Development and Validation of a Crop and Nitrate Leaching Model for Potato Cropping Systems in a Temperate–Humid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Field Setup
2.3. Datasets
2.3.1. Meteorological Data
2.3.2. Soil Water Content and Temperature
2.3.3. Drainage and Nitrate Leaching
2.3.4. Soil Sampling
2.3.5. Plant Tissue Sampling
2.4. RZWQM Setup
2.5. RZWQM Calibration and Validation
- RMSE—Root-Mean-Square Error
- YiME—the ith measured value (i.e., observed)
- YiMO—the ith value predicted by the model (i.e., modelled)
- n—number of available data points.
- NRMSE—Normalized Root-Mean-Square Error
- YME_MAX—maximum measured value (i.e., observed)
- YME_MIN—minimum measured value (i.e., observed)
- PBIAS—Percentage Bias (%)
- YiME—the ith measured value (i.e., observed)
- YiMO—the ith value predicted by the model (i.e., modelled)
3. Results and Discussion
3.1. Model Calibration
3.2. Model Validation
3.3. Nitrate Leaching
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stark, J.; Thornton, M.; Nolte, P. (Eds.) Potato Production Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; p. 635. ISBN 978-3-030-39156-0. [Google Scholar]
- FAOSTAT. Crops and Livestock Products. 2022. Available online: http://www.fao.org/faostat/en/#data (accessed on 29 August 2022).
- Danielescu, S.; MacQuarrie, K.; Zebarth, B.; Nyiraneza, J.; Grimmett, M.; Levesque, M. Crop water deficit and supplemental irrigation requirements for potato production in a temperate humid region (Prince Edward Island, Canada). Water 2022, 14, 2748. [Google Scholar] [CrossRef]
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Struik, P.C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Res. 2015, 182, 76–85. [Google Scholar] [CrossRef]
- Statistics Canada, Canadian Potato Production, October 2022. 2022. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/221207/dq221207d-eng.htm (accessed on 9 February 2023).
- Statistics Canada. Prince Edward Island Leads the Way in Potato Production. 2023. Available online: https://www150.statcan.gc.ca/n1/pub/96-325-x/2021001/article/00002-eng.htm (accessed on 4 June 2023).
- Benson, S.V.; VanLeeuwen, J.A.; Sanchez, J.; Dohoo, I.R.; Somers, G.H. Spatial Analysis of Land Use Impact on Ground Water Nitrate Concentration. J. Environ. Qual. 2006, 35, 421–432. [Google Scholar] [CrossRef]
- Jiang, Y.; Somers, G. Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeol. J. 2009, 17, 707–724. [Google Scholar] [CrossRef]
- Danielescu, S.; MacQuarrie, K.T.B. Nitrogen loadings to two small estuaries, Prince Edward Island, Canada: A 2-year investigation of precipitation, surface water and groundwater contributions. Hydrol. Process. 2011, 25, 945–957. [Google Scholar] [CrossRef]
- Danielescu, S.; MacQuarrie, K.T.B.; Faux, R.N. The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in Atlantic Canada. Hydrol. Process. 2009, 23, 2847–2859. [Google Scholar] [CrossRef]
- Bugden, G.; Jiang, Y.; van den Heuvel, M.R.; Vandermeulen, H.; MacQuarrie, K.T.B.; Crane, C.J.; Raymond, B.G. Nitrogen Loading Criteria for Estuaries in Prince Edward Island. Can. Tech. Rep. Fish. Aquat. Sci. 2014, 3066, vii + 43 p. [Google Scholar]
- Grizard, P.; MacQuarrie, K.T.B.; Jiang, Y. Land-use based modeling approach for determining freshwater nitrate loadings from small agricultural watersheds. Water Qual. Res. J. 2020, 55, 278–294. [Google Scholar] [CrossRef]
- Munoz, F.; Mylavarapu, R.S.; Hutchinson, C.M. Environmentally responsible potato production systems: A Review. J. Plant Nutr. 2005, 28, 1287–1309. [Google Scholar] [CrossRef]
- Davenport, J.R.; Milburn, P.H.; Rosen, C.J.; Thornton, R.E. Environmental Impacts of Potato Nutrient Management. Amer. J. Potato. Res. 2005, 82, 321–328. [Google Scholar] [CrossRef]
- Pawelzik, E.; Möller, K. Sustainable potato production worldwide: The challenge to assess conventional and organic production systems. Potato Res. 2014, 57, 273–290. [Google Scholar] [CrossRef]
- Prince Edward Island Department of Environment, Energy and Climate Action (PEI DEECA). Agricultural Crop Rotation Act. 2019. Chapter A-8.01. Available online: https://www.princeedwardisland.ca/sites/default/files/legislation/a-08-01-agricultural_crop_rotation_act.pdf (accessed on 28 June 2021).
- Zebarth, B.J.; Danielescu, S.; Nyiraneza, J.; Ryan, M.C.; Jiang, Y.; Grimmett, M.; Burton, D.L. Controls on nitrate loading and implications for BMPs under intensive potato production systems in Prince Edward Island, Canada. Groundw. Monit. Rem. 2015, 35, 30–42. [Google Scholar] [CrossRef]
- Jiang, Y.; Nyiraneza, J.; Noronha, C.; Mills, A.; Murnaghan, D.; Kostic, A.; Wyand, S. Nitrate leaching and potato tuber yield response to different crop rotations. Field. Crop. Res. 2022, 288, 108700. [Google Scholar] [CrossRef]
- Bethke, P.C.; Nassar, A.M.; Kubow, S.; Leclerc, Y.N.; Li, X.Q.; Haroon, M.; Molen, T.; Bamberg, J.; Martin, M.; Donnelly, D.J. History and Origin of Russet Burbank (Netted Gem) a Sport of Burbank. Am. J. Potato Res. 2014, 91, 594–609. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Ma, L.; Howell, T.A. (Eds.) Agricultural System Models in Field Research and Technology Transfer; CRC Press: Boca Raton, FL, USA, 2002; 374p. [Google Scholar]
- Jego, G.; Martínez, M.; Antigüedad, I.; Launay, M.; Sanchez-Pérez, J.M.; Justes, E. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model. Sci. Total Environ. 2008, 394, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Morissette, R.; Jégo, G.; Bélanger, G.; Cambouris, A.N.; Nyiraneza, J.; Zebarth, B.J. Simulating potato growth and nitrogen uptake in Eastern Canada with the STICS Model. Agron. J. 2016, 108, 1853–1868. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. (Eds.) The Root Zone Water Quality Model; Water Resources Publications LLC.: Highlands Ranch, CO, USA, 2000; 372p. [Google Scholar]
- Ma, L.; Ahuja, R.; Nolan, B.T.; Malone, R.W.; Trout, T.J.; Qi, Z. Root Zone Water Quality Model (RZWQM2): Model use, calibration and validation. Trans. ASABE 2012, 55, 1425–1446. [Google Scholar] [CrossRef]
- Cameira, M.R.; Fernando, R.M.; Ahuja, L.R.; Ma, L. Using RZWQM to simulate the fate of nitrogen in field soil–crop environment in the Mediterranean region. Agric. Water Manag. 2007, 90, 121–136. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Ma, L. (Eds.) Methods of Introducing System Models into Agricultural Research. In American Society of Agronomy; Crop Science Society of America Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2011; 462p. [Google Scholar] [CrossRef]
- Esmaeili, S.; Thomson, N.R.; Tolson, B.A.; Zebarth, B.J.; Kuchta, S.H.; Neilsen, D. Quantitative global sensitivity analysis of the RZWQM to warrant a robust and effective calibration. J. Hydrol. 2014, 511, 567–579. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Paper no. 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Boote, K.J. Concepts for calibrating crop growth models. In DSSAT Version 3; Hoogenboom, G., Wilkens, P.W., Tsuji, G.Y., Eds.; University of Hawaii: Honolulu, HI, USA, 1999; Volume 4, 286p, ISBN 1-886684-04-9. [Google Scholar]
- Kersebaum, K.C. Application of a simple management model to simulate water and nitrogen dynamics. Ecol. Model. 1995, 81, 145–156. [Google Scholar] [CrossRef]
- Jiang, Y.; Zebarth, B.; Love, J. Long-term simulations of nitrate leaching from potato production systems in Prince Edward Island, Canada. Nutr. Cycl. Agroecosyst. 2011, 91, 307–325. [Google Scholar] [CrossRef]
- Wagenet, R.J.; Hutson, J.L. LEACHM: A Process-Based Model of Water and Solute Movement, Transformations, Plant Uptake and Chemical Reactions in the Unsaturated Zone, Version 2.0; New York State Water Resources Institute, Cornell University: Ithaca, NY, USA, 1989; Volume 2. [Google Scholar]
- McDonald, M.G.; Harbaugh, A. A modular three-dimensional finite-difference ground-water flow model. In The U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chap. 1; U.S. Geological Survey: Reston, VA, USA, 1988; pp. 83–875. [Google Scholar]
- Liang, K.; Jiang, Y.; Nyiraneza, J.; Fuller, K.; Murnaghan, D.; Meng, F.-R. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. Field Crop. Res. 2019, 242, 107603. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Adekanmbi, T.; Wang, X.; Basheer, S.; Nawaz, R.A.; Pang, T.; Hu, Y.; Liu, S. Assessing future climate change impacts on potato yields—A case study for Prince Edward Island, Canada. Foods 2023, 12, 1176. [Google Scholar] [CrossRef] [PubMed]
- Environment and Climate Change Canada (ECCC). Canadian Climate Normals for Charlottetown a Weather Station. 2021. Available online: https://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 10 January 2021).
- Carter, M.R. Physical properties of some Prince Edward Island soils in relation to their tillage requirement and suitability for direct drilling. Can. J. Soil Sci. 1987, 67, 413–487. [Google Scholar] [CrossRef]
- Agriculture Canada Research Branch (ACRB). Soils of Prince Edward Island. In Prince Edward Island Soil Survey; Agriculture Canada Research Branch, Land Resource Research Centre: Ottawa, ON, Canada, 1998; p. 219. [Google Scholar]
- Lamb, K.; MacQuarrie, K.T.B.; Butler, K.; Danielescu, S.; Mott, E.; Grimmett, M.; Zebarth, B.J. Hydrogeophysical monitoring reveals primarily vertical movement of an applied tracer across a shallow, sloping low-permeability till interface: Implications for agricultural nitrate transport. J. Hydrol. 2019, 573, 616–630. [Google Scholar] [CrossRef]
- Prince Edward Island Department of Agriculture and Fisheries (PEI DAF). Nutrient Recommendation Tables. 2017. Available online: https://www.princeedwardisland.ca/sites/default/files/publications/af_nutrient_recommendation_tables_.pdf (accessed on 25 May 2022).
- Environment and Climate Change Canada (ECCC). Daily Weather Historical Data for Charlottetown a Weather Station. 2020. Available online: https://climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed on 15 September 2020).
- National Aeronautics and Space Administration [NASA]. The Power Project. Langley Research Center (LARC); 2021. Available online: https://power.larc.nasa.gov/ (accessed on 10 March 2021).
- Louie, M.J.; Shelby, P.M.; Smesrud, J.S.; Gatchell, L.O.; Selker, J.S. Field evaluation of passive capillary samplers for estimating groundwater recharge. Water Resour. Res. 2000, 36, 2407–2416. [Google Scholar] [CrossRef]
- Jabro, J.D.; Kim, Y.; Evans, R.G.; Ivesren, W.M. Water flux and drainage from soil measured with automated passive capillary wick samplers. In Proceedings of the 2007 ASABE Annual International Meeting, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar] [CrossRef]
- Knutson, J.H.; Selker, J.S. Unsaturated hydraulic conductivities of fiberglass wicks and designing capillary wick pore-water samplers. Soil Sci. Sec. Am. J. 1994, 58, 721–729. [Google Scholar] [CrossRef]
- Masarik, K.C.; Norman, J.M.; Brye, K.R.; Baker, J.M. Improvements to measuring water flux in the vadose zone. J. Environ. Qual. 2004, 33, 1152–1158. [Google Scholar] [CrossRef]
- Danielescu, S. SNOSWAB (Snow, Soil Water and Water Balance Model)—A Web-Based Model. Reference Manual. 2023. Available online: https://snoswab.hydrotools.tech (accessed on 13 June 2023).
- Topp, G.C.; Zebchuk, W. The determination of soil-water desorption curves for soil cores. Can. J. Soil Sci. 1979, 59, 19–26. [Google Scholar] [CrossRef]
- Maynard, D.G.; Kalra, Y.P.; Crumbaugh, J.A. Nitrate and exchangeable ammonium nitrogen. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 71–80. [Google Scholar] [CrossRef]
- Neeteson, J.J. Effect of Legumes on Soil Mineral Nitrogen and Response of Potatoes to Nitrogen Fertilizer. In Effects of Crop Rotation on Potato Production in the Temperate Zones. Developments in Plant and Soil Sciences; Vos, J., Van Loon, C.D., Bollen, G.J., Eds.; Springer: Dordrecht, The Netherlands, 1989; Volume 40, pp. 89–93. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Nimmo, J.; Lynch, D.H.; Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 2013, 96, 93–105. [Google Scholar] [CrossRef]
- Doherty, J.E.; Hunt, R.J.; Tonkin, M.J. Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis. In USGS Scientific Investigations Report 2010-5211; U.S. Geological Survey: Reston, VA, USA, 2010; 71p. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; 567p. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Danielescu, S. Hydrology Tools Set. 2023. Available online: https://portal.hydrotools.tech (accessed on 18 August 2023).
- Danielescu, S.; MacQuarrie, K.T.B.; Popa, A. SEPHYDRO: A Customizable Online Tool for Hydrograph Separation. Groundwater 2018, 56, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Danielescu, S. Development and Application of ETCalc, a Unique Online Tool for Estimation of Daily Evapotranspiration. Atmos. Ocean 2023, 61, 135–147. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration [NASA]. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC); 2020. Available online: http://daacmodis.ornl.gov (accessed on 18 May 2020).
- Jiang, Y.; Nyiraneza, J.; Khakbazan, M.; Geng, X.; Murray, B.J. Nitrate leaching and potato yield under varying plow timing and nitrogen rate. Agrosyst. Geosci. Environ. 2019, 2, 190032. [Google Scholar] [CrossRef]
- Edwards, L.; Burney, J.; Brimacombe, M.; MacRae, A. Nitrogen runoff in a potato-dominated watershed area of Prince Edward Island, Canada. In The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer; IAHS Publication: Wallingford, UK, 2000. [Google Scholar]
- Jiang, Y.; Jamieson, T.; Nyiraneza, J.; Somers, G.; Thompson, B.; Murray, B.; Grimmett, M.; Geng, X. Effects of fall vs. spring plowing forages on nitrate leaching losses to groundwater. Groundw. Monit. Rem. 2014, 35, 43–54. [Google Scholar] [CrossRef]
- Zebarth, Y.; Leclerc, Y.; Moreau, G. Rate and timing of nitrogen fertilization of Russet Burbank potato: Nitrogen use efficiency. Can. J. Plant Sci. 2004, 84, 845–854. [Google Scholar] [CrossRef]
- Somers, G.; Savard, M.M. Shorter fries? An alternative policy to support a reduction of nitrogen contamination from agricultural crop production. Environ. Sci. Policy 2015, 47, 177–185. [Google Scholar] [CrossRef]
- Health Canada. Guidelines for Canadian Drinking Water Quality—Summary Tables. In Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch; Health Canada: Ottawa, ON, Canada, 2022; Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html (accessed on 4 June 2023).
- Canadian Council of Ministers of the Environment. Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2012; 17p, Available online: https://ccme.ca/en/res/nitrate-ion-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (accessed on 4 June 2023).
- Danielescu, S.; MacQuarrie, K.T.B. Nitrogen and oxygen isotopes in nitrate in the groundwater and surface water discharge from two rural catchments: Implications for nitrogen loading to coastal waters. Biogeochemistry 2013, 115, 111–127. [Google Scholar] [CrossRef]
- Pavlovskii, I.; Jiang, Y.; Danielescu, S.; Kurylyk, B.L. Influence of precipitation event magnitude on baseflow and coastal nitrate export for Prince Edward Island, Canada. Hydrol. Proc. 2023, 37, e14892. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Angers, D.A.; Dubuc, J.P. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric. Ecosyst. Environ. 1997, 63, 61–66. [Google Scholar] [CrossRef]
- Kwabiah, A.B.; Spaner, D.; Todd, A.G. Shoot-to-root ratios and root biomass of cool-season feed crops in a boreal Podzolic soil in Newfoundland. Can. J. Soil Sci. 2005, 85, 369–376. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Angers, D.A.; Bélanger, G.; Michaud, R.; Laverdière, M.R. Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can. J. Plant. Sci. 2002, 82, 731–737. [Google Scholar] [CrossRef]
- Christie, B.R.; Ann Clark, E.; Fulkerson, R.S. Comparative plowdown value of red clover strains. Can. J. Plant. Sci. 1992, 72, 1207–1213. [Google Scholar] [CrossRef]
- Li, X.; Sørensen, P.; Li, F.; Petersen, S.O.; Olesen, J.E. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling. Plant Soil 2015, 395, 273–287. [Google Scholar] [CrossRef]
- Kunelius, H.T.; Johnston, H.W.; MacLeod, J.A. Effect of undersowing barley with Italian ryegrass or red clover on yield, crop composition and root biomass. Agric. Ecosyst. Environ. 1992, 38, 127–137. [Google Scholar] [CrossRef]
- Danielescu, S. Groundwater Recharge Estimation Tool (RECHARGE BUDDY)—A Web-Based Tool. Reference Manual. 2023. Available online: https://rbuddy.hydrotools.tech (accessed on 26 March 2023).
- Healey, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrog. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W. Choosing appropriate techniques for quantifying groundwater recharge. Hydrog. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Coes, A.; Spruill, T.; Thomasson, M. Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrog. J. 2009, 15, 773–788. [Google Scholar] [CrossRef]
- Labrecque, G.; Chesnaux, R.; Boucher, M.-A. Water-table fluctuation method for assessing aquifer recharge: Application to Canadian aquifers and comparison with other methods. Hydrog. J. 2020, 28, 521–533. [Google Scholar] [CrossRef]
- Johnson, A.I. Specific Yield: Compilation of Specific Yields for Various Materials. United States Geological Survey (USGS) Water Supply Paper; Report No. 1662D; United States Government Printing Office: Washington, DC, USA, 1967; 80p. [Google Scholar] [CrossRef]
- Cary, J.W.; Hayden, C.W. An index for soil pore size distribution. Geoderma 1973, 9, 249–256. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Turkington, T.K.; Edney, M.J.; Juskiw, P.E.; McKenzie, R.H.; Harker, K.; Clayton, G.W.; Lafond, G.P.; Grant, C.A.; Brandt, S.; et al. Effect of seeding date and seeding rate on malting barley production in western Canada. Can. J. Plant Sci. 2012, 92, 321–330. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). Water Office—Historical Hydrometric Data for Bear River at St. Margarets (Station ID 01CD005). Available online: https://wateroffice.ec.gc.ca/search/historical_e.html (accessed on 12 March 2022).
- Caissie, D. The Importance of Groundwater to Fish Habitat: Base Flow Characteristics for Three Gulf Region Rivers; Canadian Data Report of Fisheries and Aquatic Sciences; Department of Fisheries and Oceans, Gulf Region, Science Branch, Fish Habitat and Enhancement Division: Moncton, NB, Canada, 1991; 25p. [Google Scholar]
- Flerchinger, G.N.; Aiken, R.M.; Rojas, K.W.; Ahuja, L.R. Development of the Root Zone Water Quality Model for over-winter conditions. Trans. ASAE 2000, 43, 59–68. [Google Scholar] [CrossRef]
Year | Section A | Section B |
---|---|---|
2009/10 | Barley (16 May 2009 to 30 August 2009) underseeded with RC1 (31 August 2009 to 27 May 2010) | RC2 (28 May 2009 to 18 May 2010) |
2010/11 | RC2 (28 May 2010 to 29 May 2011) | Potato (19 May 2010 to 25 May 2011) |
2011/12 | Potato (30 May 2011 to 27 May 2012) | Barley (26 May 2011 to 25 August 2011) underseeded with RC1 (26 August 2011 to 27 May 2012) |
2012/13 | Barley (28 May 2012 to 30 August 2012) underseeded with RC1 (31 August 2012 to 27 May 2013) | RC2 (28 May 2012 to 6 May 2013) |
2013/14 | RC2 (28 May 2013 to 29 May 2014) | Potato (7 May 2013 to 29 May 2014) |
2014/15 | Potato (30 May 2014 to 27 May 2015) | Barley (30 May 2014 to 26 August 2014) underseeded with RC1 (27 August 2014 to 27 May 2015) |
2015/16 | Barley (28 May 2015 to 2 September 2015) underseeded with RC1 (3 September 2015 to 24 May 2016) | RC2 (28 May 2015 to 24 May 2016) |
2016 | Barley (25 May 2016 to 2 September 2016) | Barley (25 May 2016 to 2 September 2016) |
Statistics | Best Case Value | Model Fitness | ||
---|---|---|---|---|
Low | Moderate | High | ||
R2 | 1 | <0.3 | 0.3 to 0.5 | >0.5 |
NRMSE | 0 | >0.7 (>70%) | 0.5 to 0.7 (50 to 70%) | <0.5 (<50%) |
PBIAS (water) | 0 | <−50% or >50% | −50% to −25% or 25% to 50% | −25% to 25% |
PBIAS (N cycle and crop) | 0 | <−70% or >70% | −70% to −50% or 50% to 70% | −50% to 50% |
Crop Phase | Nsoil | Nfert | Nmin | Nfix | Nupt | Nleach | Noth | ΣIN | ΣOUT | ΣIN − ΣOUT |
---|---|---|---|---|---|---|---|---|---|---|
Barley 2009 | 29.9 | 51.0 | 30.9 | 0.0 | 64.1 | 16.3 | 1.3 | 81.9 | 81.7 | 0.2 |
RC1 2009–2010 | 4.1 | 0.0 | 31.5 | 63.3 | 85.3 | 13.9 | 5.2 | 94.8 | 104 | −9.6 |
Barley + RC1 2009–2010 | 11.5 | 51.0 | 62.4 | 63.3 | 149 | 30.1 | 6.5 | 177 | 186 | −9.4 |
RC2 2010–2011 | 7.0 | 0.0 | 80.9 | 179 | 215 | 29.9 | 3.5 | 260 | 248 | 11.8 |
Potato 2011–2012 | 38.4 | 185 | 78.4 | 0.0 | 171 | 77.2 | 12 | 263 | 261 | 2.8 |
Barley 2012 | 42.3 | 51.0 | 18.4 | 0.0 | 65.4 | 0.4 | 2.1 | 69.4 | 67.8 | 1.6 |
RC1 2012–2013 | 7.4 | 0.0 | 39.9 | 12.2 | 39.3 | 22.4 | 4.6 | 52.1 | 66.3 | −14.2 |
Barley + RC1 2012–2013 | 16.5 | 51.0 | 58.3 | 12.2 | 105 | 22.9 | 6.6 | 122 | 134 | −12.6 |
RC2 2013–2014 | 9.7 | 0.0 | 88.8 | 14.8 | 63.3 | 29.7 | 2.9 | 104 | 95.8 | 7.8 |
Potato 2014–2015 | 53.4 | 207 | 84.5 | 0.0 | 172 | 103 | 15.9 | 291 | 290 | 1.2 |
Barley 2015 | 33.9 | 51.0 | 25.4 | 0.0 | 54.7 | 16.2 | 2 | 76.4 | 72.9 | 3.4 |
RC1 2015–2016 | 9.4 | 0.0 | 42.2 | 2.4 | 21.2 | 16.6 | 3.1 | 44.6 | 40.9 | 3.7 |
Barley + RC1 2015–2016 | 16.1 | 51.0 | 67.5 | 2.4 | 75.9 | 32.8 | 5.1 | 121 | 114 | 7.1 |
Averages for each crop | ||||||||||
Barley | 26.8 | 51.0 | 24.9 | 0.0 | 61.4 | 11.0 | 1.8 | 75.9 | 74.2 | 1.8 |
RC1 | 7.2 | 0.0 | 37.8 | 26.0 | 48.6 | 17.6 | 4.2 | 63.8 | 70.5 | −6.8 |
Barley + RC1 | 14.7 | 51.0 | 62.7 | 26.0 | 110 | 28.6 | 6 | 140 | 145 | −5.0 |
RC2 | 8.3 | 0.0 | 84.4 | 96.7 | 138 | 29.7 | 3.1 | 181 | 171 | 10.0 |
Potato | 45.7 | 196 | 81.4 | 0.0 | 171 | 89.9 | 14 | 277 | 275 | 2.0 |
Total for rotation | 88.1 | 247 | 229 | 123 | 420 | 148 | 23.2 | 598 | 591 | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielescu, S.; MacQuarrie, K.T.B.; Nyiraneza, J.; Zebarth, B.; Sharifi-Mood, N.; Grimmett, M.; Main, T.; Levesque, M. Development and Validation of a Crop and Nitrate Leaching Model for Potato Cropping Systems in a Temperate–Humid Region. Water 2024, 16, 475. https://doi.org/10.3390/w16030475
Danielescu S, MacQuarrie KTB, Nyiraneza J, Zebarth B, Sharifi-Mood N, Grimmett M, Main T, Levesque M. Development and Validation of a Crop and Nitrate Leaching Model for Potato Cropping Systems in a Temperate–Humid Region. Water. 2024; 16(3):475. https://doi.org/10.3390/w16030475
Chicago/Turabian StyleDanielescu, Serban, Kerry T. B. MacQuarrie, Judith Nyiraneza, Bernie Zebarth, Negar Sharifi-Mood, Mark Grimmett, Taylor Main, and Mona Levesque. 2024. "Development and Validation of a Crop and Nitrate Leaching Model for Potato Cropping Systems in a Temperate–Humid Region" Water 16, no. 3: 475. https://doi.org/10.3390/w16030475
APA StyleDanielescu, S., MacQuarrie, K. T. B., Nyiraneza, J., Zebarth, B., Sharifi-Mood, N., Grimmett, M., Main, T., & Levesque, M. (2024). Development and Validation of a Crop and Nitrate Leaching Model for Potato Cropping Systems in a Temperate–Humid Region. Water, 16(3), 475. https://doi.org/10.3390/w16030475