China’s Urban Water Utilization Based on the Water Footprint Methodology
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Water Footprint Theory and Analysis Indicators
3.2. Decoupling Model
4. Results and Analysis
4.1. Water Footprint Analysis of China’s Cities
4.2. Water Footprint Indicator Analysis
4.3. Analysis of the Decoupling of Water Resources and Economic Development
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- She, Y.; Chen, J.; Zhou, Q.; Wang, L.; Duan, K.; Wang, R.; Qu, S.; Xu, M.; Zhao, Y. Evaluating Losses from Water Scarcity and Benefits of Water Conservation Measures to Intercity Supply Chains in China. Environ. Sci. Technol. 2024, 58, 1119–1130. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Li, H.; Santagata, R.; Yang, Z. Understanding ecological restoration potential: The role of water resources and slope gradient limits. Sci. Total Environ. 2024, 912, 169001. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Azam, W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci. Front. 2024, 15, 101757. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Cui, Z.; Ren, L.; Jiang, S.; Liu, Y.; Yuan, S. The impact of human activities on blue-green water resources and quantification of water resource scarcity in the Yangtze River Basin. Sci. Total Environ. 2024, 909, 168550. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, P.; Qi, X.; Rahman, S.U.; Zhang, Z. Changes of Microbial Diversity in Rhizosphere of Different Cadmium-Gradients Soil under Irrigation with Reclaimed Water. Sustainability 2022, 14, 8891. [Google Scholar] [CrossRef]
- Kosolapova, N.A.; Matveeva, L.G.; Nikitaeva, A.Y.; Molapisi, L. Modeling resource basis for social and economic development strategies: Water resource case. J. Hydrol. 2017, 553, 438–446. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhang, W.; Ying, L.; Huang, W. Achieve sustainable development of rivers with water resource management-economic model of river chief system in China. Sci. Total Environ. 2020, 708, 134657. [Google Scholar] [CrossRef]
- Medellín-Azuara, J.; Harou, J.J.; Howitt, R.E. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Sci. Total Environ. 2010, 408, 5639–5648. [Google Scholar] [CrossRef]
- Liu, J.; Dong, S.; Mao, Q. Comprehensive evaluation of the water resource carrying capacity for China. Geogr. Nat. Resour. 2012, 33, 92–99. [Google Scholar] [CrossRef]
- Wang, S.; Li, R. Toward the coordinated sustainable development of urban water resource use and economic growth: An empirical analysis of Tianjin City, China. Sustainability 2018, 10, 1323. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C. Water resources flows related to urbanization in China: Challenges and perspectives for water management and urban development. Water Resour. Manag. 2012, 26, 531–552. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, X.; Xu, J.; Bing, J.; Pan, G. Simulation of water resource allocation for sustainable urban development: An integrated optimization approach. J. Clean. Prod. 2020, 273, 122537. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef]
- Ba, W.; Wang, D.; Gong, B.; Dai, Y.; Yang, Z.; Liu, Z. Urban water scarcity in China: A systematic review of research advances and future directions. Appl. Geogr. 2023, 159, 103069. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Wang, X.; Peng, C.; Cai, Y.; Huang, W. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China. J. Hydrol. 2018, 556, 50–60. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Ding, B.; Liu, Y.; Liu, W.; Xia, A.; Huo, R.; Ran, Q.; Hao, Y.; Cui, X. Water resource conservation promotes synergy between economy and environment in China’s northern drylands. Front. Environ. Sci. Eng. 2022, 16, 28. [Google Scholar] [CrossRef]
- Song, P.; Wang, C.; Zhang, W.; Liu, W.; Sun, J.; Wang, X.; Lei, X.; Wang, H. Urban multi-source water supply in China: Variation tendency, modeling methods and challenges. Water 2020, 12, 1199. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Water pollution during China’s industrial transition. Environ. Dev. 2013, 8, 57–73. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Shang, J.; Zhang, J. Sustainable utilization of water resources in China: A system dynamics model. J. Clean. Prod. 2017, 142, 613–625. [Google Scholar] [CrossRef]
- Kong, Y.; He, W.; Yuan, L.; Zhang, Z.; Gao, X.; Degefu, D.M. Decoupling economic growth from water consumption in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 123, 107344. [Google Scholar] [CrossRef]
- Mu, L.; Liu, Y.; Chen, S. Alleviating water scarcity and poverty through water rights trading pilot policy: A quasi-natural experiment based approach. Sci. Total Environ. 2022, 823, 153318. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, Z.; Wang, C.; Zhang, P.; Ma, Z.; Hong, S.; Hong, W.; He, X. Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China’s rapid urbanization. Sci. Total Environ. 2024, 912, 168781. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, M.; Ding, Y. Exploring the effect of economic and environment factors on PM2.5 concentration: A case study of the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2020, 268, 110703. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Su, M.; Chen, Q.; Wen, J.; Hu, Y. Urban water resources accounting based on industrial interaction perspective: Data preparation, accounting framework, and case study. J. Environ. Manag. 2024, 349, 119532. [Google Scholar] [CrossRef] [PubMed]
- Valdovinos, J.; Yañez Soria, K. Urban water governance in Mexico during the COVID-19 pandemic. Int. J. Water Resour. Dev. 2024, 40, 84–104. [Google Scholar] [CrossRef]
- Kibaroğlu, A. The Evolution of Water Diplomacy Frameworks: The Euphrates-Tigris Basin as a Case Study. In Theorizing Transboundary Waters in International Relations; Springer: Berlin/Heidelberg, Germany, 2024; pp. 123–138. [Google Scholar]
- Hoekstra, A.; Hung, P. Globalisation of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Chang. 2004, 15, 45–56. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Feng, K.; Chapagain, A.; Suh, S.; Pfister, S.; Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 2011, 23, 371–385. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Azapagic, A. Water footprint: Methodologies and a case study for assessing the impacts of water use. J. Clean. Prod. 2011, 19, 1288–1299. [Google Scholar] [CrossRef]
- Chapagain, A.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; De La Barrera, F.; Arumí, J.L. Understanding agricultural water footprint variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Hossain, I.; Imteaz, M.A.; Khastagir, A. Water footprint: Applying the water footprint assessment method to Australian agriculture. J. Sci. Food Agric. 2021, 101, 4090–4098. [Google Scholar] [CrossRef] [PubMed]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wei, J.; Wu, M.; Cao, X. Bibliometric and visual analysis of crop water footprint: A widely used agricultural water resources evaluation method. Water 2022, 14, 2866. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. A review on the indicator water footprint for the EU28. Ecol. Indic. 2013, 26, 61–75. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef]
- Ge, L.; Xie, G.; Zhang, C.; Li, S.; Qi, Y.; Cao, S.; He, T. An evaluation of China’s water footprint. Water Resour. Manag. 2011, 25, 2633–2647. [Google Scholar] [CrossRef]
- Xiong, Y.; Tian, X.; Liu, S.; Tang, Z. New patterns in China’s water footprint: Analysis of spatial and structural transitions from a regional perspective. J. Clean. Prod. 2020, 245, 118942. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, S. Carbon footprint and water footprint in China: Similarities and differences. Sci. Total Environ. 2020, 739, 140070. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Han, X.; Gao, X.; He, G.; Zhao, Y.; Li, H. A bibliometrics review of water footprint research in China: 2003–2018. Sustainability 2019, 11, 5082. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. China’s water footprint by province, and inter-provincial transfer of virtual water. Ecol. Indic. 2017, 74, 321–333. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Geng, Y.; Francisco, M.-J. China’s provincial grey water footprint characteristic and driving forces. Sci. Total Environ. 2019, 677, 427–435. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Sarkis, J.; Fujita, T.; Okadera, T.; Xue, B. Regional water footprint evaluation in China: A case of Liaoning. Sci. Total Environ. 2013, 442, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Liu, B.; Zhang, B. Evolution of Chinese urban household’s water footprint. J. Clean. Prod. 2019, 208, 1–10. [Google Scholar] [CrossRef]
- Lu, N.; Zhu, J.; Tang, Z.; Zhang, J.; Chi, H. Decreasing water dependency for economic growth in water-scarce regions by focusing on water footprint and physical water: A case study of Xi’an, China. Sustain. Cities Soc. 2022, 85, 104092. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, Y.; Liu, J.; Tillotson, M.R. Water footprint of Jing-Jin-Ji urban agglomeration in China. J. Clean. Prod. 2017, 167, 919–928. [Google Scholar] [CrossRef]
- Gong, B.; Liu, Z.; Liu, Y.; Zhou, S. Understanding advances and challenges of urban water security and sustainability in China based on water footprint dynamics. Ecol. Indic. 2023, 150, 110233. [Google Scholar] [CrossRef]
- Tao, A. Study on the relationship between water resources utilization and economic development based on decoupling theory in Beijing. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Zhuhai, China, 15–17 January 2021; p. 012207. [Google Scholar]
- Liu, Y.; Xu, H.; Wang, Y.; Cui, P.; Sun, C.; Zhu, Z.; Wang, Y. Life cycle water footprint and carbon footprint analysis of coal gasification to clean fuel dimethyl ether. Fuel 2024, 357, 129884. [Google Scholar] [CrossRef]
- Shu, J.; Bai, Y.; Chen, Q.; Weng, C.; Zhang, F. Dynamic simulation of the water-land-food nexus for the sustainable agricultural development in the North China Plain. Sci. Total Environ. 2024, 912, 168771. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Kuang, W.; Ouyang, Z.; Xie, Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990–2010. J. Geogr. Sci. 2015, 25, 515–529. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Z.; Yu, H.; Fan, W.; Fu, C.; Wu, D. Changes of extreme precipitation and its associated mechanisms in Northwest China. Adv. Atmos. Sci. 2021, 38, 1665–1681. [Google Scholar] [CrossRef]
- Jiang, R.; Yu, X.; Xie, J.; Zhao, Y.; Li, F.; Yang, M. Recent changes in daily climate extremes in a serious water shortage metropolitan region, a case study in Jing-Jin-Ji of China. Theor. Appl. Clim. 2018, 134, 565–584. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, J.; Jia, C.; Lei, M.; Wu, W.; Zheng, Y.; Wang, Z.; Zhang, G.; Song, Y. The valuation of gross ecosystem product in the three provinces in northeast of China. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2023. [Google Scholar]
- Wang, Y.; Yi, G.; Zhou, X.; Zhang, T.; Bie, X.; Li, J.; Ji, B. Spatial distribution and influencing factors on urban land surface temperature of twelve megacities in China from 2000 to 2017. Ecol. Indic. 2021, 125, 107533. [Google Scholar] [CrossRef]
- Xia, C.C.; Chen, K.; Zhou, J.; Mei, J.; Liu, Y.P.; Liu, G.D. Comparison of precipitation stable isotopes during wet and dry seasons in a subtropical monsoon climate region of China. Appl. Ecol. Environ. Res. 2019, 17, 11979–11993. [Google Scholar] [CrossRef]
- Huang, J.; Bu, L.; Kumar, K.R.; Khan, R.; Devi, N.L. Investigating the relationship between aerosol and cloud optical properties inferred from the MODIS sensor in recent decades over East China. Atmos. Environ. 2020, 239, 117812. [Google Scholar] [CrossRef]
- Li, M.; He, B.; Guo, R.; Li, Y.; Chen, Y.; Fan, Y. Study on population distribution pattern at the county level of China. Sustainability 2018, 10, 3598. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef]
- Niu, C.; Chang, J.; Wang, Y.; Shi, X.; Wang, X.; Guo, A.; Jin, W.; Zhou, S. A water resource equilibrium regulation model under water resource utilization conflict: A case study in the Yellow River Basin. Water Resour. Res. 2022, 58, e2021WR030779. [Google Scholar] [CrossRef]
- Dou, P.; Zuo, S.; Ren, Y.; Rodriguez, M.J.; Dai, S. Refined water security assessment for sustainable water management: A case study of 15 key cities in the Yangtze River Delta, China. J. Environ. Manag. 2021, 290, 112588. [Google Scholar] [CrossRef]
- Daming, H.; Wenjuan, Z.; Junhua, G. Study on the Reasonable Utilization of Transboundary Water Resources and Environmental Protection in Southwest China. In Proceedings of the International Symposium on Southeast Asian Water Environment (Biodiversity and Water Environment); 2006. Available online: https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting-292848_thesis/0705018402558.html (accessed on 18 December 2023).
- Li, P.; Qian, H. Water resources research to support a sustainable China. Int. J. Water Resour. Dev. 2018, 34, 327–336. [Google Scholar] [CrossRef]
- Hoff, H.; Doell, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S. Water footprints of cities–indicators for sustainable consumption and production. Hydrol. Earth Syst. Sci. 2014, 18, 213–226. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef]
- Pellicer-Martínez, F.; Martínez-Paz, J.M. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Sci. Total Environ. 2016, 571, 561–574. [Google Scholar] [CrossRef]
- Van Oel, P.; Mekonnen, M.; Hoekstra, A.Y. The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment. Ecol. Econ. 2009, 69, 82–92. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 2011, 15, 1641–1660. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Tan, Y.; Wang, L.; Shen, M. Decoupling water consumption and environmental impact on textile industry by using water footprint method: A case study in China. Water 2017, 9, 124. [Google Scholar] [CrossRef]
- Kong, Y.; He, W.; Yuan, L.; Shen, J.; An, M.; Degefu, D.M.; Gao, X.; Zhang, Z.; Sun, F.; Wan, Z. Decoupling analysis of water footprint and economic growth: A case study of Beijing–Tianjin–Hebei Region from 2004 to 2017. Int. J. Environ. Res. Public Health 2019, 16, 4873. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z. Probing the carbon emissions in 30 regions of China based on symbolic regression and Tapio decoupling. Environ. Sci. Pollut. Res. 2022, 29, 2650–2663. [Google Scholar] [CrossRef]
- Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C.R.; Abbaspour, K.C. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrol. Earth Syst. Sci. 2010, 14, 1417–1433. [Google Scholar] [CrossRef]
- Zhang, C.; Anadon, L.D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Sun, S.; Yin, Y.; Wu, P.; Wang, Y.; Luan, X.; Li, C. Geographical evolution of agricultural production in China and its effects on water stress, economy, and the environment: The virtual water perspective. Water Resour. Res. 2019, 55, 4014–4029. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. Virtual water export and import in China’s foreign trade: A quantification using input-output tables of China from 2000 to 2012. Resour. Conserv. Recycl. 2018, 132, 278–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Tian, Q. Virtual water trade in the service sector: China’s inbound tourism as a case study. Int. J. Environ. Res. Public Health 2021, 18, 1769. [Google Scholar] [CrossRef]
Evaluation Indicators | Calculation Process | Hidden Meaning | |
---|---|---|---|
Structural indicators | Water import dependency (WD) | (EWFP/WFP) × 100% | Local dependence on external water resources |
Water self-sufficiency (WSS) | (IWFP/WFP) × 100% | Extent of local water use | |
Benefit indicators | Water footprint economic benefit value | GDP/WFP | Economic benefits from water consumption |
Net trade in water footprint | VWEdom − EWFP | Status of the water resources strategy |
GDP > 0 | GDP ≤ 0 | ||||
---|---|---|---|---|---|
WF > 0 | 0 < e < 0.8 | weakly decoupled | WF > 0 | e ≤ 0 | strong-negative decoupling |
0.8 ≤ e ≤ 1.2 | dilatation connection | WF ≤ 0 | 0 < e < 0.8 | weak-negative decoupling | |
e > 1.2 | Expansive negative decoupling | 0.8 ≤ e ≤ 1.2 | recession connection | ||
WF ≤ 0 | e ≤ 0 | out of touch | e > 1.2 | recessionary decoupling |
Region | Agriculture/108 m3 | Industrial/108 m3 | Domestic/108 m3 | Ecological/108 m3 | GDP (Billion RMB) | Imported Virtual Water/108 m3 | Virtual Water Export (VWEdom) /108 m3 | Internal Water Footprint (IWFP)/108 m3 | External Water Footprint (EWFP)/108 m3 | Total Water Footprint (WFP)/108 m3 |
---|---|---|---|---|---|---|---|---|---|---|
Northwest China | 176.48 | 100.68 | 71.14 | 36.93 | 54,698.10 | 72.51 | 114.44 | 270.79 | 72.51 | 343.30 |
North China | 196.35 | 118.29 | 246.97 | 149.22 | 225,942.36 | 729.94 | 248.89 | 461.94 | 729.94 | 1191.88 |
Northeast China | 219.21 | 162.91 | 75.39 | 45.55 | 129,174.20 | 169.45 | 125.44 | 377.62 | 169.45 | 547.07 |
Central China | 300.29 | 347.88 | 193.93 | 41.79 | 132,420.57 | 155.80 | 227.70 | 656.19 | 155.80 | 812.00 |
Southwest China | 627.79 | 501.17 | 298.98 | 32.10 | 152,198.80 | 358.28 | 578.63 | 881.41 | 358.28 | 1239.69 |
South China | 380.15 | 459.83 | 170.84 | 22.63 | 124,497.42 | 329.66 | 380.35 | 653.10 | 329.66 | 982.76 |
East China | 313.60 | 312.86 | 148.54 | 43.46 | 118,710.83 | 225.12 | 366.28 | 452.18 | 225.12 | 677.30 |
All | 2213.85 | 2003.62 | 1205.80 | 371.68 | 937,642.3057 | 2040.76 | 2041.73 | 3753.22 | 2040.76 | 5793.98 |
Region | Water Import Dependency (WD) (%) | Water Resource Self-Sufficiency (WSS) (%) | Water Footprint Economic Benefit Value (Billion Yuan/m3) | Net Trade in Water Footprint/108 m3 |
---|---|---|---|---|
Northwest China | 21.12% | 78.88% | 159.33 | 41.93 |
North China | 61.24% | 38.76% | 189.57 | −475.91 |
Northeast China | 30.97% | 69.03% | 236.12 | −44.01 |
Central China | 19.19% | 80.81% | 163.08 | 71.90 |
Southwest China | 28.90% | 71.10% | 122.77 | 220.35 |
South China | 33.54% | 66.46% | 126.68 | 50.69 |
East China | 33.24% | 66.76% | 175.27 | 141.16 |
Year | Northwest China | North China | Northeast China | Central China | ||||||||
Lanzhou | Xian | Urumqi | Beijing | Tianjin | Taiyuan | Dalian | Shenyang | Jilin | Wuhan | Changsha | Zhengzhou | |
2011–2012 | WND | WND | SD | SND | SND | WD | WND | SND | WND | WND | WND | SND |
2012–2013 | WND | SND | SND | - | SND | WND | WND | WND | SND | WND | WND | WND |
2013–2014 | WND | SND | WND | SND | SND | WND | SND | SND | SND | WND | WND | SND |
2014–2015 | WND | SND | - | WND | WND | WD | WND | WND | WND | WND | WND | WD |
2015–2016 | SND | WND | WND | - | SND | SND | WND | SND | SD | WND | WND | SND |
2016–2017 | SND | WND | WD | SND | SND | WD | WD | WND | WND | SD | WND | SND |
2017–2018 | SD | SD | WND | SND | END | WD | SND | SD | WND | - | WND | WND |
2018–2019 | WND | SND | SND | SND | WND | SND | SD | SND | WND | SND | WND | WND |
2019–2020 | WND | WND | WND | WND | WND | SND | WND | WND | WND | WND | WND | SND |
Year | Southwest China | South China | East China | |||||||||
Chengdu | Kunming | Chongqing | Guangzhou | Haikou | Nanning | Jinan | Nanjing | Fuzhou | ||||
2011–2012 | WND | SND | WND | WND | WND | SND | WND | SND | WD | |||
2012–2013 | SND | WND | WND | SD | WD | SND | SD | WND | SND | |||
2013–2014 | WND | WND | WND | WND | WND | WND | WND | SND | WND | |||
2014–2015 | SND | - | WND | WND | SND | SD | WND | WND | WND | |||
2015–2016 | SND | WD | - | WND | WD | SND | WND | SND | WND | |||
2016–2017 | WD | WD | WND | WND | SND | WD | SD | DN | WD | |||
2017–2018 | WL | SND | WND | SND | END | SND | SND | WL | WND | |||
2018–2019 | WND | SND | SD | WD | WL | SND | SND | WL | WND | |||
2019–2020 | WND | WND | WND | WND | WND | SND | SND | WND | SND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alifujiang, Y.; Lu, N.; Feng, P.; Jiang, Y. China’s Urban Water Utilization Based on the Water Footprint Methodology. Water 2024, 16, 462. https://doi.org/10.3390/w16030462
Alifujiang Y, Lu N, Feng P, Jiang Y. China’s Urban Water Utilization Based on the Water Footprint Methodology. Water. 2024; 16(3):462. https://doi.org/10.3390/w16030462
Chicago/Turabian StyleAlifujiang, Yilinuer, Na Lu, Pingping Feng, and Ying Jiang. 2024. "China’s Urban Water Utilization Based on the Water Footprint Methodology" Water 16, no. 3: 462. https://doi.org/10.3390/w16030462
APA StyleAlifujiang, Y., Lu, N., Feng, P., & Jiang, Y. (2024). China’s Urban Water Utilization Based on the Water Footprint Methodology. Water, 16(3), 462. https://doi.org/10.3390/w16030462