Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction and Quantification
2.3. 16S Metabarcoding Analysis
2.4. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukami, T.; Wardle, D.A. Long-term ecological dynamics: Reciprocal insights from natural and anthropogenic gradients. Proc. R. Soc. B Biol. Sci. 2005, 272, 2105–2115. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. Forthcoming World Water Resources at the Beginning of the 21th Century; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Middleton, N. Rivers: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012; pp. 1–127. [Google Scholar]
- Bruce, L. Rhoads, River Dynamics; Chapter 1; Cambridge University Press: Cambridge, UK, 2020; pp. 1–14. [Google Scholar]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic-ecohydraulic approach. Energy Convers. Manag. 2020, 223, 113267. [Google Scholar] [CrossRef]
- IUCN Environmental Flows, Managing Water Allocation and Trade-Offs. Available online: https://www.iucn.org/downlowds/water_briefing_eflows.pdf (accessed on 22 March 2022).
- Dudgeon, D. Anthropocene Extinctions: Global Threats to Riverine Biodiversity and the Tragedy of the Freshwater Commons. In River Conservation: Challenges and Opportunities; Sabater, S., Elosegi, A., Eds.; Fundación BBVA: Bilbao, Spain, 2013; pp. 129–167. [Google Scholar]
- Stevenson, R.J.; Sabater, S. Understanting global change in river ecosystems: Science to support policy in a changing world. Hydrobiologia 2010, 657, 3–18. [Google Scholar] [CrossRef]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are Humans Noe Overwhelming the Great Forces of Nature? University of California Press: Los Angeles, CA, USA, 2007; Volume 36, pp. 614–621. [Google Scholar]
- Meybeck, M. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philos. Trans. Soc. B Biol. Sci. 2003, 358, 1935–1955. [Google Scholar] [CrossRef]
- Schneider-Binder, E. The Habitats Along the Upper Danube in Germany and Changes to Them Induced by Human Impacts. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 27–48. [Google Scholar]
- Burga, C.A.; Landolt, E. The Upper Engandine: Headwater Region of the River Inn. A Swiss Hot Spot of Plant Diversity and Premium Tourism Region. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 49–64. [Google Scholar]
- Hübl, E. Vegetation and Flora Near the Danube in Austria. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 65–86. [Google Scholar]
- Cianfaglione, K.; Pedrotti, F. Italy in the Danube Geography: Territory, Landscape, Environment, Vegetation, Fauna, Culture, Human Management and Outlooks for the Future. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 87–118. [Google Scholar]
- Čarni, A.; Mastnak, N.J. Forest Vegetation Along the Mura River in Slovenia. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 119–134. [Google Scholar]
- Adámek, Z.; Jurajdová, Z.; Janáč, M.; Zahrádková, S.; Němejcová, D.; Jurajda, P. The Response of Fish Assemblages to Human Impacts Along the Lower Stretch of the Rivers Morava and Dyje (Danube River Basin, Czech Republic). In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 135–150. [Google Scholar]
- Ćaleta, M.; Mustafić, P.; Zanella, D.; Buj, I.; Marčić, Z.; Mrakovčić, M. Human Impact on the Dobra River (Croatia). In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 151–168. [Google Scholar]
- Dekić, R.; Ivanc, A.; Ćetković, D.; Lolić, A. Anthropogenic Impact and Environmental Quality of Different Tributaries of the River Vrbas (Bosnia and Hertzegovina). In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 169–214. [Google Scholar]
- Gutti, G. Assessment of Long-Term Changes in the Szigetköz Floodplain of the Danube River. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 215–240. [Google Scholar]
- Đikanović, V.; Nikčević, M.; Mićković, B.; Hegediš, A.; Mrdak, D.; Pešić, V. Anthropogenic Pressures on Watercourses of the Danube River Basin in Montenegr. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 241–256. [Google Scholar]
- Lenhardt, M.; Smederevac-Lalić, M.; Hegediš, A.; Skorić, S.; Cvijanović, G.; Višnjić-Jeftić, Ž.; Djikanović, V.; Jovičić, K.; Jaćimović, M.; Jarić, I. Human Impacts of Fish Fauna in the Danube River in Serbia: Current Status and Ecological Implicatins. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 257–280. [Google Scholar]
- Mišiková Elexová, E.; Makovinská, J. Assessment of the Aquatic Ecosystem in the Slovak Stretch of the Danube River. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 281–300. [Google Scholar]
- Maślanko, W.; Ferencz, B.; Dawidek, J. State and Changes of Natural Environment in Polish Part of the Danube River Basin Poland. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 301–326. [Google Scholar]
- Afanasyev, S.; Lyashenko, A.; Iarochevitch, A.; Lietytska, O.; Zorina-Sakharova, K.; Marushevska, O. Pressures and Impacts on Ecological Status of Surface Water Bodies in Ukrainian part of the Danube River Basin. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 327–359. [Google Scholar]
- Bakiu, R. Drina River (Sava’s Tributary of Danube River) and Human Impact in Albania. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 359–380. [Google Scholar]
- Kostov, V.; Slavevska-Stamenkovic, V.; Ristovska, M.; Stojov, V.; Marić, S. Characteristics of the Danube Drainage Area in the Republic of Macedonia. In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 381–392. [Google Scholar]
- Kenderov, L.; Trichkova, T. Long-Term Changes in the Ecological Conditions of the Iskar River (Danube River Basin, Bulgaria). In Human Impact on Danube Watershed Biodiversity in the XXI Century. Geobotany Studies (Basics, Methods and Case Studies); Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 393–424. [Google Scholar]
- Burcea, A.; Boeraş, I.; Mihuţ, C.-M.; Bănăduc, D.; Matei, C.; Curtean-Bănăduc, A. Adding the Mureş River Basin (Transylvania, Romania) to the list of hotspots with high contamination with pharmaceuticals. Sustainability 2020, 12, 10197. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Mihuţ, C.; Burcea, A.; McCall, G.S.; Matei, C.; Bănăduc, D. Screening for Microplastic Uptake in an Urbanized Freshwater Ecosystem: Chondrostoma nasus (Linnaeus, 1758) Case Study. Water 2023, 15, 1578. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Burcea, A.; Mihuţ, C.-M.; Bănăduc, D. The benthic trophic corner stone compartment in POPs transfer from abiotic environment to higher trophic levels—Trichoptera and Ephemeroptera pre-alert indicator role. Water 2021, 13, 1778. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Burcea, A.; Mihuţ, C.-M.; Berg, V.; Lyche, J.L.; Bănăduc, D. Bioaccumulation of persistent organic pollutants in the gonads of Barbus barbus (Linnaeus, 1758). Ecotoxicol. Environ. Saf. 2020, 201, 110852. [Google Scholar] [CrossRef] [PubMed]
- Curtean-Bănăduc, A.; Bănăduc, D.; Burcea, A.; Berg, V.; Lyche, J.L.; Gheorghe, L.M. Persistent organic pollutants in Mureş watershed. In The Impact of Persistent Organic Pollutants on Freshwater Ecosystems and Human Health; Curtean-Bănăduc, A., Ed.; Lucian Blaga University of Sibiu: Sibiu, Romania, 2016; pp. 117–152. [Google Scholar]
- Curtean-Bănăduc, A.; Bănăduc, D. The Transylvanian Water Tower through history, and an invitation to a much-needed conference. Danub. News 2015, 32, 17. [Google Scholar]
- Bănăduc, D.; Bakhshalizadeh, S.; Curtean-Bănăduc, A. Natura 2000 a Panacea? Natura 2000 Site Oltul Mijlociu-Cibin-Hârtibaciu (ROSCI132)—A local extinction of a native fish species and a new alien fish arrival case study. In Transylvanian Review of Systematical and Ecological Research; The Wetlands Diversity: Sibiu, Romania, 2023; Volume 25, pp. 81–100. [Google Scholar]
- Boeraş, I.; Curtean-Bănăduc, A.; Bănăduc, D.; Cioca, G. Anthropogenic sewage water circuit as vector for SARS-CoV-2 viral ARN transport and public health assessment, monitoring and forecasting—Sibiu metropolitan area (Transylvania/Romania) study case. Int. J. Environ. Res. Public Health 2022, 19, 11725. [Google Scholar] [CrossRef]
- Bănăduc, D.; Sas, A.; Cianfaglione, K.; Barinova, S.; Curtean-Bănăduc, A. The role of aquatic refuge habitats for fish, and threats in the context of climate change and human impact, during seasonal hydrological drought in the Saxon Villages area (Transylvania, Romania). Atmosphere 2021, 12, 1209. [Google Scholar] [CrossRef]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.R.; Cioca, L.-I. Proposed environmental risk management elements in a Carpathian valley basin, within the Roşia Montană European historical mining area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef] [PubMed]
- Curtean-Bănăduc, A.; Bănăduc, D.; Bucşa, C. Watersheds Management (Transylvania/Romania): Implications, risks, solutions, Strategies to enhance environmental Security in transition countries. In NATO Science for Peace and Security Series C-Environmental Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 225–238. ISSN 1971-4668. ISBN 978-1-4020-5994-0. [Google Scholar] [CrossRef]
- Mutihac, V. Structura Geologică a Teritoriului României; Editura Tehnică: Bucharest, Romania, 1990. [Google Scholar]
- Posea, G. Enciclopedia Geografică a României; Editura Științifică și Enciclopedică: București, Romania, 1982; p. 262. [Google Scholar]
- Diaconu, C.; Stănculescu, S. Rîurile României, Monografie Hidrologică; Institutul de Meteorologie și Hidrologie: București, Romania, 1971; pp. 1–750. [Google Scholar]
- Badea, L.; Bugă, D.; Cioflica, G.; Cucu, V.; Doniță, I.; Gâștescu, P.; Iordan, I.; Morariu, T.; Niculescu, G.; Oancea, D.; et al. Geografia României, I; Geografia Umană și Economică, Editura Academiei Republicii Socialiste România: Bucharest, Romania, 1984; pp. 1–543. [Google Scholar]
- Triebskorn, R.; Telcean, I.; Casper, H.; Farkas, A.; Sandu, C.; Stan, G.; Colărescu, O.; Dori, T.; Köhler, H.-R. Monitoring pollution in River Mureş, Romania, part II: Metal accumulation and histopathology in fish. Environ. Monit. Assess. 2007, 141, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Rey, S.; Trichkova, T.; Lenhardt, M.; Curtean-Bănăduc, A. The Lower Danube River—Danube Delta—North West Black Sea: A pivotal area of major interest for the past, present and future of its fish fauna—A short review. Sci. Total Environ. 2016, 545, 137–151. [Google Scholar] [CrossRef]
- Bănăduc, D.; Oprean, L.; Bogdan, A. Fish species of community interest management issues in Natura 2000 site Sighişoara-Târnava Mare (Transylvania, Romania). Rev. Econ. 2011, 3, 23–27. [Google Scholar]
- Curtean-Bănăduc, A.; Bănăduc, D. Benthic macro-invertebrate and fish communities of some southern Tarnava Mare River tributaries (Transylvania, Romania). Transylv. Rev. Syst. Ecol. Res. 2007, 4, 135–148. [Google Scholar]
- Bănăduc, D. Fish associations—Habitats quality relation in the Târnave rivers ecological assessment. Transylv. Rev. Syst. Ecol. Res. 2005, 2, 123–136. [Google Scholar]
- Köhler, H.-R.; Sandu, C.; Scheil, V.; Nagy-Petrică, E.M.; Segner, H.; Telcean, I.; Stan, G.; Triebskorn, R. Monitoring Pollution in River Mureș, Romania, Part III: Biochemical effect markers in fish and integrative reflection. Environ. Monit. Assess. 2006, 127, 47–54. [Google Scholar] [CrossRef]
- Köhler, H.-R.; Triebskorn, R.; Sandu, C. Monitoring pollution in the river Mureş. Bull. Int. Assoc. Danub. Res. Danub. News 2005, 11, 1–6. [Google Scholar]
- Sandu, C.; Farkas, A.; Musa-Iacob, R.; Ionică, D.; Parpală, L.; Zinevici, V.; Dobre, D.; Radu, M.; Presing, M.; Casper, H.; et al. Monitoring Pollution in River Mureş, Romania, Part I: How Aquatic Communities are Affected. In Environmental Monitoring and Assessment; Springer: Bucureşti, Romania, 2006. [Google Scholar]
- Mureş Water Directorate (MWD): Report for 2004—Annual Synthesis Concerning the Water Quality Protection in Mureş Hydrographic Basin, Vol. I and II. (1) (PDF) The Mureş River Ecosystem—Scientific Background Information as the Basis for a Catchment Approach in the Framework of IAD. Available online: https://www.researchgate.net/publication/242267567_The_Mures_River_ecosystem_-_scientific_background_information_as_the_basis_for_a_catchment_approach_in_the_framework_of_IAD (accessed on 15 August 2021).
- Mohajeri, M.H.; Brummer, R.J.M.; Rastall, R.A.; Weersma, R.K.; Harmsen, H.J.M.; Faas, M.; Eggersdorfer, M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018, 57 (Suppl. S1), 1–14. [Google Scholar] [CrossRef] [PubMed]
- Munawar, M.; Munawar, I.F.; Weisse, T.; Leppard, G.G.; Legner, M. The significance and future potential of using microbes for assessing ecosystem health: The Great Lakes example. J. Aquat. Ecosyst. Health 1994, 3, 295–310. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
- Dzutsev, A.; Badger, J.H.; Perez-Chanona, E.; Roy, S.; Salcedo, R.; Smith, C.K.; Trinchieri, G. Microbes and cancer. Annu. Rev. Immunol. 2017, 35, 199–228. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Marín, M.L.; Martín, R.; Odriozola, J.M.; Olivares, M.; Xaus, J.; Fernández, L.; Rodríguez, J.M. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008, 159, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Sirota, I.; Zarek, S.; Segars, J. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin. Reprod. Med. 2014, 32, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Feng, Y.; Li, L.; Ge, W.; Yu, S.; Hao, Y.; Shen, W.; Han, X.; Ma, D.; Yin, S.; et al. Improvement in sperm quality and spermatogenesis following faecal microbiota transplantation from alginate oligosaccharide dosed mice. Gut 2021, 70, 222–225. [Google Scholar] [CrossRef]
- Cai, H.; Cao, X.; Qin, D.; Liu, Y.; Liu, Y.; Hua, J.; Peng, S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front. Microbiol. 2022, 13, 977574. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef]
- Saeed, N.K.; Al-Beltagi, M.; Bediwy, A.S.; El-Sawaf, Y.; Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World J. Gastroenterol. 2022, 28, 1875–1901. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, R. Role of different neurotransmitters in anxiety: A systemic review. Int. J. Pharm. Sci. Res. 2017, 8, 411. [Google Scholar]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016, 167, 1469–1480. [Google Scholar] [CrossRef]
- Quigley, E. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [Google Scholar] [CrossRef]
- Noble, J.M.; Scarmeas, N.; Celenti, R.S.; Elkind, M.S.; Wright, C.B.; Schupf, N.; Papapanou, P.N. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS ONE 2014, 9, e114959. [Google Scholar] [CrossRef]
- Ramirez-Labrada, A.G.; Isla, D.; Artal, A.; Arias, M.; Rezusta, A.; Pardo, J.; Galvez, E.M. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 2020, 6, 86–97. [Google Scholar] [CrossRef]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008, 3, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Johanesen, P.A.; Mackin, K.E.; Hutton, M.L.; Awad, M.M.; Larcombe, S.; Amy, J.M.; Lyras, D. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance. Genes 2015, 6, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Ford, T. Pollutant effects on the microbial ecosystem. Environ. Health Perspect. 1994, 102, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Savio, D.; Sinclair, L.; Ijaz, U.Z.; Parajka, J.; Reischer, G.; Stadler, P.; Blaschke, A.P.; Blöschl, G.; Mach, R.; Kirschner, A.; et al. Bacterial diversity along a 2600 km river continuum. Environ. Microbiol. 2015, 17, 4994–5007. [Google Scholar] [CrossRef]
- Lupan, I.; Carpa, R.; Oltean, A.; Kelemen, B.; Popescu, O. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania. Microbes Environ. 2017, 32, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Florea, A.B. Antimicrobial susceptibility of Escherichia coli isolated from Arieş river (Romania). An. Univ. Din Oradea Fasc. Biol. 2011, 18, 34–38. [Google Scholar]
- Boeraş, I.; Burcea, A.; Coman, C.; Bănăduc, D.; Curtean-Bănăduc, A. Bacterial microbiomes in the sediments of lotic systems ecologic drivers and role: A case study from the Mureş River, Transylvania, Romania. Water 2021, 13, 3518. [Google Scholar] [CrossRef]
- Ward, J.V. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Del Monte-Luna, P.; Brook, B.W.; Zetina-Rejón, M.J.; Cruz-Escalona, V.H. The carrying capacity of ecosystems. Glob. Ecol. Biogeogr. 2004, 13, 485–495. [Google Scholar] [CrossRef]
- Cherry, J.A. Ecology of wetland ecosystems: Water, substrate, and life. Nat. Educ. Knowl. 2011, 3, 16. [Google Scholar]
- Afanasyev, S.A. Forming of Hydrobiota of the River Systems in the Territory of Ukraine in View of History of Hydrographic Net. Hydrobiol. J. 2015, 51, 3–12. [Google Scholar] [CrossRef]
- Fogarty, M.J.; Gamble, R.; Perretti, C.T. Dynamic Complexity in Exploited Marine Ecosystems. Front. Ecol. Evol. 2016, 4, 68. [Google Scholar] [CrossRef]
- Barinova, S. Empirical Model of the Functioning of Aquatic Ecosystems. Int. J. Oceanogr. Aquac. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Cianfaglione, K. Plant Landscape and Models of French Atlantic Estuarine Systems. Extended Summary of the Doctoral Thesis. Transylv. Rev. Syst. Ecol. Res. 2021, 23, 15–36. [Google Scholar] [CrossRef]
- Zimmerman, B.; Lindberg, C.; Plsek, P. A Complexity Science Primer. In Edgeware: Insights from Complexity Science for Health Care Leaders, 2nd ed.; Zimmerman, B., Lindberg, C., Plsek, P., Eds.; VHA Inc.: Irving, TX, USA, 2001; pp. 3–20. [Google Scholar]
- Potter, P.E.; Hamblin, W.K. Big Rivers Worldwide; Brigham Young University Geology Studies: Provo, UT, USA, 2005. [Google Scholar]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Tockner, K.; Zarfl, C.; Robinson, C. Rivers of Europe, 2nd ed.; Elsevier: Bayern, Germany, 2021; p. 800. [Google Scholar]
- Dahm, C.; Bulton, A.; Correa, L.; Kingsford, R.; Jenkins, K.; Sheldon, F. The role of science in planning, policy and conservation of river ecosystems. In Rivers Conservation: Challenges and Opportunities; Sabater, S., Elosegi, A., Eds.; Fundación BBVA: Bilbao, Spain, 2013; p. 399. [Google Scholar]
- Amyes, S. What’s the Secret of Bacteria’s Success? Bacteria: A Very Short Introduction; Oxford University Press’s Academic Insights for the Thinking World: Oxford, UK, 2013. [Google Scholar]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Champomier Vergès, M.-C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Herrero Corral, G.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar]
- Konopka, A. What is microbial community ecology? ISME J. 2009, 3, 1223–1230. [Google Scholar] [CrossRef]
- Gibbons, S.M.; Jones, E.; Bearquiver, A.; Blackwolf, F.; Roundstone, W.; Scott, N.; Hooker, J.; Madsen, R.; Coleman, M.; Gilbert, J.A. Human and Environmental Impacts on River Sediment Microbial Communities. PLoS ONE 2014, 9, e97435. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam, N.F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Madsen, E.L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 2011, 22, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Pusch, M.; Fiebig, D.; Brettar, I.; Eisenmann, H.; Ellis, B.K.; Kaplan, L.A.; Lock, M.A.; Naegeli, M.W.; Traunspurger, W. The role of micro-organisms in the ecological connectivity of running waters. Freshw. Biol. 1998, 40, 453–495. [Google Scholar] [CrossRef]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Igbinosa, E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306. [Google Scholar] [CrossRef]
- Ufarté, L.; Laville, É.; Duquesne, S.; Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv. 2015, 33, 845–1854. [Google Scholar] [CrossRef]
- Ramos, J.L.; Marques, S.; van Dillewijn, P.; Espinosa-Urgel, M.; Segura, A.; Duque, E.; Krell, T.; Ramos-González, M.I.; Bursakov, S.; Roca, A.; et al. Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol. 2011, 29, 641–647. [Google Scholar] [CrossRef]
- Edwards, S.J.; Kjellerup, B.V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 2013, 97, 9909–9921. [Google Scholar] [CrossRef]
- Köchling, T.; Sanz, J.L.; Galdino, L.; Florencio, L.; Kato, M.T. Impact of pollution on the microbial diversity of a tropical river in an urbanized region of northeastern Brazil. Int. Microbiol. 2017, 20, 11–24. [Google Scholar]
- Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshw. Biol. 1999, 41, 373–391. [Google Scholar] [CrossRef]
- Christoph, H.; Patrik, L.; Günther, U.; Ulrich, P.; Habersack, H. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystems Management; Springer: Cham, Switzerland, 2018; pp. 151–169. [Google Scholar]
- Bănăduc, D.; Voicu, R.; Curtean-Bănăduc, A. Sediments as factor in the fate of the threatened endemic fish species Romanichthys valsanicola Dumitrescu, Bănărescu and Stoica, 1957 (Vâlsan River basin, Danube Basin). Transylv. Rev. Syst. Ecol. Res. 2020, 22, 15–30. [Google Scholar] [CrossRef]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Vaqué, D.; Pace, M.L.; Findlay, S.; Lints, D. Fate of bacterial production in a heterotrophic ecosystem: Grazing by protists and metazoans in the Hudson Estuary. Mar. Ecol. Prog. Ser. 1992, 89, 155–163. [Google Scholar] [CrossRef]
- Naegeli, M.W.; Uehlinger, U. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river. J. N. Am. Benthol. Soc. 1997, 16, 794–804. [Google Scholar] [CrossRef]
- Fellows, C.S.; Valett, H.M.; Dahm, C.N. Whole-stream metabolism in two montane streams: Contribution of the hyporheic zone. Limnol. Oceanogr. 2001, 46, 523–531. [Google Scholar] [CrossRef]
- Gibert, J.; Mathieu, J.; Fournier, F. Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options, 1st ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Craft, J.A.; Stanford, J.A.; Pusch, M. Microbial respiration within a floodplain aquifer of a large gravel-bed river. Freshw. Biol. 2002, 47, 251–261. [Google Scholar] [CrossRef]
- Huber, D.H.; Ugwuanyi, I.R.; Malkaram, S.A.; Montenegro-Garcia, N.A.; Noundou, V.L.; Chavarria-Palma, J.E. Metagenome Sequences of Sediment from a Recovering Industrialized Appalachian River in West Virginia. Genome Announc. 2018, 6, e00350-18. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.S.; Meisinger, D.B.; Porter, M.L.; Payn, R.A.; Schmid, M.; Stern, L.A.; Schleifer, K.H.; Lee, N.M. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J. 2010, 4, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegård, B.; Söderström, H.; Larsson, D.J. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6, e17038. [Google Scholar] [CrossRef] [PubMed]
- Zeglin, L.H.; Dahm, C.N.; Barrett, J.E.; Gooseff, M.; Fitpatrick, S.K.; Takacs-Vesbach, C.D. Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microb. Ecol. 2010, 61, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, P.W.; Rillig, M.C.; Feris, K.P.; Gordon, N.S.; Moore, J.N.; Holben, W.E.; Gannon, J.E. Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecol. Lett. 2005, 8, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Feris, K.P.; Ramsey, P.W.; Frazar, C.; Rillig, M.C.; Gannon, J.E.; Holben, W.E. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the estern United States. Microb. Ecol. 2003, 46, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Feris, K.P.; Ramsey, P.W.; Frazar, C.; Rillig, M.; Moore, J.N.; Gannon, J.E.; Holben, W.E. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl. Environ. Microbiol. 2004, 70, 2323–2331. [Google Scholar] [CrossRef]
- Feris, K.P.; Ramsey, P.W.; Gibbons, S.M.; Frazar, C.; Rillig, M.C.; Moore, J.N.; Gannon, J.E.; Holben, W.E. Hyporheic microbial community development is a sensitive indicator of metal contamination. Environ. Sci. Technol. 2009, 43, 6158–6163. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Kim, M.K.; Zoh, K.D. Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 2016, 21, 319–332. [Google Scholar] [CrossRef]
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Collado, N.; Rodriguez-Mozaz, S.; Gros, M.; Rubirola, A.; Barceló, D.; Comas, J.; Rodriguez-Roda, I.; Buttiglieri, G. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ. Pollut. 2014, 185, 202–212. [Google Scholar] [CrossRef]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Li, P.; He, Y.; Zhang, B.; Chen, Y.; Yang, J. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants. Water Res. 2020, 187, 116450. [Google Scholar] [CrossRef]
- Larsson, D.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Carles, L.; Wullschleger, S.; Joss, A.; Eggen, R.I.; Schirmer, K.; Schuwirth, N.; Stamm, C.; Tlili, A. Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton. Water Res. 2022, 225, 119119. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoo, K.; Kim, M.S.; Han, I.; Lee, M.; Kang, B.R.; Lee, T.K.; Park, J. The capacity of wastewater treatment plants drives bacterial community structure and its assembly. Sci. Rep. 2019, 9, 14809. [Google Scholar] [CrossRef] [PubMed]
- Sanseverino, I.; Gómez, L.; Navarro, A.; Cappelli, F.; Niegowska, M.; Lahm, A.; Barbiere, M.; Porcel-Rodríguez, E.; Valsecchi, S.; Pedraccini, R.; et al. Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges. Sci. Total Environ. 2022, 835, 155388. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.J.; McClary, J.S. The flux and impact of wastewater infrastructure microorganisms on human and ecosystem health. Curr. Opin. Biotechnol. 2019, 57, 145–150. [Google Scholar] [CrossRef] [PubMed]
- McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ. Microbiol. 2010, 12, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Goñi-Urriza, M.; Capdepuy, M.; Raymond, N.; Quentin, C.; Caumette, P. Impact of an urban effluent on the bacterial community structure in the Arga River (Spain), with special reference to culturable Gram-negative rods. Can. J. Microbiol. 1999, 45, 826–832. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Colloff, M.J.; Kookana, R.S. Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 2008, 74, 2659–2668. [Google Scholar] [CrossRef]
- Drury, B.; Rosi-Marshall, E.; Kelly, J.J. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl. Environ. Microbiol. 2013, 79, 1897–1905. [Google Scholar] [CrossRef]
- Huo, Y.; Bai, Y.; Qu, J. Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Appl. Microbiol. Biotechnol. 2017, 101, 6755–6764. [Google Scholar] [CrossRef]
- Mansfeldt, C.; Deiner, K.; Mächler, E.; Fenner, K.; Eggen, R.I.; Stamm, C.; Schönenberger, U.; Walser, J.C.; Altermatt, F. Microbial community shifts in streams receiving treated wastewater effluent. Sci. Total Environ. 2020, 709, 135727. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Atashgahi, S.; Aydin, R.; Dimitrov, M.R.; Sipkema, D.; Hamonts, K.; Lahti, L.; Maphosa, F.; Kruse, T.; Saccenti, E.; Springael, D.; et al. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci. Rep. 2015, 5, 17284. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, C.; Al-Soud, W.A.; Larsson, M.; Alm, E.; Yekta, S.S.; Svensson, B.H.; Sørensen, S.J.; Karlsson, A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 2013, 85, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Illumina. bcl2fastq2 Conversion Software. Available online: https://support.illumina.com/downloads/bcl2fastqconversion-software-v2-19.html (accessed on 11 August 2023).
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Clemente, J.C.; Kuczynski, J.; Rideout, J.R.; Stombaugh, J.; Wendel, D.; Wilke, A.; Huse, S.; Hufnagle, J.; Meyer, F.; et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 2012, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- DeSantis, T.Z.; Keller, K.; Karaoz, U.; Alekseyenko, A.V.; Singh, N.N.; Brodie, E.L.; Pei, Z.; Andersen, G.L.; Larsen, N. Rapid and sensitive general-purpose k-mer search tool. BMC Ecol. 2011, 11, 11. [Google Scholar] [CrossRef]
- BioProject Accession Number PRJNA1015452. Available online: https://www.ncbi.nlm.nih.gov/sra/PRJNA1015452 (accessed on 1 December 2023).
- Chao, A.; Lee, S.M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illonois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef]
- Chen, J.; Bittinger, K.; Charlson, E.S.; Hoffmann, C.; Lewis, J.; Wu, G.D.; Collman, R.G.; Bushman, F.D.; Li, H. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 2012, 28, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 1948, 5, 1–34. [Google Scholar]
- Legendre, P.; De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 2013, 16, 951–963. [Google Scholar] [CrossRef]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–270. [Google Scholar]
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2013, 2, 16. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Chu, B.T.T.; Petrovich, M.L.; Chaudhary, A.; Wright, D.; Murphy, B.; Wells, G.; Poretsky, R. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl. Environ. Microbiol. 2018, 84, e02168-17. [Google Scholar] [CrossRef]
- Halliday, E.; McLellan, S.L.; Amaral-Zettler, L.A.; Sogin, M.L.; Gast, R.J. Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations. PLoS ONE 2014, 9, e90815. [Google Scholar] [CrossRef]
- Aristi, I.; von Schiller, D.; Arroita, M.; Barceló, D.; Ponsatí, L.; García-Galán, M.J.; Sabater, S.; Elosegi, A.; Acuña, V. Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: Subsidy or stress? Freshw. Biol. 2015, 60, 1398–1410. [Google Scholar] [CrossRef]
- Carles, L.; Wullschleger, S.; Joss, A.; Eggen, R.I.; Schirmer, K.; Schuwirth, N.; Stamm, C.; Tlili, A. Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. Water Res. 2021, 203, 117486. [Google Scholar] [CrossRef]
- Lebkuecher, J.G.; Bojic, S.; Breeden, C.A.; Childs, S.L.; Evans, M.C.; Hauskins, B.S.; Irick, Z.A.; Kraft, J.C.; Krausfeldt, J.M.; Santoyo, N.I. Photoautotrophic-Periphyton Composition in Reaches with Differing Nutrient Concentrations in the Harpeth River of Middle Tennessee. Castanea 2018, 83, 288–299. [Google Scholar] [CrossRef]
- Akinwole, P.; Guta, A.; Draper, M.; Atkinson, S. Spatio-temporal variations in the physiological profiles of streambed bacterial communities: Implication of wastewater treatment plant effluents. World J. Microbiol. Biotechnol. 2021, 37, 136. [Google Scholar] [CrossRef] [PubMed]
- Hugerth, L.W.; Andersson, A.F. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Front. Microbiol. 2017, 8, 1561. [Google Scholar] [CrossRef] [PubMed]
- Merbt, S.N.; Auguet, J.C.; Blesa, A.; Martí, E.; Casamayor, E.O. Wastewater treatment plant effluents change ab undance and composition of ammonia-oxidizing microorganisms in mediterranean urban stream biofilms. Microb. Ecol. 2015, 69, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Price, J.R.; Ledford, S.H.; Ryan, M.O.; Toran, L.; Sales, C.M. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in receiving streams. Sci. Total Environ. 2018, 613, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Haenelt, S.; Wang, G.; Kasmanas, J.C.; Musat, F.; Richnow, H.H.; da Rocha, U.N.; Müller, J.A.; Musat, N. The fate of sulfonamide resistance genes and anthropogenic pollution marker intI1 after discharge of wastewater into a pristine river stream. Front. Microbiol. 2023, 14, 1058350. [Google Scholar]
- Banchi, E.; Del Negro, P.; Celussi, M.; Malfatti, F. Sediment features and human activities structure the surface microbial communities of the Venice Lagoon. Front. Mar. Sci. 2021, 8, 762292. [Google Scholar] [CrossRef]
- Zhou, X.; Lennon, J.T.; Ruan, A. Anthropogenic activities mediate stratification and stability of microbial communities in freshwater sediments. Microbiome 2023, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Hehuan, L.; Yen, J.Y.; Guan, Y.; Ke, D.; Liu, C. Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environ. Int. 2020, 134, 105198. [Google Scholar]
- Beattie, R.E.; Bandla, A.; Swarup, S.; Hristova, K.R. Freshwater sediment microbial communities are not resilient to disturbance from agricultural land runoff. Front. Microbiol. 2020, 11, 539921. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Guo, Y.; Wang, Z.; Huang, T. Temporal and spetial patterns of sediment communities and driving environment variables in a shallow temperate mountain river. Microorganisms 2022, 10, 816. [Google Scholar] [CrossRef]
Upstream | Downstream | WWTP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ace | chao1 | Observed _otus | pielou_e | shannon | simpson | ace | chao1 | Observed _otus | pielou_e | shannon | simpson | ace | chao1 | Observed _otus | pielou_e | shannon | simpson | |
Toplita | 1825.451 | 1851.101 | 1716 | 0.887405 | 9.535022 | 0.994856 | 1762.361 | 1763.651 | 1636 | 0.869219 | 9.27975 | 0.994416 | 1648.392 | 1621.023 | 1438 | 0.796373 | 8.353833 | 0.985776 |
Reghin | 2452.286 | 2438.87 | 2114 | 0.836419 | 9.238887 | 0.987506 | 2321.928 | 2303.753 | 1919 | 0.848317 | 9.25186 | 0.995004 | 1263.291 | 1267.406 | 1113 | 0.696515 | 7.048895 | 0.962853 |
Cristesti | 1656.773 | 1649.671 | 1470 | 0.814555 | 8.570418 | 0.986669 | 1102.947 | 1098.951 | 1010 | 0.820356 | 8.187268 | 0.988087 | 1487.327 | 1480.721 | 1285 | 0.827887 | 8.550042 | 0.992252 |
Campia Turzii | 1372.223 | 1334.133 | 1153 | 0.711435 | 7.236132 | 0.963658 | 1466.169 | 1441.463 | 1313 | 0.786708 | 8.149237 | 0.978618 | 1687.261 | 1685.844 | 1553 | 0.8701 | 9.223789 | 0.994038 |
Ocna Mures | 1395.385 | 1398.017 | 1244 | 0.816336 | 8.392566 | 0.986875 | 2207.08 | 2174.717 | 1954 | 0.861217 | 9.41501 | 0.994969 | 927.7893 | 937.7248 | 851 | 0.743373 | 7.235265 | 0.973194 |
Aiud | 949.3681 | 926.8194 | 758 | 0.612522 | 5.859419 | 0.949195 | 1017.532 | 1002.938 | 851 | 0.617382 | 6.008988 | 0.943233 | 1440.128 | 1446.745 | 1219 | 0.821399 | 8.420559 | 0.992683 |
Alba Iulia | 1917.09 | 1923.907 | 1731 | 0.887616 | 9.548435 | 0.996946 | 1071.286 | 1060.75 | 954 | 0.742997 | 7.354069 | 0.972143 | 1190.859 | 1189.164 | 1066 | 0.821933 | 8.266997 | 0.991616 |
Deva | 2335.379 | 2318.371 | 2118 | 0.904717 | 9.995758 | 0.997948 | 1529.433 | 1533.409 | 1405 | 0.850043 | 8.888353 | 0.991452 | 1731.43 | 1724.012 | 1594 | 0.84453 | 8.984481 | 0.989953 |
Lipova | 1544.162 | 1524.377 | 1275 | 0.729054 | 7.521126 | 0.967971 | 973.5606 | 982.9364 | 897 | 0.751448 | 7.370925 | 0.970607 | 1258.432 | 1272.625 | 1053 | 0.816498 | 8.19788 | 0.990158 |
Arad | 2364.827 | 2307.446 | 1961 | 0.834409 | 9.126244 | 0.992989 | 820.2182 | 801.4219 | 697 | 0.636724 | 6.013872 | 0.944808 | 694.131 | 669.6726 | 576 | 0.543884 | 4.987373 | 0.877648 |
Method | Group 1 | Group 2 | H | p-Value | q-Value |
---|---|---|---|---|---|
Faith-pd | Downstream (n = 10) | Upstream (n = 10) | 0.28 | 0.596701 | 0.705457 |
Downstream (n = 10) | WWTP (n = 10) | 0.142857 | 0.705457 | 0.705457 | |
Upstream (n = 10) | WWTP (n = 10) | 0.205714 | 0.650147 | 0.705457 | |
Evenness | Downstream (n = 10) | Upstream (n = 10) | 0.205714 | 0.650147 | 0.879829 |
Downstream (n = 10) | WWTP (n = 10) | 0.022857 | 0.879829 | 0.879829 | |
Upstream (n = 10) | WWTP (n = 10) | 0.462857 | 0.496292 | 0.879829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boeraș, I.; Burcea, A.; Bănăduc, D.; Florea, D.-I.; Curtean-Bănăduc, A. Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania). Water 2024, 16, 402. https://doi.org/10.3390/w16030402
Boeraș I, Burcea A, Bănăduc D, Florea D-I, Curtean-Bănăduc A. Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania). Water. 2024; 16(3):402. https://doi.org/10.3390/w16030402
Chicago/Turabian StyleBoeraș, Ioana, Alexandru Burcea, Doru Bănăduc, David-Ioan Florea, and Angela Curtean-Bănăduc. 2024. "Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania)" Water 16, no. 3: 402. https://doi.org/10.3390/w16030402
APA StyleBoeraș, I., Burcea, A., Bănăduc, D., Florea, D. -I., & Curtean-Bănăduc, A. (2024). Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania). Water, 16(3), 402. https://doi.org/10.3390/w16030402