
3.1.2. Probabilistic Risk Assessment
3.2. Potential Exposure Assessment
4. In Situ Remediation and Regulation Technology of Arsenic
4.1. In Situ Rapid Detection Technology
4.2. In Situ Remediation
4.3. Regional Aquifer Arsenic Regulation
5. Development Tendency
- Although there are more remediation technologies for high-As groundwater contamination, all of them have certain limitations, which is a relatively complex process. At present, no remedial technique can attain complete remediation, and a single method is inevitably constrained by factors, for example, the environmental conditions of the groundwater and the economic status of the area. The development of biological–plant combination techniques, chemical/physical–chemical–biological combined combination techniques, and physical–chemical combination remediation techniques is a new direction in the future.
- The main challenges in managing water with high levels of As include applying in situ remediation technologies, operating and maintaining large water treatment plants, and managing As-containing sludge and waste. The management of high-As groundwater involves several fields, including technology, engineering, finance, and environmental management, and it requires an integrated approach. As-containing sludge or waste generated during groundwater treatment must be properly handled to prevent secondary contamination and environmental hazards.
- Based on an extensive review of the literature, it has been found that in many countries, natural groundwater contains arsenic coexisting to varying degrees with additional contaminants, such as fluoride (F), nickel (Ni), molybdenum (Mo), and antimony (Sb), among others. There is a potential for interaction occurring among these elements. There is a lack of studies on the simultaneous presence of As with other emerging contaminants in groundwater. Further laboratory simulations are necessary to enhance the comprehension of how environmental, hydrological, geological, and anthropogenic factors impact the mechanisms of arsenic coexistence with other contaminants. In addition, more research is needed to explore the migration of As in groundwater and its interaction with other organic and inorganic components during the transformation process. An in-depth study of As migration interaction with other elements, organic chemical transformations, and biochemical processes can provide better prediction and simulation tools, which can help to develop more effective strategies for the management of high-As groundwater pollution.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World’s Groundwater Challenges. Annu. Rev. Env. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Grogan, D.S.; Wisser, D.; Prusevich, A.; Lammers, R.B.; Frolking, S. The Use and Re-Use of Unsustainable Groundwater for Irrigation: A Global Budget. Environ. Res. Lett. 2017, 12, 034017. [Google Scholar] [CrossRef]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A Review of Threats to Groundwater Quality in the Anthropocene. Sci. Total Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef]
- ATSDR. The ATSDR 2019 Substance Priority List, Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 5 November 2023).
- Fendorf, S.; Michael, H.A.; van Geen, A. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science 2010, 328, 1123–1127. [Google Scholar] [CrossRef]
- Gorchev, H.G.; Ozolins, G. WHO Guidelines for Drinking-Water Quality. WHO Chron. 1984, 38, 104–108. [Google Scholar]
- Thakur, J.K.; Thakur, R.K.; Ramanathan, A.L.; Kumar, M.; Singh, S.K. Arsenic Contamination of Groundwater in Nepal—An Overview. Water 2011, 3, 1–20. [Google Scholar] [CrossRef]
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A Review on Decontamination of Arsenic-Contained Water by Electrocoagulation: Reactor Configurations and Operating Cost along with Removal Mechanisms. Environ. Technol. Innov. 2020, 17, 100519. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahaman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental Arsenic Exposure and Its Contribution to Human Diseases, Toxicity Mechanism and Management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Saidulu, D.; Gupta, A.K.; Ghosal, P.S.; Mukherjee, A. Status and Management of Arsenic Pollution in Groundwater: A Comprehensive Appraisal of Recent Global Scenario, Human Health Impacts, Sustainable Field-Scale Treatment Technologies. J. Environ. Chem. Eng. 2021, 9, 105203. [Google Scholar] [CrossRef]
- Hung, D.Q.; Nekrassova, O.; Compton, R.G. Analytical Methods for Inorganic Arsenic in Water: A Review. Talanta 2004, 64, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, M.; Riyazuddin, P. Overview of Speciation Chemistry of Arsenic. Curr. Sci. 2001, 80, 837–846. [Google Scholar]
- Kalman, J.; Smith, B.D.; Bury, N.R.; Rainbow, P.S. Biodynamic Modelling of the Bioaccumulation of Trace Metals (Ag, As and Zn) by an Infaunal Estuarine Invertebrate, the Clam Scrobicularia Plana. Aquat. Toxicol. 2014, 154, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Saravana Kumar, U.; Noble, J.; Akhtar, N.; Akhtar, M.A.; Deodhar, A. Isotope Hydrology Tools in the Assessment of Arsenic Contamination in Groundwater: An Overview. Chemosphere 2023, 340, 139898. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Suzuki, K.T. Arsenic Round the World: A Review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A.; Kim, K.-W.; Kim, J.H. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Res. 2011, 45, 5535–5544. [Google Scholar] [CrossRef]
- Buschmann, J.; Berg, M.; Stengel, C.; Sampson, M.L. Arsenic and Manganese Contamination of Drinking Water Resources in Cambodia: Coincidence of Risk Areas with Low Relief Topography. Environ. Sci. Technol. 2007, 41, 2146–2152. [Google Scholar] [CrossRef]
- Van Geen, A.; Ahmed, E.B.; Pitcher, L.; Mey, J.L.; Ahsan, H.; Graziano, J.H.; Ahmed, K.M. Comparison of Two Blanket Surveys of Arsenic in Tubewells Conducted 12years Apart in a 25km2 Area of Bangladesh. Sci. Total Environ. 2014, 488–489, 484–492. [Google Scholar] [CrossRef]
- Stopelli, E.; Duyen, V.T.; Mai, T.T.; Trang, P.T.K.; Viet, P.H.; Lightfoot, A.; Kipfer, R.; Schneider, M.; Eiche, E.; Kontny, A.; et al. Spatial and Temporal Evolution of Groundwater Arsenic Contamination in the Red River Delta, Vietnam: Interplay of Mobilisation and Retardation Processes. Sci. Total Environ. 2020, 717, 137143. [Google Scholar] [CrossRef]
- Winkel, L.; Berg, M.; Amini, M.; Hug, S.J.; Annette Johnson, C. Predicting Groundwater Arsenic Contamination in Southeast Asia from Surface Parameters. Nat. Geosci. 2008, 1, 536–542. [Google Scholar] [CrossRef]
- Brammer, H.; Ravenscroft, P. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South-East Asia. Environ. Int. 2009, 35, 647–654. [Google Scholar] [CrossRef]
- Ganguli, S.; Rifat, M.A.H.; Das, D.; Islam, S.; Islam, M.N. Groundwater Pollution in Bangladesh: A Review. Grassroots J. Nat. Resour. 2021, 04, 115–145. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics. Bangladesh National Drinking Water Quality Survey of 2009; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2011.
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Chandra Mukherjee, S.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S.; et al. Status of Groundwater Arsenic Contamination in Bangladesh: A 14-Year Study Report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef]
- Tashdedul, H.M.; Reyes, N.J.D.G.; Jeon, M.; Kim, L.-H. Current Status and Technologies for Treating Groundwater Arsenic Pollution in Bangladesh. J. Wetl. Res. 2022, 24, 142–154. [Google Scholar]
- Chakraborti, D.; Rahman, M.M.; Chatterjee, A.; Das, D.; Das, B.; Nayak, B.; Pal, A.; Chowdhury, U.K.; Ahmed, S.; Biswas, B.K.; et al. Fate of over 480 Million Inhabitants Living in Arsenic and Fluoride Endemic Indian Districts: Magnitude, Health, Socio-Economic Effects and Mitigation Approaches. J. Trace Elem. Med. Biol. 2016, 38, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, D.; Rahman, M.M.; Ahamed, S.; Dutta, R.N.; Pati, S.; Mukherjee, S.C. Arsenic Contamination of Groundwater and Its Induced Health Effects in Shahpur Block, Bhojpur District, Bihar State, India: Risk Evaluation. Environ. Sci. Pollut. R. 2016, 23, 9492–9504. [Google Scholar] [CrossRef] [PubMed]
- Bindal, S.; Singh, C.K. Predicting Groundwater Arsenic Contamination: Regions at Risk in Highest Populated State of India. Water Res. 2019, 159, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, D.; Ghorai, S.; Das, B.; Pal, A.; Nayak, B.; Shah, B. Arsenic Exposure through Groundwater to the Rural and Urban Population in the Allahabad-Kanpur Track in the Upper Ganga Plain. J. Environ. Monit. JEM 2009, 11, 1455–1459. [Google Scholar] [CrossRef]
- Mukherjee, A.; Verma, S.; Gupta, S.; Henke, K.R.; Bhattacharya, P. Influence of Tectonics, Sedimentation and Aqueous Flow Cycles on the Origin of Global Groundwater Arsenic: Paradigms from Three Continents. J. Hydrol. 2014, 518, 284–299. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive Arsenic Contamination in High-pH Unconfined Aquifers in the Indus Valley. Sci. Adv. 2017, 3, e1700935. [Google Scholar] [CrossRef]
- Shahid, M. A Meta-Analysis of the Distribution, Sources and Health Risks of Arsenic-Contaminated Groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Cao, W.G.; Zhang, Z.; Guo, H.M.; Fu, Y.; Gao, Z.P.; Nan, T.; Ren, Y.; Li, Z.Y. Spatial Distribution and Controlling Mechanisms of High Fluoride Groundwater in the Coastal Plain of Bohai Rim, North China. J. Hydrol. 2023, 617, 128952. [Google Scholar] [CrossRef]
- Wen, D.G.; Zhang, F.C.; Zhang, E.Y.; Wang, C.; Han, S.B.; Zheng, Y. Arsenic, Fluoride and Iodine in Groundwater of China. J. Geochem. Explor. 2013, 135, 1–21. [Google Scholar] [CrossRef]
- He, X.D.; Li, P.Y.; Ji, Y.J.; Wang, Y.H.; Su, Z.M.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Guo, H.; Wen, D.; Liu, Z.; Jia, Y.; Guo, Q. A Review of High Arsenic Groundwater in Mainland and Taiwan, China: Distribution, Characteristics and Geochemical Processes. Appl. Geochem. 2014, 41, 196–217. [Google Scholar] [CrossRef]
- Rodríguez-Lado, L.; Sun, G.F.; Berg, M.; Zhang, Q.; Xue, H.B.; Zheng, Q.M.; Johnson, C.A. Groundwater Arsenic Contamination Throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Saffi, M.H.; Eqrar, M. Arsenic Contamination of Groundwater in Ghazni and Maidan Wardak Provinces: Afghanistan. In Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden, 19–23 June 2016; CRC Press: Boca Raton, FL, USA, 2016; pp. 41–42. ISBN 978-1-138-02941-5. [Google Scholar]
- Bhattacharya, P.; Claesson, M.; Bundschuh, J.; Sracek, O.; Fagerberg, J.; Jacks, G.; Martin, R.A.; Storniolo, A. del R.; Thir, J.M. Distribution and Mobility of Arsenic in the Río Dulce Alluvial Aquifers in Santiago Del Estero Province, Argentina. Sci. Total Environ. 2006, 358, 97–120. [Google Scholar] [CrossRef]
- Aullón Alcaine, A.; Schulz, C.; Bundschuh, J.; Jacks, G.; Thunvik, R.; Gustafsson, J.-P.; Mörth, C.-M.; Sracek, O.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical Controls on the Mobility of Arsenic, Fluoride and Other Geogenic Co-Contaminants in the Shallow Aquifers of Northeastern La Pampa Province in Argentina. Sci. Total Environ. 2020, 715, 136671. [Google Scholar] [CrossRef]
- Smith, J.V.S.; Jankowski, J.; Sammut, J. Vertical Distribution of As(III) and As(V) in a Coastal Sandy Aquifer: Factors Controlling the Concentration and Speciation of Arsenic in the Stuarts Point Groundwater System, Northern New South Wales, Australia. Appl. Geochem. 2003, 18, 1479–1496. [Google Scholar] [CrossRef]
- Bundschuh, J.; Armienta, M.A.; Morales-Simfors, N.; Alam, M.A.; López, D.L.; Delgado Quezada, V.; Dietrich, S.; Schneider, J.; Tapia, J.; Sracek, O.; et al. Arsenic in Latin America: New Findings on Source, Mobilization and Mobility in Human Environments in 20 Countries Based on Decadal Research 2010-2020. Crit. Rev. Env. Sci. Tec. 2021, 51, 1727–1865. [Google Scholar] [CrossRef]
- Huntsman-Mapila, P.; Mapila, T.; Letshwenyo, M.; Wolski, P.; Hemond, C. Characterization of Arsenic Occurrence in the Water and Sediments of the Okavango Delta, NW Botswana. Appl. Geochem. 2006, 21, 1376–1391. [Google Scholar] [CrossRef]
- Smedley, P.L.; Knudsen, J.; Maiga, D. Arsenic in Groundwater from Mineralised Proterozoic Basement Rocks of Burkina Faso. Appl. Geochem. 2007, 22, 1074–1092. [Google Scholar] [CrossRef]
- He, X.D.; Li, P.Y.; Wu, J.H.; Wei, M.J.; Ren, X.F.; Wang, D. Poor Groundwater Quality and High Potential Health Risks in the Datong Basin, Northern China: Research from Published Data. Environ. Geochem. Health 2021, 43, 791–812. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yang, S.; Tang, X.; Li, Y.; Shen, Z. Groundwater Geochemistry and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Hetao Basin, Inner Mongolia. Sci. Total Environ. 2008, 393, 131–144. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.M.; Liu, H.Y.; Zhang, W.M. Source, Migration, Distribution, Toxicological Effects and Remediation Technologies of Arsenic in Groundwater in China. China Geol. 2023, 6, 476–493. [Google Scholar]
- Wang, Y.X.; Li, J.X.; Ma, T.; Xie, X.J.; Deng, Y.M.; Gan, Y.Q. Genesis of Geogenic Contaminated Groundwater: As, F and I. Crit. Rev. Env. Sci. Tec. 2021, 51, 2895–2933. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.L.; Yang, F.Y.; Ji, Y.Y.; Zeng, Y.Y. Distribution and Co-Enrichment Genesis of Arsenic, Fluorine and Iodine in Groundwater of the Oasis Belt in the Southern Margin of Tarim Basin. Earth Sci. Front. 2022, 29, 99–114. [Google Scholar]
- Guo, Q.; Guo, H.M.; Yang, Y.C.; Han, S.B.; Zhang, F.C. Hydrogeochemical Contrasts between Low and High Arsenic Groundwater and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Northern Yinchuan Basin, P.R. China. J. Hydrol. 2014, 518, 464–476. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J.; Cherry, J.A. Occurrence and Geochemical Behavior of Arsenic in a Coastal Aquifer–Aquitard System of the Pearl River Delta, China. Sci. Total Environ. 2012, 427–428, 286–297. [Google Scholar] [CrossRef]
- Berg, M.; Stengel, C.; Trang, P.; Hungviet, P.; Sampson, M.; Leng, M.; Samreth, S.; Fredericks, D. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413–425. [Google Scholar] [CrossRef]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Farfán Torres, E.M.; Taylor, S.; Frangie, S.; Herkovits, J.; et al. Arsenic in Argentina: Occurrence, Human Health, Legislation and Determination. Sci. Total Environ. 2019, 676, 756–766. [Google Scholar] [CrossRef]
- Dilpazeer, F.; Munir, M.; Baloch, M.Y.J.; Shafiq, I.; Iqbal, J.; Saeed, M.; Abbas, M.M.; Shafique, S.; Aziz, K.H.H.; Mustafa, A.; et al. A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water 2023, 15, 478. [Google Scholar] [CrossRef]
- Kusimi, J.M.; Kusimi, B.A. The Hydrochemistry of Water Resources in Selected Mining Communities in Tarkwa. J. Geochem. Explor. 2012, 112, 252–261. [Google Scholar] [CrossRef]
- Rowland, H.A.L.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and Arsenic Behaviour in Groundwater Resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17. [Google Scholar] [CrossRef]
- Dhillon, A.K. Arsenic Contamination of India’s Groundwater: A Review and Critical Analysis. In Arsenic Water Resources Contamination; Springer: Cham, Switzerland, 2020; pp. 177–205. [Google Scholar]
- Hamidian, A.H.; Razeghi, N.; Zhang, Y.; Yang, M. Spatial Distribution of Arsenic in Groundwater of Iran, a Review. J. Geochem. Explor. 2019, 201, 88–98. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and Fluoride Contaminated Groundwaters: A Review of Current Technologies for Contaminants Removal. J. Environ. Manage. 2015, 162, 306–325. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, J.S.; Chang, E.T.; Gentry, P.R.; Clewell, H.J.; Boffetta, P.; Cohen, S.M. Dose-Response for Assessing the Cancer Risk of Inorganic Arsenic in Drinking Water: The Scientific Basis for Use of a Threshold Approach. Crit. Rev. Toxicol. 2019, 49, 36–84. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Mushtaq, N.; Javed, T.; Zhang, H.; Ali, K.; Rasool, A.; Farooqi, A. Vertical Mixing with Return Irrigation Water the Cause of Arsenic Enrichment in Groundwater of District Larkana Sindh, Pakistan. Environ. Pollut. 2019, 245, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, N.; Masood, N.; Khattak, J.A.; Hussain, I.; Khan, Q.; Farooqi, A. Health Risk Assessment and Source Identification of Groundwater Arsenic Contamination Using Agglomerative Hierarchical Cluster Analysis in Selected Sites from Upper Eastern Parts of Punjab Province, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 999–1018. [Google Scholar] [CrossRef]
- Gómez, J.J.; Lillo, J.; Sahún, B. Naturally Occurring Arsenic in Groundwater and Identification of the Geochemical Sources in the Duero Cenozoic Basin, Spain. Environ. Geol. 2006, 50, 1151–1170. [Google Scholar] [CrossRef]
- Haugen, E.A.; Jurgens, B.C.; Arroyo-Lopez, J.A.; Bennett, G.L. Groundwater Development Leads to Decreasing Arsenic Concentrations in the San Joaquin Valley, California. Sci. Total Environ. 2021, 771, 145223. [Google Scholar] [CrossRef]
- Walkera, M.; Seiler, R.L.; Meinert, M. Effectiveness of Household Reverse-Osmosis Systems in a Western U.S. Region with High Arsenic in Groundwater. Sci. Total Environ. 2008, 389, 245–252. [Google Scholar] [CrossRef]
- Medunić, G.; Fiket, Ž.; Ivanić, M. Arsenic Contamination Status in Europe, Australia, and Other Parts of the World. In Arsenic in Drinking Water and Food; Srivastava, S., Ed.; Springer: Singapore, 2020; pp. 183–233. ISBN 9789811385872. [Google Scholar]
- Daniele, L. Distribution of Arsenic and Other Minor Trace Elements in the Groundwater of Ischia Island (Southern Italy). Environ. Geol. 2004, 46, 96–103. [Google Scholar] [CrossRef]
- Sorg, T.J.; Chen, A.S.C.; Wang, L. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations. Water Res. 2014, 48, 156–169. [Google Scholar] [CrossRef] [PubMed]
- McClintock, T.R.; Chen, Y.; Bundschuh, J.; Oliver, J.T.; Navoni, J.; Olmos, V.; Lepori, E.V.; Ahsan, H.; Parvez, F. Arsenic Exposure in Latin America: Biomarkers, Risk Assessments and Related Health Effects. Sci. Total Environ. 2012, 429, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Guerrero, A. Evaporative Concentration of Arsenic in Groundwater: Health and Environmental Implications, La Laguna Region, Mexico. Environ. Geochem. Health 2017, 39, 987–1003. [Google Scholar] [CrossRef] [PubMed]
- Morales-Arredondo, J.I.; Esteller-Alberich, M.V.; Armienta Hernández, M.A.; Martínez-Florentino, T.A.K. Characterizing the Hydrogeochemistry of Two Low-Temperature Thermal Systems in Central Mexico. J. Geochem. Explor. 2018, 185, 93–104. [Google Scholar] [CrossRef]
- Smedley, P.L.; Nicolli, H.B.; Macdonald, D.M.J.; Barros, A.J.; Tullio, J.O. Hydrogeochemistry of Arsenic and Other Inorganic Constituents in Groundwaters from La Pampa, Argentina. Appl. Geochem. 2002, 17, 259–284. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Human Health Risk Assessment via Drinking Water Pathway Due to Metal Contamination in the Groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Sun, L.J.; Sun, Y.F.; Song, K.; Qin, Q.; Zhu, Z.Y.; Xue, Y. Towards an Integrated Health Risk Assessment Framework of Soil Heavy Metals Pollution: Theoretical Basis, Conceptual Model, and Perspectives. Environ. Pollut. 2023, 316, 120596. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Gou, X.; Luo, X.Q.; Yang, H.Y. Approaches of Health Risk Assessment for Heavy Metals Applied in China and Advance in Exposure Assessment Models: A Review. Ecol. Environ. Sci. 2014, 23, 1239–1244. [Google Scholar]
- USEPA Risk Assessment Guidance for Superfund (RAGS): Part A. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 3 October 2023).
- Ehsan, N.; Shan, A.; Riaz, S.; uz Zaman, Q.; Javied, S.; Jabeen, M. Health Risk Assessment Due to Exposure of Arsenic Contamination in Drinking Water of District Shiekhupura, Punjab, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 162–176. [Google Scholar] [CrossRef]
- Krishan, G.; Ghosh, S.; Virk, H.S. Arsenic Pollution and Associated Human Health Hazards in Rupnagar District, Punjab, India. Environ. Sci. Pollut. R. 2023, 30, 69258–69273. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Mor, S. Distribution and Health Risk Assessment of Arsenic and Selected Heavy Metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Radfard, M.; Yunesian, M.; Nabizadeh, R.; Biglari, H.; Nazmara, S.; Hadi, M.; Yousefi, N.; Yousefi, M.; Abbasnia, A.; Mahvi, A.H. Drinking Water Quality and Arsenic Health Risk Assessment in Sistan and Baluchestan, Southeastern Province, Iran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 949–965. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Ma, J.; Yang, Y.J.; Zhang, S.L.; Liu, G.J.; Chen, F. Spatial Assessment of Farmland Soil Pollution and Its Potential Human Health Risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Thind, P.S.; Mor, S.; Singh, T.; Mor, S. Evaluation of Groundwater Contamination in Chandigarh: Source Identification and Health Risk Assessment. Environ. Pollut. 2019, 255, 113062. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.W.; Luo, Y.L.; Wang, X.; Liu, K. Arsenic Content and Health Risk Assessment in Groundwater-Soil System. Environ. Sci. Technol. 2021, 44, 204–211. [Google Scholar]
- Varol, S.; Davraz, A.; Şener, Ş.; Şener, E.; Aksever, F.; Kırkan, B.; Tokgözlü, A. Assessment of Groundwater Quality and Usability of Salda Lake Basin (Burdur/Turkey) and Health Risk Related to Arsenic Pollution. J. Environ. Health Sci. Eng. 2021, 19, 681–706. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Guo, Z.F.; Han, J.C.; Li, H.H.; Jin, L.; Chen, F.; Xiong, Y.Q. Human Health Risk Assessment of Groundwater Arsenic Contamination in Jinghui Irrigation District, China. J. Environ. Manage. 2019, 237, 163–169. [Google Scholar] [CrossRef]
- Kumar, A.; Ali, M.; Kumar, R.; Rahman, M.S.; Srivastava, A.; Chayal, N.K.; Sagar, V.; Kumari, R.; Parween, S.; Kumar, R.; et al. High Arsenic Concentration in Blood Samples of People of Village Gyaspur Mahaji, Patna, Bihar Drinking Arsenic-Contaminated Water. Expo. Health 2020, 12, 131–140. [Google Scholar] [CrossRef]
- Chen, X.P.; Liu, S.Y.; Luo, Y. Spatiotemporal Distribution and Probabilistic Health Risk Assessment of Arsenic in Drinking Water and Wheat in Northwest China. Ecotoxicol. Environ. Saf. 2023, 256, 114880. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Yang, Q.C.; Lu, X.Y.; Wang, H.L.; Gu, Q.B.; Martín, J.D. Spatial Distributoin, Contamination Characteristics and Ecological-Health Risk Assessment of Toxic Heavy Metals in Soils near a Smelting Area. Environ. Res. 2023, 222, 115328. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Wu, Y.Y.; Sun, J.X.; Li, X.; Geng, X.L.; Zhao, M.L.; Sun, T.; Fan, Z.Q. Health Risk Assessment of Heavy Metal(Loid)s in Park Soils of the Largest Megacity in China by Using Monte Carlo Simulation Coupled with Positive Matrix Factorization Model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef]
- Sadeghfam, S.; Abdi, M.; Khatibi, R.; Nadiri, A.A. An Investigation into Uncertainties within Human Health Risk Assessment to Gain an Insight into Plans to Mitigate Impacts of Arsenic Contamination. J. Clean. Prod. 2021, 311, 127667. [Google Scholar] [CrossRef]
- Yang, Q.C.; Zhang, L.M.; Wang, H.L.; Martín, J.D. Bioavailability and Health Risk of Toxic Heavy Metals (As, Hg, Pb and Cd) in Urban Soils: A Monte Carlo Simulation Approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef]
- Guleria, A.; Singh, R.; Chakma, S.; Birke, V. Ecological and Human Health Risk Assessment of Chromite Ore Processing Residue (COPR) Dumpsites in Northern India: A Multi–Pathways Based Probabilistic Risk Approach. Process Saf. Environ. Prot. 2022, 163, 405–420. [Google Scholar] [CrossRef]
- Sohrabi, N.; Kalantari, N.; Amiri, V.; Saha, N.; Berndtsson, R.; Bhattacharya, P.; Ahmad, A. A Probabilistic-Deterministic Analysis of Human Health Risk Related to the Exposure to Potentially Toxic Elements in Groundwater of Urmia Coastal Aquifer (NW of Iran) with a Special Focus on Arsenic Speciation and Temporal Variation. Stoch. Env. Res. Risk A. 2021, 35, 1509–1528. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Yang, Q.C.; Wang, H.; Yang, J.W.; Zhang, X.Y.; Li, Z.J.; Martín, J.D. A Hydrochemical and Isotopic Approach for Source Identification and Health Risk Assessment of Groundwater Arsenic Pollution in the Central Yinchuan Basin. Environ. Res. 2023, 231, 116153. [Google Scholar] [CrossRef]
- Yin, N.Y.; Li, Y.P.; Yang, Y.T.; Fan, C.F.; Li, Y.; Du, X.; Sun, G.X.; Cui, Y.S. Human Health Risk Assessment in Aluminium Smelting Site: Soil Fluoride Bioaccessibility and Relevant Mechanism in Simulated Gastrointestinal Tract. J. Hazard. Mater. 2021, 416, 125899. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.C.; Zhu, Y.W.; Gu, Q.B.; Martín, J.D. Speciation, in Vitro Bioaccessibility and Health Risk of Antimony in Soils near an Old Industrial Area. Sci. Total Environ. 2023, 854, 158767. [Google Scholar] [CrossRef]
- Li, P.Y.; Li, X.Y.; Meng, X.Y.; Li, M.N.; Zhang, Y.T. Appraising Groundwater Quality and Health Risks from Contamination in a Semiarid Region of Northwest China. Expo. Health 2016, 8, 361–379. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Z.M.; Liang, X.Y.; Wang, G.C.; Han, J.Q. Multiple Factors Control Groundwater Chemistry and Quality of Multi-Layer Groundwater System in Northwest China Coalfield—Using Self-Organizing Maps (SOM). J. Geochem. Explor. 2021, 227, 106795. [Google Scholar] [CrossRef]
- Jiang, W.J.; Liu, H.W.; Sheng, Y.Z.; Ma, Z.; Zhang, J.; Liu, F.T.; Chen, S.M.; Meng, Q.H.; Bai, Y.N. Distribution, Source Apportionment, and Health Risk Assessment of Heavy Metals in Groundwater in a Multi-Mineral Resource Area, North China. Expo. Health 2022, 14, 807–827. [Google Scholar] [CrossRef]
- Kouras, A.; Katsoyiannis, I.; Voutsa, D. Distribution of Arsenic in Groundwater in the Area of Chalkidiki, Northern Greece. J. Hazard. Mater. 2007, 147, 890–899. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Guo, H.M.; Jia, Y.F.; Cao, Y.S.; Hu, C. Principal Component Analysis and Hierarchical Cluster Analyses of Arsenic Groundwater Geochemistry in the Hetao Basin, Inner Mongolia. Geochemistry 2015, 75, 197–205. [Google Scholar] [CrossRef]
- Halim, M.A.; Majumder, R.K.; Nessa, S.A.; Oda, K.; Hiroshiro, Y.; Jinno, K. Arsenic in Shallow Aquifer in the Eastern Region of Bangladesh: Insights from Principal Component Analysis of Groundwater Compositions. Environ. Monit. Assess. 2010, 161, 453–472. [Google Scholar] [CrossRef]
- Cao, W.G.; Fu, Y.; Cheng, Y.P.; Zhai, W.H.; Sun, X.Y.; Ren, Y.; Pan, D. Modeling Potential Arsenic Enrichment and Distribution Using Stacking Ensemble Learning in the Lower Yellow River Plain, China. J. Hydrol. 2023, 625, 129985. [Google Scholar] [CrossRef]
- Wu, R.H.; Podgorski, J.; Berg, M.; Polya, D.A. Geostatistical Model of the Spatial Distribution of Arsenic in Groundwaters in Gujarat State, India. Environ. Geochem. Health 2021, 43, 2649–2664. [Google Scholar] [CrossRef]
- Ayotte, J.D.; Medalie, L.; Qi, S.L.; Backer, L.C.; Nolan, B.T. Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environ. Sci. Technol. 2017, 51, 12443–12454. [Google Scholar] [CrossRef]
- Cao, H.L.; Xie, X.J.; Wang, Y.X.; Deng, Y.M. The Interactive Natural Drivers of Global Geogenic Arsenic Contamination of Groundwater. J. Hydrol. 2021, 597, 126214. [Google Scholar] [CrossRef]
- Guo, W.J.; Gao, Z.P.; Guo, H.M.; Cao, W.G. Hydrogeochemical and Sediment Parameters Improve Predication Accuracy of Arsenic-Prone Groundwater in Random Forest Machine-Learning Models. Sci. Total Environ. 2023, 897, 165511. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global Threat of Arsenic in Groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Connolly, C.T.; Stahl, M.O.; DeYoung, B.A.; Bostick, B.C. Surface Flooding as a Key Driver of Groundwater Arsenic Contamination in Southeast Asia. Environ. Sci. Technol. 2022, 56, 928–937. [Google Scholar] [CrossRef]
- Sumdang, N.; Chotpantarat, S.; Cho, K.H.; Thanh, N.N. The Risk Assessment of Arsenic Contamination in the Urbanized Coastal Aquifer of Rayong Groundwater Basin, Thailand Using the Machine Learning Approach. Ecotoxicol. Environ. Saf. 2023, 253, 114665. [Google Scholar] [CrossRef]
- Mohanty, D. Conventional as Well as Emerging Arsenic Removal Technologies—A Critical Review. Water Air Soil Pollut. 2017, 228, 381. [Google Scholar] [CrossRef]
- Li, P.Y.; He, S.; Yang, N.N.; Xiang, G. Groundwater Quality Assessment for Domestic and Agricultural Purposes in Yan’an City, Northwest China: Implications to Sustainable Groundwater Quality Management on the Loess Plateau. Environ. Earth Sci. 2018, 77, 775. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Q.X.; Zhao, Y.Q. The Research Trend on Arsenic Pollution in Freshwater: A Bibliometric Review. Environ. Monit. Assess. 2022, 194, 602. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.A.; Schwegel, C.A.; Wei, X.Y.; Creed, J.T. Speciation and Preservation of Inorganic Arsenic in Drinking Water Sources Using EDTA with IC Separation and ICP-MS Detection. J. Environ. Monit. 2001, 3, 371–376. [Google Scholar] [CrossRef]
- Panthi, S.; Sharma, S.; Mishra, A. Recent Status of Arsenic Contamination in Groundwater of Nepal—A Review. Kathmandu Univ. J Sci Eng Technol 2006, 2, 1–11. [Google Scholar]
- Reddy, R.R.; Rodriguez, G.D.; Webster, T.M.; Abedin, M.J.; Karim, M.R.; Raskin, L.; Hayes, K.F. Evaluation of Arsenic Field Test Kits for Drinking Water: Recommendations for Improvement and Implications for Arsenic Affected Regions Such as Bangladesh. Water Res. 2020, 170, 115325. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, M.; Wang, Y.; Portlock, G.; Gourain, A.; Gardner, J.; Bullen, J.; Lewtas, P.; Carriere, M.; Alvarez, A.; Kumar, A.; et al. Voltammetric Determination of Inorganic Arsenic in Mildly Acidified (pH 4.7) Groundwaters from Mexico and India. Anal. Chim. Acta 2023, 1276, 341589. [Google Scholar] [CrossRef] [PubMed]
- Gibbon-Walsh, K.; Salaün, P.; van den Berg, C.M.G. Arsenic Speciation in Natural Waters by Cathodic Stripping Voltammetry. Anal. Chim. Acta 2010, 662, 1–8. [Google Scholar] [CrossRef]
- Sheng, Y.Z.; Zhang, X.; Zhai, X.B.; Zhang, F.; Li, G.H.; Zhang, D.Y. A Mobile, Modular and Rapidly-Acting Treatment System for Optimizing and Improving the Removal of Non-Aqueous Phase Liquids (NAPLs) in Groundwater. J. Hazard. Mater. 2018, 360, 639–650. [Google Scholar] [CrossRef]
- Cao, W.G.; Wang, Y.Y.; Ren, Y.; Fei, Y.H.; Li, J.C.; Li, Z.Y.; Zhang, D.; Shuai, G.Y. Status and Progress of Treatment Technologies for Arsenic-Bearing Groundwater. Geol. China 2022, 49, 1408–1426. [Google Scholar]
- Souter, P.F.; Cruickshank, G.D.; Tankerville, M.Z.; Keswick, B.H.; Ellis, B.D.; Langworthy, D.E.; Metz, K.A.; Appleby, M.R.; Hamilton, N.; Jones, A.L.; et al. Evaluation of a New Water Treatment for Point-of-Use Household Applications to Remove Microorganisms and Arsenic from Drinking Water. J. Water Health 2003, 1, 73–84. [Google Scholar] [CrossRef]
- Norton, D.M.; Rahman, M.; Shane, A.L.; Hossain, Z.; Kulick, R.M.; Bhuiyan, M.I.; Wahed, M.A.; Yunus, M.; Islam, M.S.; Breiman, R.F.; et al. Flocculant-Disinfectant Point-of-Use Water Treatment for Reducing Arsenic Exposure in Rural Bangladesh. Int. J. Environ. Heal. R. 2009, 19, 17–29. [Google Scholar] [CrossRef]
- Okoh, E.; Miner, C.A.; Okoh, A.F.; Igoh, C.S.; Agada, G.O.; Zoakah, A.I. A Comparative Analysis of the Effect of Household Water Treatment with Flocculant-Disinfectant and Sodium Hypochlorite on the Risk of Waterborne Diseases. Int. J. Biomed. Res. 2021, 12, e5454. [Google Scholar]
- Ahmed, M.F. An Overview of Arsenic Removal Technologies in Bangladesh and India. In Proceedings of the BUET-UNU International Workshop on Technologies for Arsenic Removal from Drinking Water, Dhaka, Bangladesh, 5–7 May 2001; pp. 5–7. [Google Scholar]
- Mukherjee, D.; Chowdhury, S.; Paul, A.; Das, P. A Review on Arsenic Pollution in West Bengal and Bihar: Cause, Effects and Remedial Measures Following Latest Technology. J. Indian Chem. Soc. 2012, 89, 9–18. [Google Scholar]
- Xie, X.J.; Pi, K.F.; Liu, Y.Q.; Liu, C.X.; Li, J.X.; Zhu, Y.P.; Su, C.L.; Ma, T.; Wang, Y.X. In-Situ Arsenic Remediation by Aquifer Iron Coating: Field Trial in the Datong Basin, China. J. Hazard. Mater. 2016, 302, 19–26. [Google Scholar] [CrossRef]
- Jha, S.K.; Mishra, V.K.; Damodaran, T.; Sharma, D.K.; Kumar, P. Arsenic in the Groundwater: Occurrence, Toxicological Activities, and Remedies. J. Environ. Sci. Health. Part C Environ. Carcinog. Ecotoxicol. Rev. 2017, 35, 84–103. [Google Scholar] [CrossRef]
- USEPA. Technologies and Costs for Removal of Arsenic from Drinking Water. US Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Wang, L.L.; Chen, A.; Fields, K. Arsenic Removal from Drinking Water by Ion Exchange and Activated Alumina Plants; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Dutta, N.; Gupta, A. Development of Arsenic Removal Unit with Electrocoagulation and Activated Alumina Sorption: Field Trial at Rural West Bengal, India. J. Water Process Eng. 2022, 49, 103013. [Google Scholar] [CrossRef]
- Nicomel, N.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Int. J. Environ. Res. Public. Health 2015, 13, 62. [Google Scholar] [CrossRef]
- Manning, B.A.; Fendorf, S.E.; Bostick, B.; Suarez, D.L. Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite. Environ. Sci. Technol. 2002, 36, 976–981. [Google Scholar] [CrossRef]
- Chiew, H.; Sampson, M.L.; Huch, S.; Ken, S.; Bostick, B.C. Effect of Groundwater Iron and Phosphate on the Efficacy of Arsenic Removal by Iron-Amended BioSand Filters. Environ. Sci. Technol. 2009, 43, 6295–6300. [Google Scholar] [CrossRef]
- Kanel, S.R.; Manning, B.; Charlet, L.; Choi, H. Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2005, 39, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.C.; Wu, D.B.; Wang, Z.R. Progress of Preparation and Application of Nanoscale Zero-Valent Iron. Appl. Chem. Ind. 2021, 50, 789–792. [Google Scholar]
- Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.M.; Hug, S.J. Arsenic Removal with Composite Iron Matrix Filters in Bangladesh: A Field and Laboratory Study. Environ. Sci. Technol. 2013, 47, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Litter, M.I.; Morgada, M.E.; Bundschuh, J. Possible Treatments for Arsenic Removal in Latin American Waters for Human Consumption. Environ. Pollut. 2010, 158, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.N.; Lo, I.M.C. Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications. Water Res. 2013, 47, 2613–2632. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Kumar, A.; Simon, M. Manisha Arsenic Pollution in Groundwater and Its In Situ Microbial Remediation Technologies. In Fate and Transport of Subsurface Pollutants; Gupta, P.K., Bharagava, R.N., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2021; pp. 183–197. ISBN 9789811565649. [Google Scholar]
- Casiot, C.; Pedron, V.; Bruneel, O.; Duran, R.; Personné, J.C.; Grapin, G.; Drakidès, C.; Elbaz-Poulichet, F. A New Bacterial Strain Mediating As Oxidation in the Fe-Rich Biofilm Naturally Growing in a Groundwater Fe Treatment Pilot Unit. Chemosphere 2006, 64, 492–496. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H. Aquatic Arsenic: Phytoremediation Using Floating Macrophytes. Chemosphere 2011, 83, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.L.; Moore, C.B. Adsorption of Arsenite and Arsenate on Amorphous Iron Hydroxide. Water Res. 1982, 16, 1247–1253. [Google Scholar] [CrossRef]
- Zhu, F.; Yang, M.; Luo, Z.X.; Yu, R.L.; Hu, G.R.; Yan, Y. Bioaccumulation and Biotransformation of Arsenic in Leptolyngbya Boryana. Environ. Sci. Pollut. R. 2020, 27, 29993–30000. [Google Scholar] [CrossRef] [PubMed]
- Kertulis-Tartar, G.M.; Ma, L.Q.; Tu, C.; Chirenje, T. Phytoremediation of an Arsenic-Contaminated Site Using Pteris Vittata L.: A Two-Year Study. Int. J. Phytorem. 2006, 8, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.S.; Xu, W.Z.; Shen, H.L.; Yan, H.L.; Xu, W.X.; He, Z.Y.; Ma, M. Engineering Arsenic Tolerance and Hyperaccumulation in Plants for Phytoremediation by a PvACR3 Transgenic Approach. Environ. Sci. Technol. 2013, 47, 9355–9362. [Google Scholar]
- Kruger, M.C.; Bertin, P.N.; Heipieper, H.J.; Arsène-Ploetze, F. Bacterial Metabolism of Environmental Arsenic—Mechanisms and Biotechnological Applications. Appl. Microbiol. Biotechnol. 2013, 97, 3827–3841. [Google Scholar] [CrossRef] [PubMed]
- Fakhreddine, S.; Prommer, H.; Scanlon, B.R.; Ying, S.C.; Nicot, J.-P. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review. Environ. Sci. Technol. 2021, 55, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban Rainwater Harvesting Systems: Research, Implementation and Future Perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhou, H.; He, S.; Zhang, Y. Comprehensive Understanding of Groundwater Quality for Domestic and Agricultural Purposes in Terms of Health Risks in a Coal Mine Area of the Ordos Basin, North of the Chinese Loess Plateau. Environ. Earth Sci. 2019, 78, 1–17. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A.; Fendorf, S. Release of Arsenic to Deep Groundwater in the Mekong Delta, Vietnam, Linked to Pumping-Induced Land Subsidence. Proc. Natl. Acad. Sci. 2013, 110, 13751–13756. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; Ahmed, F.; Shamsuddin, A.J.; Mahmud, S.; Deere, D. Risk Assessment of Arsenic Mitigation Options in Bangladesh. J. Health Popul. Nutr. 2006, 24, 346–355. [Google Scholar] [PubMed]
- Alarcón-Herrera, M.T.; Gutiérrez, M. Geogenic Arsenic in Groundwater: Challenges, Gaps, and Future Directions. Curr. Opin. Environ. Sci. Health 2022, 27, 100349. [Google Scholar] [CrossRef]
- Kumar, M.; Das, N.; Tripathi, S.; Verma, A.; Jha, P.K.; Bhattacharya, P.; Mahlknecht, J. Global Co-Occurrences of Multi-(Emerging)-Contaminants in the Hotspots of Arsenic Polluted Groundwater: A Pattern of Menace. Curr. Opin. Environ. Sci. Health 2023, 34, 100483. [Google Scholar] [CrossRef]
Methods | Detection Limit (ppb) | Sample Size (mL) | Remarks | Advantage | Disadvantage |
---|---|---|---|---|---|
HG-AAS | 0.05 | 50 | Single element | High sensitivity, capable of distinguishing between As(III) and As(V), reduces interference from the sample matrix. | Transition metals may interfere with detection and inhibitors like L-cysteine may be required to prevent interference. |
GF-AAS | 1–5 | 1–2 | Single element | Suitable for the analysis of non-volatile compounds and offers high reliability. | Preconcentration is needed and, in some cases, matrix modification is necessary to increase detection sensitivity. |
ICP-AES | 35–50 | 10–20 | Multi-element | More accurate for multi-element samples. | Less frequently used, not as sensitive as ICP-MS. |
ICP-MS | 0.02–1 | 10–20 | Multi-element | Combines powerful separation capability with a low detection limit. Capable of effectively achieving selective detection. | Sensitive to high chloride levels, which may cause interference. |
HG-AFS | 0.01 | 40–50 | Single element | High sensitivity, capable of eliminating matrix scattering and interference from the sample matrix. | Potential interference issues similar to HG-AAS, may require specific mechanisms to eliminate interference. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Cao, W.; Lang, G.; Sun, Q.; Nan, T.; Li, X.; Ren, Y.; Li, Z. Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater. Water 2024, 16, 478. https://doi.org/10.3390/w16030478
Guo J, Cao W, Lang G, Sun Q, Nan T, Li X, Ren Y, Li Z. Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater. Water. 2024; 16(3):478. https://doi.org/10.3390/w16030478
Chicago/Turabian StyleGuo, Jiju, Wengeng Cao, Guohui Lang, Qifa Sun, Tian Nan, Xiangzhi Li, Yu Ren, and Zeyan Li. 2024. "Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater" Water 16, no. 3: 478. https://doi.org/10.3390/w16030478
APA StyleGuo, J., Cao, W., Lang, G., Sun, Q., Nan, T., Li, X., Ren, Y., & Li, Z. (2024). Worldwide Distribution, Health Risk, Treatment Technology, and Development Tendency of Geogenic High-Arsenic Groundwater. Water, 16(3), 478. https://doi.org/10.3390/w16030478