Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Sampling and Analysis
2.3. Heavy Metal Pollution Index
2.4. Human Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Spatial Variation of Heavy Metals in Water
3.2. Heavy Metal Pollution Indices (HPI) in Groundwater and Surface Water
3.3. Human Health Risk Assessment
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akil, A.; Hassan, T.; Lahcen, B.; Abderrahim, L. Etude de la qualité physico-chimique et contamination métallique des eaux de surface du bassin versant de Guigou, Maroc. Eur. Sci. J. 2014, 10, 84–94. [Google Scholar]
- Abid, M.G.B. Contamination Métallique Issue des Déchets de l’ancien Site Minier de Jebel Ressas: Modélisation des Mécanismes de Transfert et Conception de Cartes d’aléa Post-Mine Dans un Contexte Carbonaté et Sous un Climat Semi-Aride. Evaluation du Risque Pour la sa. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2012. [Google Scholar]
- Bawa, M.M.L.; Djaneye-Boundjou, G.; Boukari, Y. Caractérisation de deux effluents industriels au Togo: étude d’impact sur l’environnement. Afrique Sci. Rev. Int. Des Sci. Technol. 2010, 2, 57–68. [Google Scholar] [CrossRef]
- Hakkou, R.; Benzaazoua, M.; Bussière, B.; Rachid, H.; Mostafa, B. Evaluation de la qualité des eaux de ruissellement dans la mine abandonnée de Kettara (Maroc). In Proceedings of the Congres International sur le Theme: Gestion Intégrée des Ressources en Eaux et Défis du Développement Durable (GIRE3D), Marrakech, Morocco, 23–25 May 2006; pp. 1–6. [Google Scholar]
- Belkhiri, L.; Mouni, L.; Narany, T.S.; Tiri, A. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 2017, 4, 12–22. [Google Scholar] [CrossRef]
- Dan-Badjo, A.T.; Tidjani, D.; Idder, T.; Guero, Y.; Lamso, N.D.; Matsallabi, A.; Ambouta, J.; Feidt, C.; Sterckeman, T.; Echevarria, G. Diagnostic de la contamination des eaux par les éléments traces métalliques dans la zone aurifère de Komabangou–Tillabéri, Niger. Int. J. Biol. Chem. Sci. 2014, 8, 2849–2857. [Google Scholar] [CrossRef]
- Saddik, M.; Fadili, A. Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco. Environ. Monit. Assess. 2019, 191, 197. [Google Scholar] [CrossRef]
- Kumar, R.N.; Solanki, R. Seasonal variation in heavy metal contamination in water and sediments of river Sabarmati and Kharicut canal at Ahmedabad, Gujarat. Environ. Monit. Assess. 2012, 185, 359–368. [Google Scholar] [CrossRef]
- Zoulgami, S.; Gnazou, M.; Kodom, T.; Djaneye-Boundjou, G.; Bawa, L. Physico-chemical study of groundwater in the Northeast of Kara region (Togo). Int. J. Biol. Chem. Sci. 2015, 9, 1711. [Google Scholar] [CrossRef]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochemical Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Baghdad, B.; Naimi, M.; Bouabdli, A.; Sonnet, P.; Garcia, S.; Bounakhla, M.; Inigo Inigo, A.C. Evaluation de la contamination et évolution de la qualité des eaux au voisinage d ’ une mine abandonnée d’ extraction de plomb (Zaida-Haute Moulouya-Maroc). In Proceedings of the 12ème Conférence Interrégionale Enviro Water, ANAFIDE (Association Nationale des Améliorations Foncières, de l’Irrigation, du Drainage et de l’Environnement) et CIGR, Marrakech, Morocco, 9–11 November 2012. [Google Scholar]
- Giri, S.; Singh, A.K. Spatial distribution of metal(loid)s in groundwater of a mining dominated area: Recognising metal(loid) sources and assessing carcinogenic and non-carcinogenic human health risk. Int. J. Environ. Anal. Chem. 2016, 96, 1313–1330. [Google Scholar] [CrossRef]
- Rajmohan, N.; Masoud, M.H.Z.; Niyazi, B.A.M.; Alqarawy, A.M. Appraisal of trace metals pollution, sources and associated health risks using the geochemical and multivariate statistical approach. Appl. Water Sci. 2023, 13, 113. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Comparison of health risk assessments of heavy metals and as in sewage sludge from wastewater treatment plants (WWTPs) for adults and children in the urban district of Taiyuan, China. Int. J. Environ. Res. Public Health 2017, 14, 1194. [Google Scholar] [CrossRef]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Yuan, L.; Zhi, W.; Liu, Y.; Karyala, S.; Vikesland, P.J.; Chen, X.; Zhang, H. Lead toxicity to the performance, viability, community composition of activated sludge microorganisms. Environ. Sci. Technol. 2015, 49, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Nada, N. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 12–18. [Google Scholar]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Gairoard, S. Contribution à l’étude de l’ Impact des Anciens Travaux Miniers de Charbon sur les eaux Souterraines: Application a la Région d’Ales (Gard). Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2009. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Sadat, A.W.; N’goran, E.B.Z.; Siaka, S.; Parinet, B. Intérêt de l’analyse multidimensionnelle pour l’évaluation de la qualité physico-chimique de l’eau d’un système lacustre tropical: Cas des lacs de Yamoussoukro (Côte d’Ivoire). J. Appl. Biosci. 2011, 38, 2573–2585. [Google Scholar]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Hossain, M.B.; Babu, S.M.O.F.; Rahman, M.M.; Sarker, M.S.I. Human health risk assessment of heavy metals in water from the subtropical river, Gomti, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100416. [Google Scholar] [CrossRef]
- Sharma, S.D. Risk assessment via oral and dermal pathways from heavy metal polluted water of Kolleru lake—A Ramsar wetland in Andhra Pradesh, India. Environ. Anal. Health Toxicol. 2020, 35, 11. [Google Scholar] [CrossRef]
- Gnonsoro, U.P.; Assi, Y.E.D.A.; Sangare, N.S.; Kouakou, Y.U.; Trokourey, A. Health Risk Assessment of Heavy Metals (Pb, Cd, Hg) in Hydroalcoholic Gels of Abidjan, Côte d’Ivoire. Biol. Trace Elem. Res. 2022, 200, 2510–2518. [Google Scholar] [CrossRef]
- Niknejad, H.; Ala, A.; Ahmadi, F.; Mahmoodi, H.; Saeedi, R.; Gholami-Borujeni, F.; Abtahi, M. Carcinogenic and non-carcinogenic risk assessment of exposure to trace elements in groundwater resources of Sari city, Iran. J. Water Health 2023, 21, 501–513. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS). Volume I. Human Health Evaluation Manual (HHEM). Part E. Supplemental Guidance for Dermal Risk Assessment. USEPA vol. 1, no. 540/R/99/005. 2004. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 25 January 2024).
- Seleem, E.M.; Mostafa, A.; Mokhtar, M.; Salman, S.A. Risk assessment of heavy metals in drinking water on the human health, Assiut City, and its environs, Egypt. Arab. J. Geosci. 2021, 14, 427. [Google Scholar] [CrossRef]
- Alidadi, H.; Belin, S.; Sany, T.; Zarif, B.; Oftadeh, G.; Mohamad, T. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ. Health Prev. Med. 2019, 24, 59. [Google Scholar] [CrossRef] [PubMed]
- Tchanadema, M.; Ayah, M.; Kodom, T.; Nambo, P.; Bawa, L.M.; Djaneye-Boundjou, G. Risks of chemical pollution on the environment by solid mine waste at the semi-industrial iron mining site in Bandjeli, Togo. J. Mater. Environ. Sci. 2021, 12, 1057–1070. [Google Scholar]
- Ogouvidé, A.; Batcha, O.; Gnon, B. Modern and Traditional Methods of Water Resource Management in Africa. In Proceedings of the Water Perspectives in Emerging Countries, Durban, South Africa, 5–9 May 2019; pp. 8–10. [Google Scholar] [CrossRef]
- de Barros, P.L.; Iles, L.; Frame, L.D.; Killick, D. The Early Iron Metallurgy of Bassar, Togo: Furnaces, metallurgical remains and iron objects. Azania 2020, 55, 3–43. [Google Scholar] [CrossRef]
- Djeri, B.; Ameyapoh, Y.; Karou, D.S.; Anani, K.; Soncy, K.; Adjrah, Y.; Souza, C. Assessment of microbiological qualities of yam chips marketed in Togo. Adv. J. Food Sci. Technol. 2010, 2, 236–241. [Google Scholar]
- El Hachimi, M.L.; El Hanbali, M.; Fekhaoui, M.; Bouabdli, A.; El Founti, L.; Saïdi, N. Impact d’un site minier abandonné sur l’environnement: Cas de la mine de Zeïda (Haute Moulouya, Maroc). Bull. l’institut Sci. Rabat Sect. Sci. la Terre 2005, 27, 93–100. [Google Scholar]
- Hamid, T.; Chakit, M. Evaluating Metallic Pollution Caused By Iron, Copper, Lead and Cadmium of Oum Er-Rabia River Water. J. Bio Innov. 2016, 5, 59–67. [Google Scholar]
- Rodier, J.; Legube, B. L’Analyse De L’Eau, 9th ed.; Dépôts et Sédiments; Dunod: Malakoff, France, 2009; p. 10. [Google Scholar]
- Tiwari, A.K.; De Maio, M.; Singh, P.K.; Mahato, M.K. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India. Bull. Environ. Contam. Toxicol. 2015, 95, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.P.; Singh, P.K.; Tiwari, A.K.; Kumar, B.; Kumar, A. Assessment of heavy metal pollution index for groundwater around Jharia coalfield region, India. J. Biodivers. Environ. Sci. 2015, 33, 33–39. [Google Scholar]
- Prasad, M.; Sunitha, V.; Reddy, Y.S.; Suvarna, B.; Reddy, B.M.; Reddy, M.R. Data on water quality index development for groundwater quality assessment from Obulavaripalli Mandal, YSR district, A.P India. Data Brief 2019, 24, 103846. [Google Scholar] [CrossRef] [PubMed]
- Mambenga, V.I. Approche de Caractérisation Géochimique et Géo-Environnementale d’un Projet Minier Dans le Contexte de Fond Géochimique Naturellement Élevé et/ou Anthropisé: Application aux Secteurs Miniers Siscoe-Sullivan-Marban, Val-d’Or, Canada. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2020. [Google Scholar]
- Djade, P.J.O.; Traore, A.; Koffi, K.J.T.; Keumean, K.N.; Soro, G. Evaluation du niveau de contamination des eaux souterraines par les éléments traces métalliques dans le département de Zouan-Hounien (Ouest de la Côte d’Ivoire). J. Appl. Biosci. 2020, 150, 15457–15468. [Google Scholar] [CrossRef]
- Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy Ecol. Environ. 2017, 2, 155–167. [Google Scholar] [CrossRef]
- Isa, B.K.; Amina, S.B.; Aminu, U.; Sabo, Y. Health risk assessment of heavy metals in water, air, soil and fish. African J. Pure Appl. Chem. 2015, 9, 204–210. [Google Scholar] [CrossRef]
- Mahato, M.K.; Singh, G.; Singh, P.K.; Singh, A.K.; Tiwari, A.K. Assessment of Mine Water Quality Using Heavy Metal Pollution Index in a Coal Mining Area of Damodar River Basin, India. Bull. Environ. Contam. Toxicol. 2017, 99, 54–61. [Google Scholar] [CrossRef]
- Yakamercan, E.; Aygün, A. Health risk assessment of metal(loid)s for land application of domestic sewage sludge in city of Bursa, Türkiye. Environ. Monit. Assess. 2023, 195, 733. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Liu, J.; Jiang, P.; You, S.; Ding, N.; Guo, Q.; Lin, F. Applications of Nanomaterials for Heavy Metal Removal from Water and Soil: A Review. Sustainability 2021, 13, 713. [Google Scholar] [CrossRef]
- Yakamercan, E.; Aygün, A. Ecological risk assessment of domestic sewage sludge: A case study. Sigma J. Eng. Nat. Sci. 2021, 39, 422–433. [Google Scholar] [CrossRef]
- Borges, E.M. Hypothesis Tests and Exploratory Analysis Using R Commander and Factoshiny. J. Chem. Educ. 2023, 100, 267–278. [Google Scholar] [CrossRef]
- Iwar, R.T.; Utsev, J.T.; Hassan, M. Assessment of heavy metal and physico-chemical pollution loadings of River Benue water at Makurdi using water quality index (WQI) and multivariate statistics. Appl. Water Sci. 2021, 11, 124. [Google Scholar] [CrossRef]
- Yapi, Y.H.A.; Dongui, B.K.; Trokourey, A.; Barima, Y.S.S.; Essis, Y.; Etheba, P. Evaluation de la pollution métallique des eaux souterraines et de surface dans un environnement minier aurifère à Hiré (Côte d’Ivoire). Int. J. Biol. Chem. Sci. 2014, 8, 1281–1289. [Google Scholar] [CrossRef]
- (Orgnisation Mondiale de la Santé) OMS. Directives De Qualité Pour L’Eau De Boisson Quatrième Édition Intégrant Le Premier Additif. 2017. Volume 1. Available online: https://www.who.int/fr/publications-detail/9789241549950 (accessed on 25 January 2024).
- Directive (Ue) Du Parlement Européen Et Du Conseil Relative a La Qualite Des Eaux Destinees a La Consommaiton Humaine. 2020. pp. 1–62. Available online: https://eur-lex.europa.eu/legal-content/FR/LSU/?uri=CELEX:32020L2184 (accessed on 25 January 2024).
- Lghoul, M.; Maqsoud, A.; Hakkou, R.; Kchikach, A. Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. J. Geochem. Explor. 2014, 144, 456–467. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Gaikwad, S.K.; Muley, A.A.; Varade, A.M. Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin, Nashik, India. Model. Earth Syst. Environ. 2018, 4, 969–980. [Google Scholar] [CrossRef]
- Fatombi, J.K.; Avocznh, G.; Topanou, N.; Aminou, T.; Josse, R.G. Elimination du fer et du manganèse d’une eau de surface par les graines de Moringa oleifera. Int. J. Biol. Chem. Sci. 2013, 7, 1379–1391. [Google Scholar] [CrossRef]
- Moghadam, M.R.; Nasirizadeh, N.; Dashti, Z.; Babanezhad, E. Removal of Fe(II) from aqueous solution using pomegranate peel carbon: Equilibrium and kinetic studies. Int. J. Ind. Chem. 2013, 4, 19. [Google Scholar] [CrossRef]
- Prasad, B.; Kumari, P.; Bano, S.; Kumari, S. Ground water quality evaluation near mining area and development of heavy metal pollution index. Appl. Water Sci. 2014, 4, 11–17. [Google Scholar] [CrossRef]
- Le Cocq, A. Carte Pédologique et Capacité Agronomique des Sols du Togo. Bassar. 1986. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_5/notexp/31639.pdf (accessed on 25 January 2024).
- INERIS. Antimoine Et Ses Dérivés. 2007. Available online: https://substances.ineris.fr/fr/substance/getDocument/2712 (accessed on 25 January 2024).
- Prasad, B.; Bose, J.M. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower himalayas. Environ. Geol. 2001, 41, 183–188. [Google Scholar] [CrossRef]
- Shehu, A.; Vasjari, M.; Duka, S.; Vallja, L.; Broli, N.; Cenolli, S. Assessment of health risk induced by heavy metal contents in drinking water. J. Water Sanit. Hyg. Dev. 2022, 12, 816–827. [Google Scholar] [CrossRef]
- Tiri, A.; Belkhiri, L.; Mouni, L. Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundw. Sustain. Dev. 2018, 6, 235–244. [Google Scholar] [CrossRef]
- Singh, R.; Majumder, C.B.; Vidyarthi, A.K. Assessing the impacts of industrial wastewater on the inland surface water quality: An application of analytic hierarchy process (AHP) model-based water quality index and GIS techniques. Phys. Chem. Earth Parts A/B/C 2023, 129, 103314. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Gupta, A.; Garg, J.K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 2017, 31, 52–66. [Google Scholar] [CrossRef]
- Acharya, P.; Muduli, P.R.; Das, M. Assessment of heavy metal accumulation in Penaeus monodon and its human health implications. Mar. Pollut. Bull. 2023, 188, 114632. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Nandimandalam, J.R. Environmental health risk assessment and source apportion of heavy metals using chemometrics and pollution indices in the upper Yamuna river basin, India. Chemosphere 2024, 346, 140570. [Google Scholar] [CrossRef] [PubMed]
- Krati, S.; Raju, N.J.; Singh, N.; Sreekesh, S. Heavy metal pollution in groundwater of urban Delhi environs: Pollution indices and health risk assessment. Urban Clim. 2022, 45, 101233. [Google Scholar] [CrossRef]
Metals | Cr | Mn | Co | Ni | Cu | Zn | As | Sr | Cd | Sb | Pb | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ground water (n = 125) | |||||||||||||
Min | 0.5 | 5.76 | 0.1 | 0.26 | 0 | 0.5 | 0 | 13.04 | 0 | 25.79 | 0 | - | 8 |
Max | 19.1 | 431.72 | 5.65 | 91.94 | 61.7 | 482.22 | 1.9 | 1359.7 | 0.5 | 401.6 | 6.3 | - | 20,475 |
Mean | 3.43 | 143.77 | 0.56 | 5.68 | 6.49 | 33.64 | 0.7 | 372.34 | 0 | 160 | 2.5 | - | 1144.87 |
Ecart-type | 3.63 | 108.82 | 0.95 | 13.11 | 10.7 | 80.16 | 0.4 | 348.66 | 0.1 | 102.2 | 1.4 | - | 3097.75 |
Surface water (n = 25) | |||||||||||||
Min | 0.95 | 11.27 | 0.17 | 0.12 | 0.28 | 1.3 | 0.3 | 7.46 | 0 | 26.23 | 0 | 0 | 40 |
Max | 24.1 | 2693.5 | 11.52 | 112.8 | 17.5 | 5696.2 | 4 | 561.86 | 0.1 | 516.5 | 7.5 | 0.5 | 835,843 |
Mean | 4.13 | 429.26 | 1.99 | 14.17 | 5.92 | 635.21 | 1.1 | 94.98 | 0 | 174.8 | 2.7 | 0.2 | 115,548.2 |
Ecart-type | 7.52 | 867.74 | 3.62 | 37.04 | 6.09 | 1897.9 | 1.3 | 179.15 | 0 | 149 | 2.6 | 0.2 | 2754.3 |
WHO | 50 | 100 | - | 70 | 2000 | 5000 | 10 | - | 3 | 20 | 10 | 200 | 300 |
UE | 25 | 50 | - | 20 | 2000 | - | 10 | - | 5 | 10 | 10 | 200 | 200 |
HM | Si (ppb) | li (ppb) | Mi (ppb) | Wi | Qi | Qi×Wi |
---|---|---|---|---|---|---|
Cr | 50 | - | 3.428 | 0.02 | 6.86 | 0.1371 |
Mn | 50 | - | 143.770 | 0.02 | 287.54 | 5.7508 |
Ni | 70 | - | 5.679 | 0.0143 | 8.11 | 0.1159 |
Cu | 2000 | 50 | 6.491 | 0.0005 | 2.23 | 0.0011 |
Zn | 5000 | 1500 | 33.635 | 0.0002 | 1.35 | 0.0003 |
As | 10 | - | 0.693 | 0.1 | 6.93 | 0.6929 |
Cd | 3 | - | 0.036 | 0.3333 | 1.21 | 0.4046 |
Sb | 20 | - | 160.032 | 0.05 | 800.16 | 40.0081 |
Pb | 10 | - | 2.527 | 0.1 | 25.27 | 2.5266 |
Fe | 300 | 100 | 1144.872 | 0.0033 | 522.44 | 1.7415 |
RfD | Adults | Children | Adults | Children | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HMs | RfDi | RfDd | ADDi | ADDd | HQi | HQd | ADDi | ADDd | HQi | HQd | HI | HI |
Pb | 3.5 | 0.42 | 0.11 | 0 | 0.03 | 0 | 0.35 | 0 | 0.1 | 0 | 0.03 | 0.1 |
Cr | 3 | 3 | 0.15 | 0 | 0.05 | 0 | 0.48 | 0 | 0.16 | 0 | 0.05 | 0.16 |
Cd | 0.5 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0.01 |
Mn | 24 | 0.96 | 9.31 | 0.07 | 0.39 | 0.08 | 29.45 | 0.09 | 1.23 | 0.1 | 0.46 | 1.32 |
Co | 0.3 | 0.06 | 0.04 | 0 | 0.13 | 0.01 | 0.13 | 0 | 0.42 | 0.01 | 0.14 | 0.43 |
Ni | 20 | 0.8 | 0.34 | 0 | 0.02 | 0 | 1.06 | 0 | 0.05 | 0 | 0.02 | 0.05 |
Cu | 40 | 8 | 0.27 | 0 | 0.01 | 0 | 0.85 | 0 | 0.02 | 0 | 0.01 | 0.02 |
Zn | 300 | 60 | 8.19 | 0.04 | 0.03 | 0 | 25.89 | 0.05 | 0.09 | 0 | 0.03 | 0.09 |
Fe | 700 | 140 | 300.9 | 2.36 | 0.43 | 0.02 | 951.4 | 2.99 | 1.36 | 0.02 | 0.45 | 1.38 |
As | 0.3 | 0.12 | 0.03 | 0 | 0.11 | 0 | 0.11 | 0 | 0.36 | 0 | 0.12 | 0.36 |
Sb | 0.4 | 0.01 | 6.96 | 0.05 | 17.4 | 6.84 | 22.01 | 0.07 | 55 | 8.65 | 24.24 | 63.67 |
Sr | 600 | 0.12 | 12.69 | 0.1 | 0.02 | 0.83 | 40.13 | 0.13 | 0.07 | 1.05 | 0.85 | 1.12 |
Metals | Cr | Mn | Co | Ni | Cu | Zn | As | Sr | Cd | Sb | Pb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | |||||||||||
Mn | −0.09 | 1 | ||||||||||
Co | −0.11 | 0.062 | 1 | |||||||||
Ni | 0.041 | −0.01 | 0.01 | 1 | ||||||||
Cu | 0.116 | 0.084 | −0.014 | −0.02 | 1 | |||||||
Zn | 0.173 | −0.05 | −0.002 | −0.05 | 0.078 | 1 | ||||||
As | 0.019 | 0.34 | −0.252 | −0.13 | 0.001 | 0.02 | 1 | |||||
Sr | 0.296 | −0.37 | −0.208 | 0.03 | −0.02 | 0.38 | −0.001 | 1 | ||||
Cd | 0.009 | 0.023 | −0.054 | −0.01 | 0.661 * | 0.21 | −0.005 | 0.083 | 1 | |||
Sb | 0.055 | 0.022 | −0.02 | 0.061 | 0.203 | 0.15 | 0.031 | 0.23 | 0.188 | 1 | ||
Pb | 0.072 | −0.01 | −0.148 | −0.1 | 0.113 | 0.09 | −0.055 | −0.15 | 0.222 | −0.600 * | 1 | |
Fe | 0.014 | 0.098 | 0.437 | −0.02 | 0.09 | 0.09 | −0.306 | −0.22 | −0.06 | −0.194 | 0.13 | 1 |
Elements | ANOVA-Season | Elements | ANOVA-Type of Water | ||||
---|---|---|---|---|---|---|---|
p-Value | Mean (ppb) | p-Value | Mean (ppb) | ||||
Dry | Rain | Ground | Surface | ||||
Pb | 2.45 × 10−9 | 4.44 | 0.61 | Fe | 0.04 | 1144.87 | 115,548 |
Sb | 1.19 × 10−8 | 88.79 | 231.26 | Sr | 0.0223 | 372.33 | 94.98 |
PC | Eigenvalues | % Explained Variance | Cumulative % | HM | Correlation | Physico-Chemical Parameter Correlation |
---|---|---|---|---|---|---|
1 | 2.6 | 21.75 | 21.75 | Sb | 0.75 | EC: 0.62 * |
Cd | 0.66 | |||||
Sr | 0.6 | pH: 0.42 | ||||
Co | −0.49 | |||||
Cu | 0.59 | Temperature: 0.14 | ||||
Fe | −0.5 | |||||
2 | 2.04 | 17.07 | 38.82 | Pb | 0.7 | EC: −0.39 |
pH: −0.13 | ||||||
Sr | −0.6 | Temperature: 0.03 | ||||
3 | 1.68 | 14.04 | 52.86 | As | −0.81 | EC: −0.19 |
pH: −0.1 | ||||||
Mn | −0.61 | Temperature: −0.07 | ||||
4 | 1.22 | 10.16 | 63.03 | Zn | 0.52 | EC: 0.32 |
pH: 0.21 | ||||||
Cr | 0.51 | Temperature: 0.2 | ||||
5 | 1.09 | 9.08 | 72.11 | Ni | 0.77 | EC: −0.06 |
pH: −0.53 * | ||||||
Temperature: −0.15 |
HMs | GROUP 1 (ppb) | GROUP 2 (ppb) | GROUP 3 (ppb) | GROUP 4 (ppb) |
---|---|---|---|---|
As | 0.52 | 0.73 | 0.61 | 0.79 |
Cd | 0.03 | 0.02 | 0.04 | 0.25 |
Co | 1.28 | 0.55 | 0.27 | 0.23 |
Cr | 4.6 | 2.39 | 7.68 | 2.56 |
Cu | 6.26 | 3.75 | 8.23 | 49.24 |
Fe | 8111.79 | 610.25 | 339 | 58.25 |
Mn | 229.24 | 149.36 | 58.4 | 213.57 |
Ni | 3.31 | 5.9 | 5.14 | 8.39 |
Pb | 3.93 | 2.4 | 1.91 | 4.38 |
Sb | 63.65 | 153.58 | 215 | 249.97 |
Sr | 63.09 | 276.38 | 993 | 235.3 |
Zn | 64.1 | 17.53 | 88.3 | 43.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toi Bissang, B.; Aragón-Barroso, A.J.; Baba, G.; González-López, J.; Osorio, F. Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo. Water 2024, 16, 471. https://doi.org/10.3390/w16030471
Toi Bissang B, Aragón-Barroso AJ, Baba G, González-López J, Osorio F. Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo. Water. 2024; 16(3):471. https://doi.org/10.3390/w16030471
Chicago/Turabian StyleToi Bissang, Bouwèdèo, Antonio J. Aragón-Barroso, Gnon Baba, Jesús González-López, and Francisco Osorio. 2024. "Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo" Water 16, no. 3: 471. https://doi.org/10.3390/w16030471
APA StyleToi Bissang, B., Aragón-Barroso, A. J., Baba, G., González-López, J., & Osorio, F. (2024). Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo. Water, 16(3), 471. https://doi.org/10.3390/w16030471