How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.1.1. Site Description
2.1.2. Experimental Design
2.1.3. Field Measurements and Analysis
2.2. Modeling Approach
2.2.1. Model Description
2.2.2. Domain Initial and Boundary Conditions
2.2.3. Input Parameters
2.2.4. Evaluation of the Model
2.3. Optimization of Irrigation Strategies
2.3.1. Setup of Irrigation Scenarios
2.3.2. Evaluation of Irrigation Scenarios: TOPSIS Entropy Weight Method
3. Results and Discussion
3.1. Model Calibration and Validation
3.1.1. Simulation of Water Flow
3.1.2. Simulation of N Transport
3.2. Characterization of Water and N Dynamics
3.2.1. Volumetric Water Content and Deep Seepage
3.2.2. N Leaching
3.3. Assessing Different Irrigation Scenarios
3.3.1. Cumulative Drainage Water and Root Water Uptake
3.3.2. Cumulative Root N Uptake and N Leaching
3.3.3. Soil N Residual
3.3.4. TOPSIS Entropy Weight Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth. Envion. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Liu, M.; Shen, Y.; Pei, H. Water Budget of Urban Turf Field and Optimal Irrigation Schedule Simulation in an Ecotone between Semi-Humid and Semi-Arid Regions, Northern China. Agronomy 2023, 13, 273. [Google Scholar] [CrossRef]
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook 2022; National Bureau of Statistics Press: Beijing, China, 2022.
- Sevostianova, E.; Leinauer, B. Subsurface-Applied Tailored Water: Combining Nutrient Benefits with Efficient Turfgrass Irrigation. Crop Sci. 2014, 54, 1926–1938. [Google Scholar] [CrossRef]
- Leinauer, B.; Devitt, D.A. Irrigation Science and Technology. In Agronomy Monograph 56; Horgan, B.P., Stier, J.C., Bonos, S.A., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 2013; pp. 1075–1133. [Google Scholar] [CrossRef]
- Fan, J.; Hochmuth, G.; Kruse, J.; Sartain, J. Effects of Reclaimed Water Irrigation on Growth and Nitrogen Uptake of Turfgrass. HortTechnology 2014, 24, 565–574. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Xu, A.; Lu, Y.; Wu, Y.; Hao, S.; Hu, H. Situation analysis and inspirations of water reuse in Australia. Environ. Eng. 2022, 40, 1–7+26. [Google Scholar] [CrossRef]
- Zhu, Z.; Dou, J. Current status of reclaimed water in China: An overview. J. Water Reuse Desalination 2018, 8, 293–307. [Google Scholar] [CrossRef]
- Vo, P.T.; Ngo, H.H.; Guo, W.S.; Zhou, J.L.; Nguyen, P.D.; Listowski, A.; Wang, X.C. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total Environ. 2014, 494, 9–17. [Google Scholar] [CrossRef]
- Nogueira, S.F.; Pereira, B.F.F.; Gomes, T.M.; de Paula, A.M.; dos Santos, J.A.; Montes, C.R. Treated sewage effluent: Agronomical and economical aspects on bermudagrass production. Agric. Water Manag. 2013, 116, 151–159. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Wen, X.; Chang, A.C. Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig. Sci. 2019, 37, 35–47. [Google Scholar] [CrossRef]
- Leinauer, B.; Sevostianova, E.; Velasco-Cruz, C.; Sallenave, R.; Serena, M.; Horvath, I.; Skerker, J. Establishing three warm-season turfgrasses with tailored water: II. Root development, nitrate accumulation in plant tissue and soil, and relationship with leaching. J. Environ. Qual. 2022, 51, 238–249. [Google Scholar] [CrossRef]
- Semiz, G.D.; Suarez, D.L.; Lesch, S.M. Electromagnetic sensing and infiltration measurements to evaluate turfgrass salinity and reclamation. Sci. Rep. 2022, 12, 5115. [Google Scholar] [CrossRef]
- Devitt, D.A.; Wright, L.; Young, M.H. Water and Salt Status of Bare Soil and Turfgrass Systems Irrigated with Recycled Water. Agron. J. 2013, 105, 1051–1060. [Google Scholar] [CrossRef]
- Yerli, C.; Senol, N.D.; Yaganoglu, E. The changes in yield, quality, and soil properties of turfgrass grown by applying varying levels of hazelnut husk compost and irrigating with wastewater in soils with different textures, and their effects on carbon dioxide emissions from the soil. Water Air Soil Pollut. 2023, 234, 311. [Google Scholar] [CrossRef]
- Zalacáin, D.; Martínez-Pérez, S.; Bienes, R.; García-Díaz, A.; Sastre-Merlín, A. Turfgrass biomass production and nutrient balance of an urban park irrigated with reclaimed water. Chemosphere 2019, 237, 124481. [Google Scholar] [CrossRef]
- Bihadassen, B.; Hassi, M.; Hamadi, F.; Aitalla, A.; Bourouache, M.; El Boulani, A.; Mimouni, R. Irrigation of a golf course with UV-treated wastewater: Effects on soil and turfgrass bacteriological quality. Appl. Water Sci. 2020, 10, 7. [Google Scholar] [CrossRef]
- Toor, G.S.; Occhipinti, M.L.; Yang, Y.-Y.; Majcherek, T.; Haver, D.; Oki, L. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff. PLoS ONE 2017, 12, e0179151. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Wilson, P.C.; O’Connor, G.A. Endocrine-Disrupting Compounds in Reclaimed Water and Residential Ponds and Exposure Potential for Dislodgeable Residues in Turf Irrigated with Reclaimed Water. Arch. Environ. Contam. Toxicol. 2015, 69, 81–88. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Lu, S.; Jiao, W.; Wu, L.S.; Chang, A.C. Fates and transport of PPCPs in soil receiving reclaimed water irrigation. Chemosphere 2013, 93, 2621–2630. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Mccoy, E.L.; Mccoy, K.R. Simulation of putting-green soil water dynamics: Implications for turfgrass water use. Agric. Water Manag. 2009, 96, 405–414. [Google Scholar] [CrossRef]
- Geza, M.; Deb, S.K.; Leinauer, B.; Stanek, S.; Sevostianova, E.; Serena, M. Modeling NO3−-N leaching during establishment of turfgrasses irrigated with tailored reclaimed water. Vadose Zone J. 2021, 20, e20112. [Google Scholar] [CrossRef]
- del Campo, M.M.A.; Esteller, M.V.; Morell, I.; Expósito, J.L.; Bandenay, G.L.; Morales-Casique, E. Effect of organic matter and hydrogel application on nitrate leaching in a turfgrass crop: A simulation study using HYDRUS. J. Soils Sediments 2021, 21, 1190–1205. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- HJ535-2009; Water Quality-Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2009. (In Chinese)
- HJ/T346-2007; Water Quality-Determination of Nitrate-Nitrogen-Ultraviolet Spectrophotometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2007. (In Chinese)
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield (Simulation Monographs); Pudoc: Wageningen, The Netherlands, 1978. [Google Scholar]
- Vrugt, J.A.; Bouten, W. Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models. Soil Sci. Soc. Am. J. 2002, 66, 1740–1751. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Hopmans, J.W.; Šimůnek, J. Calibration of a two-dimensional root water uptake model. Soil Sci. Soc. Am. J. 2001, 65, 1027–1037. [Google Scholar] [CrossRef]
- Vrugt, J.A.; van Wijk, M.T.; Hopmans, J.W.; Šimůnek, J. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour. Res. 2001, 37, 2457–2470. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Chen, M.; Willgoose, G.R.; Saco, P.M. Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrol. Process. 2014, 28, 171–185. [Google Scholar] [CrossRef]
- Yu, L.; Su, D.; Liu, Y. Characters of leaf water absorption for three turfgrass. J. Beijing For. Univ. 2013, 35, 97–101. [Google Scholar]
- Filipović, V.; Toor, G.S.; Ondrašek, G.; Kodešová, R. Modeling water flow and nitrate-nitrogen transport on golf course under turfgrass. J. Soils Sediments 2015, 15, 1847–1859. [Google Scholar] [CrossRef]
- Shafeeq, P.M.; Aggarwal, P.; Krishnan, P.; Rai, V.; Pramanik, P.; Das, T.K. Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture. Environ. Sci. Pollut. Res. Int. 2020, 27, 2197–2216. [Google Scholar] [CrossRef]
- Mokari, E.; Shukla, M.K.; Šimůnek, J.; Fernandez, O.L. Numerical Modeling of Nitrate in a Flood-Irrigated Pecan Orchard. Soil Sci. Soc. Am. J. 2019, 83, 555–564. [Google Scholar] [CrossRef]
- Shahrokhnia, M.H.; Sepaskhah, A.R. Water and nitrate dynamics in safflower field lysimeters under different irrigation strategies, planting methods, and nitrogen fertilization and application of HYDRUS-1D model. Environ. Sci. Pollut Res. 2018, 25, 8563–8580. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- García-Orenes, F.; Caravaca, F.; Morugán-Coronado, A.; Roldán, A. Prolonged irrigation with municipal wastewater promotes a persistent and active soil microbial community in a semiarid agroecosystem. Agric. Water Manag. 2015, 149, 115–122. [Google Scholar] [CrossRef]
- Mguidiche, A.; Provenzano, G.; Douh, B.; Khila, S.; Rallo, G.; Boujelben, A. Assessing HYDRUS-2D to simulate soil water content (SWC) and salt accumulation under an SDI system: Application to a potato crop in a semi-arid area of central Tunisia. Irrig. Drain. 2015, 64, 263–274. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, X.; Zhu, Y.; Zhang, Y.; Yan, Y.; Zhang, C.; Li, Y. Correlation between the rhizome expansion ability and endogenous hormones contents of wild Poa pratensis in Gansu Province. Chin. J. Eco-Agric. 2021, 29, 1359–1369. [Google Scholar] [CrossRef]
- Perego, A.; Basile, A.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Brenna, S.; Acutis, M. Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric. Ecosyst. Environ. 2012, 147, 57–65. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Soil drainage water and nutrient leaching in winter wheat field lysimeters under different management practices. Int. J. Plant Prod. 2021, 15, 13–28. [Google Scholar] [CrossRef]
- Jeong, H.; Jang, T.; Seong, C.; Park, S. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric. Water Manag. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS. Agric. Water Manag. 2017, 193, 174–190. [Google Scholar] [CrossRef]
- Groenveld, T.; Argaman, A.; Šimůnek, J.; Lazarovitch, N. Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress. Agric. Water Manag. 2021, 254, 106971. [Google Scholar] [CrossRef]
- Jia, X.; Shao, L.; Liu, P.; Zhao, B.; Gu, L.; Dong, S.; Bing, S.H.; Zhang, J.; Zhao, B. Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions. Agric. Water Manag. 2014, 137, 92–103. [Google Scholar] [CrossRef]
Soil Depths (cm) | θr (cm−3·cm−3) | θs (cm−3·cm−3) | α (cm−1) | n | Ks (cm·d−1) |
---|---|---|---|---|---|
0–30 | 0.047 | 0.241 | 0.0016 | 1.149 | 79.3 |
30–50 | 0.059 | 0.296 | 0.0012 | 1.114 | 56.5 |
50–70 | 0.043 | 0.246 | 0.0011 | 1.109 | 47.2 |
70–90 | 0.062 | 0.307 | 0.0018 | 1.069 | 39.7 |
90–120 | 0.076 | 0.297 | 0.0031 | 1.209 | 34.4 |
Soil Depths (cm) | Ks,1 (cm−3·mg−1) | μw,1 (d−1) | μ’w,1 (d−1) | Ks,2 (cm−3·mg−1) | μw,2 (d−1) |
---|---|---|---|---|---|
0–30 | 0 | 0.005 | 0.01 | 0 | 0.01 |
30–50 | 0.04 | 0 | 0.001 | 0.0001 | 0 |
50–70 | 0.49 | 0 | 0 | 0.0001 | 0 |
70–90 | 0.49 | 0 | 0 | 0.0004 | 0 |
90–120 | 0.49 | 0 | 0 | 0.0004 | 0 |
Irrigation Scenarios | Volume (mm)/ Number of Irrigation | NH4+-N Concentration of Reclaimed Sewage (mg·L−1) | NO3−-N Concentration of Reclaimed Sewage (mg·L−1) |
---|---|---|---|
I100%S1/3 | 414.28/27 | 7.70 | 1.55 |
I100%S1/2 | 11.54 | 2.33 | |
I100%S1 | 23.09 | 4.65 | |
I100%S2 | 46.17 | 9.31 | |
I100%S3 | 69.26 | 13.96 | |
I80%S1/3 | 331.43/22 | 7.70 | 1.55 |
I80%S1/2 | 11.54 | 2.33 | |
I80%S1 | 23.09 | 4.65 | |
I80%S2 | 46.17 | 9.31 | |
I80%S3 | 69.26 | 13.96 | |
I60%S1/3 | 248.57/16 | 7.70 | 1.55 |
I60%S1/2 | 11.54 | 2.33 | |
I60%S1 | 23.09 | 4.65 | |
I60%S2 | 46.17 | 9.31 | |
I60%S3 | 69.26 | 13.96 |
Irrigation Scenarios | d+ | d− | C | Rank |
---|---|---|---|---|
I100%S1/3 | 1.210 | 0.325 | 0.212 | 11 |
I100%S1/2 | 1.210 | 0.305 | 0.201 | 12 |
I100%S1 | 1.214 | 0.246 | 0.168 | 13 |
I100%S2 | 1.232 | 0.134 | 0.098 | 14 |
I100%S3 | 1.262 | 0.065 | 0.049 | 15 |
I80%S1/3 | 0.671 | 0.641 | 0.489 | 6 |
I80%S1/2 | 0.670 | 0.633 | 0.486 | 7 |
I80%S1 | 0.673 | 0.609 | 0.475 | 8 |
I80%S2 | 0.692 | 0.573 | 0.453 | 9 |
I80%S3 | 0.725 | 0.552 | 0.432 | 10 |
I60%S1/3 | 0.065 | 1.262 | 0.951 | 2 |
I60%S1/2 | 0.058 | 1.259 | 0.956 | 1 |
I60%S1 | 0.066 | 1.249 | 0.950 | 3 |
I60%S2 | 0.135 | 1.234 | 0.902 | 4 |
I60%S3 | 0.214 | 1.223 | 0.851 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, H.; Liu, M.; Pei, H. How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation. Water 2024, 16, 460. https://doi.org/10.3390/w16030460
Li Y, Zhang H, Liu M, Pei H. How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation. Water. 2024; 16(3):460. https://doi.org/10.3390/w16030460
Chicago/Turabian StyleLi, Yali, Hongjuan Zhang, Mengzhu Liu, and Hongwei Pei. 2024. "How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation" Water 16, no. 3: 460. https://doi.org/10.3390/w16030460
APA StyleLi, Y., Zhang, H., Liu, M., & Pei, H. (2024). How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation. Water, 16(3), 460. https://doi.org/10.3390/w16030460