Water Consumption and the Water Footprint in Aquaculture: A Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Findings
3.1.1. Studies Based on the Water Footprint Network Approach
3.1.2. Life Cycle Assessment Studies
3.1.3. Hydrologic Analysis/Water Budgeting Studies
3.1.4. Water Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and Supply of High-quality Food Protein for Human Consumption: Sustainability, Challenges, and Innovations. Ann. N. Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Le Féon, S.; Thévenot, A.; Maillard, F.; Macombe, C.; Forteau, L.; Aubin, J. Life Cycle Assessment of Fish Fed with Insect Meal: Case Study of Mealworm Inclusion in Trout Feed, in France. Aquaculture 2019, 500, 82–91. [Google Scholar] [CrossRef]
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros-Mata, M.Á.; Free, C.M.; Froehlich, H.E.; Golden, C.D.; Ishimura, G.; Maier, J.; Macadam-Somer, I.; et al. The Future of Food from the Sea. Nature 2020, 588, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Troell, M.; Costa-Pierce, B.; Stead, S.; Cottrell, R.S.; Brugere, C.; Farmery, A.K.; Little, D.C.; Strand, Å.; Pullin, R.; Soto, D.; et al. Perspectives on aquaculture’s contribution to the Sustainable Development Goals for improved human and planetary health. J. World Aquac. Soc. 2023, 54, 251–342. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAO. World Aquaculture Performance Indicators (WAPI)—Fish Consumption Module (WAPI-FISHCSP v.2018.1); FAO Fisheries and Aquaculture Department: Rome, Italy, 2018; Available online: http://www.fao.org/3/i9540en/I9540EN.pdf (accessed on 5 June 2024).
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Troell, M.; Metian, M.; Beveridge, M.; Verdegem, M.; Deutsch, L. Comment on ‘Water Footprint of Marine Protein Consumption—Aquaculture’s Link to Agriculture’. Environ. Res. Lett. 2014, 9, 109001. [Google Scholar] [CrossRef]
- Klinger, D.; Naylor, R. Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.; Mcnevin, A.; Bostick, K.; Clay, J. Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Bayart, J.-B.; Bulle, C.; Deschênes, L.; Margni, M.; Pfister, S.; Vince, F.; Koehler, A. A Framework for Assessing Off-Stream Freshwater Use in LCA. Int. J. Life Cycle Assess. 2010, 15, 439–453. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World Water Resources: A New Appraisal and Assessment for the 21st Century; UNESCO: Paris, France, 1998. [Google Scholar]
- Verdegem, M.C.J.; Bosma, R.H. Water Withdrawal for Brackish and Inland Aquaculture, and Options to Produce More Fish in Ponds with Present Water Use. Water Policy 2009, 11, 52–68. [Google Scholar] [CrossRef]
- Guzmán-Luna, P.; Gerbens-Leenes, P.W.; Vaca-Jiménez, S.D. The Water, Energy, and Land Footprint of Tilapia Aquaculture in Mexico, a Comparison of the Footprints of Fish and Meat. Resour. Conserv. Recycl. 2021, 165, 105224. [Google Scholar] [CrossRef]
- Vasquez-Mejia, C.M.; Shrivastava, S.; Gudjónsdóttir, M.; Manzardo, A.; Ögmundarson, Ó. Current Status and Future Research Needs on the Quantitative Water Use of Finfish Aquaculture Using Life Cycle Assessment: A Systematic Literature Review. J. Clean. Prod. 2023, 425, 139009. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Laurent, A. Life Cycle Assessments of Aquaculture Systems: A Critical Review of Reported Findings with Recommendations for Policy and System Development. Rev. Aquac. 2019, 11, 1061–1079. [Google Scholar] [CrossRef]
- Philis, G.; Ziegler, F.; Gansel, L.C.; Jansen, M.D.; Gracey, E.O.; Stene, A. Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives. Sustainability 2019, 11, 2517. [Google Scholar] [CrossRef]
- Ghamkhar, R.; Boxman, S.E.; Main, K.L.; Zhang, Q.; Trotz, M.A.; Hicks, A. Life Cycle Assessment of Aquaculture Systems: Does Burden Shifting Occur with an Increase in Production Intensity? Aquac. Eng. 2021, 92, 102130. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Use in Aquaculture. World Aquac. 2005, 36, 12–15+70. [Google Scholar]
- Vanham, D.; Del Pozo, S.; Pekcan, A.G.; Keinan-Boker, L.; Trichopoulou, A.; Gawlik, B.M. Water Consumption Related to Different Diets in Mediterranean Cities. Sci. Total Environ. 2016, 573, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Gephart, J.A.; Davis, K.F.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; Pace, M.L. The Environmental Cost of Subsistence: Optimizing Diets to Minimize Footprints. Sci. Total Environ. 2016, 553, 120–127. [Google Scholar] [CrossRef]
- Vanham, D.; Mak, T.N.; Gawlik, B.M. Urban Food Consumption and Associated Water Resources: The Example of Dutch Cities. Sci. Total Environ. 2016, 565, 232–239. [Google Scholar] [CrossRef]
- Harris, F.; Green, R.F.; Joy, E.J.M.; Kayatz, B.; Haines, A.; Dangour, A.D. The Water Use of Indian Diets and Socio-Demographic Factors Related to Dietary Blue Water Footprint. Sci. Total Environ. 2017, 587–588, 128–136. [Google Scholar] [CrossRef]
- Vanham, D.; Gawlik, B.M.; Bidoglio, G. Food Consumption and Related Water Resources in Nordic Cities. Ecol. Indic. 2017, 74, 119–129. [Google Scholar] [CrossRef]
- Gephart, J.A.; Pace, M.L.; D’Odorico, P. Freshwater Savings from Marine Protein Consumption. Environ. Res. Lett. 2014, 9, 014005. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Malcorps, W.; Kok, B.; Van‘T Land, M.; Fritz, M.; Van Doren, D.; Servin, K.; Van Der Heijden, P.; Palmer, R.; Auchterlonie, N.; Rietkerk, M.; et al. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability 2019, 11, 1212. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panigrahi, P.; Thakur, A.K.; Mandal, K.G. Enhancing Water Use Efficiency in Monoculture of Litopenaeus Vannamei: Impacts on Pond Water Quality, Waste Production, Water Footprint and Production Performance. Aquac. Eng. 2018, 82, 46–55. [Google Scholar] [CrossRef]
- Song, G.; Zhao, X.; Lv, L.; Yuan, Q.; Ma, Y.; Bayer, L.B.; Zhang, D.; Fullana-i-Palmer, P. Scenario Analysis on Optimal Farmed-Fish-Species Composition in China: A Theoretical Methodology to Benefit Wild-Fishery Stock, Water Conservation, Economic and Protein Outputs under the Context of Climate Change. Sci. Total Environ. 2022, 806, 150600. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental Sustainability and Footprints of Global Aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Yuan, Q.; Song, G.; Fullana-i-Palmer, P.; Wang, Y.; Semakula, H.M.; Mekonnen, M.M.; Zhang, S. Water Footprint of Feed Required by Farmed Fish in China Based on a Monte Carlo-Supported von Bertalanffy Growth Model: A Policy Implication. J. Clean. Prod. 2017, 153, 41–50. [Google Scholar] [CrossRef]
- Pahlow, M.; Van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. Increasing Pressure on Freshwater Resources Due to Terrestrial Feed Ingredients for Aquaculture Production. Sci. Total Environ. 2015, 536, 847–857. [Google Scholar] [CrossRef]
- Pérez Rincón, M.A.; Hurtado, I.C.; Restrepo, S.; Bonilla, S.P.; Calderón, H.; Ramírez, A. Water Footprint Messure Method for Tilapia, Cachama and Trout Production: Study Cases to Valle Del Cauca (Colombia). Ing. Y Compet. 2017, 19, 109–120. [Google Scholar] [CrossRef]
- Newton, R.W.; Little, D.C. Mapping the Impacts of Farmed Scottish Salmon from a Life Cycle Perspective. Int. J. Life Cycle Assess. 2018, 23, 1018–1029. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Dickson, M.; Allah, A.N.; Al-Kenawy, D.; Phillips, M. Benchmarking the Environmental Performance of Best Management Practice and Genetic Improvements in Egyptian Aquaculture Using Life Cycle Assessment. Aquaculture 2017, 468, 53–59. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Tran, N.; Mohan, C.V.; Chan, C.Y.; Rodriguez, U.-P.; Suri, S.; Mateos, L.D.; Utomo, N.B.P.; Hall, S.; Phillips, M.J. Indonesian Aquaculture Futures—Evaluating Environmental and Socioeconomic Potentials and Limitations. J. Clean. Prod. 2017, 162, 1482–1490. [Google Scholar] [CrossRef]
- Cooney, R.; Tahar, A.; Kennedy, A.; Clifford, E. The Dilemma of Opportunity in Developing a Life Cycle Assessment of Emerging Aquaculture Systems—A Case Study of a Eurasian Perch (Perca Fluviatilis) Hatchery Recirculating Aquaculture System. Aquaculture 2021, 536, 736403. [Google Scholar] [CrossRef]
- Petroski, L.P.S.; Medeiros, D.L.; Vidal, L.V.O. The Fish Weight at Slaughter Influences Energy and Environmental Performance of Fish Farming: The Case of Nile Tilapia Production in Cages. Aquaculture 2024, 586, 740757. [Google Scholar] [CrossRef]
- Viglia, S.; Brown, M.T.; Love, D.C.; Fry, J.P.; Scroggins, R.; Neff, R.A. Analysis of Energy and Water Use in USA Farmed Catfish: Toward a More Resilient and Sustainable Production System. J. Clean. Prod. 2022, 379, 134796. [Google Scholar] [CrossRef]
- Konstantinidis, E.; Perdikaris, C.; Ganias, K. Life Cycle Assessment of Seabass and Meagre in Marine Cage Farming: From Feeding Plant to Harvesting. Medit. Mar. Sci. 2021, 22, 125. [Google Scholar] [CrossRef]
- Haslawati, B.; Saadiah, I.; Siti-Dina, R.P.; Othman, M.; Latif, M.T. Environmental Assessment of Giant Freshwater Prawn, Macrobrachium Rosenbergii Farming through Life Cycle Assessment. Sustainability 2022, 14, 14776. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panigrahi, P.; Mandal, K.G. Water Quality Suitability and Water Use Indices: Useful Management Tools in Coastal Aquaculture of Litopenaeus Vannamei. Aquaculture 2018, 485, 210–219. [Google Scholar] [CrossRef]
- Pattusamy, A.; Hittinahalli, C.M.; Chadha, N.K.; Sawant, P.B.; Krishna, H.; Verma, A.K. Water Budgeting for Culture of Penaeus Vannamei (Boone, 1931) in Earthen Grow-out Ponds Using Inland Saline Groundwater. Aquac. Res. 2022, 53, 4521–4530. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panda, D.K.; Thakur, A.K.; Mohanty, S. Density-Dependent Water Use in Carp Polyculture: Impacts on Production Performance and Water Productivity. Aquaculture 2017, 470, 32–39. [Google Scholar] [CrossRef]
- Das, P.C.; Kamble, S.P.; Sahoo, N.; Velmurugan, P. Influence of Water Exchange Rates on Fingerling Production in Indian Major Carps in Large Outdoor Concrete Tanks. Aquac. Eng. 2021, 95, 102203. [Google Scholar] [CrossRef]
- Adhikari, S.; Pani, K.C.; Jayasankar, P. Water Gain and Water Loss of Some Freshwater Aquaculture Ponds at Kausalyaganga, Orissa, India. Appl. Water Sci. 2019, 9, 121. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Mishra, A.; Panda, D.K.; Patil, D.U. Water Budgeting in a Carp-Prawn Polyculture System: Impacts on Production Performance, Water Productivity and Sediment Stack. Aquac. Res. 2016, 47, 2050–2060. [Google Scholar] [CrossRef]
- Tucker, C.S.; Pote, J.W.; Wax, C.L.; Brown, T.W. Improving Water-Use Efficiency for Ictalurid Catfish Pond Aquaculture in Northwest Mississippi, USA. Aquac. Res. 2017, 48, 447–458. [Google Scholar] [CrossRef]
- Das, P.C.; Kamble, S.P.; Velmurugan, P.; Pradhan, D. Evaluation of Minor Carps Intercropping in Carp Polyculture Vis-à-vis Other Grow-out Cropping Patterns of Carp Farming. Aquac. Res. 2019, 50, 1574–1584. [Google Scholar] [CrossRef]
- Sharma, K.K.; Mohapatra, B.C.; Das, P.C.; Sarkar, B.; Chand, S. Water Budgets for Freshwater Aquaculture Ponds with Reference to Effluent Volume. Agric. Sci. 2013, 4, 353–359. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Mishra, A.; Mandal, K.G.; Panigrahi, P.; Ambast, S.K. Water Use in Carp Polyculture: Effects on Rearing Environment and Water Productivity. J. Indian Soc. Coast. Agric. Res. 2017, 35, 68–75. [Google Scholar]
- Mohanty, R.K.; Mishra, A.; Patil, D.U. Water Budgeting in Black Tiger Shrimp Penaeus Monodon Culture Using Different Water and Feed Management Systems. Turk. J. Fish. Aquat. Sci. 2014, 14, 487–496. [Google Scholar] [CrossRef]
- Mohanty, R.K. Effects of Feed Restriction on Compensatory Growth Performance of Indian Major Carps in a Carp-Prawn Polyculture System: A Response to Growth Depression. Aquac. Nutr. 2015, 21, 464–473. [Google Scholar] [CrossRef]
- Gephart, J.A.; Troell, M.; Henriksson, P.J.G.; Beveridge, M.C.M.; Verdegem, M.; Metian, M.; Mateos, L.D.; Deutsch, L. The ‘seafood Gap’ in the Food-Water Nexus Literature—Issues Surrounding Freshwater Use in Seafood Production Chains. Adv. Water Resour. 2017, 110, 505–514. [Google Scholar] [CrossRef]
- Lima, P.C.M.; Abreu, J.L.; Silva, A.E.M.; Severi, W.; Galvez, A.O.; Brito, L.O. Nile Tilapia Fingerling Cultivated in a Low-Salinity Biofloc System at Different Stocking Densities. Span. J. Agric. Res. 2019, 16, e0612. [Google Scholar] [CrossRef]
- Konstantinidis, E.; Perdikaris, C.; Gouva, E.; Nathanalides, C.; Bartzanas, T.; Anestis, V.; Ribaj, S.; Tzora, A.; Skoufos, I. Assessing Environmental Impacts of Sea Bass Cage Farms in Greece and Albania Using Life Cycle Assessment. Int. J. Environ. Res. 2020, 14, 693–704. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar] [CrossRef]
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural Green and Blue Water Consumption and Its Influence on the Global Water System. Water Resour. Res. 2008, 44, 2007WR006331. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Volume 2: Appendices; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2010. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Van Oel, P.R.; Hoekstra, A.Y. Towards Quantification of the Water Footprint of Paper: A First Estimate of Its Consumptive Component. Water Resour. Manag. 2012, 26, 733–749. [Google Scholar] [CrossRef]
- Chatvijitkul, S.; Boyd, C.E.; Davis, D.A.; McNevin, A.A. Embodied Resources in Fish and Shrimp Feeds. J. World Aquac. Soc. 2017, 48, 7–19. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- ISO 14046 2014; Water Footprint—Principles, Requirements and Guidelines. ISO: Geneva, Switzerland, 2014.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016; pp. 1–194. [Google Scholar]
- SimaPro 2022. Database User Manual. Available online: https://simapro.com/wp-content/uploads/2020/06/DatabaseManualMethods.pdf (accessed on 25 May 2024).
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving Agricultural Water Productivity: Between Optimism and Caution. Agric. Water Manag. 2009, 97, 528–535. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans; FAO Fisheries and Aquaculture Technical Paper No. 564; FAO: Rome, Italy, 2011. [Google Scholar]
ID | Study | Species | Region | Indexes | WP 5/ CWP 6 | Methodology | Aquaculture Type | Supply Chain Stage | Water Type |
---|---|---|---|---|---|---|---|---|---|
1 | Malcorps et al. [27] | Shrimp | Global | WF 1 | WFN 7 | NR 11 | Feed production | NR | |
2 | Mohanty et al. [28] | Pacific white shrimp | India | WF, CWU 2, CWUI 3 | ✓ 13 | HA 8 | ponds | Fish production | brackish water |
3 | Guzmán-Luna et al. [14] | Tilapia | Mexico | WF | WFN | extensive, semi-intensive and intensive | Feed and fish production, Fish processing | freshwater | |
4 | Song et al. [29] | 24 farmed fish | China | WF | WFN | pond, open waters, paddy field, and industrial farming system | Feed and fish production | marine and freshwater | |
5 | Jiang et al. [30] | Fish, shrimp, and bivalves | Global | WF | ✓ | WFN | NR | Feed production | marine and freshwater |
6 | Yuan et al. [31] | 22 popularly farmed fish | China | WF | WFN | ponds; lakes, reservoirs and rivers; rice fields; industrialized systems | Feed production | marine and freshwater | |
7 | Pahlow et al. [32] | 39 major fish and crustacean | Global | WF | ✓ | WFN | NR | Feed production | marine and freshwater |
8 | Pérez-Rincón et al. [33] | Tilapia, cachama, trout | Colombia | WF | WFN | ponds | Feed and fish production, Fish processing | freshwater | |
9 | Newton et al. [34] | Atlantic salmon | Scotland | CWU | LCA 9 | marine net pens | Feed and fish production, fish primary processing | marine | |
10 | Henriksson et al. [35] | Tilapia | Egypt | FWC 14 | WFN and LCA | ponds | Feed and fish production | freshwater | |
11 | Henriksson et al. [36] | Eight species | Indonesia | FWC | LCA | ponds and cages | Feed and fish production | marine, brackish and freshwater | |
12 | Cooney et al. [37] | Eurasian perch | Ireland | WU AWARE 4 | LCA | RAS and ponds | Feed and fish production | freshwater | |
13 | Féon et al. [2] | Trout | France | WU AWARE | LCA | ponds | Feed and fish production | freshwater | |
14 | Petroski et al. [38] | Nile tilapia | Brazil | WC12 | LCA (ReCipe) | cages | Feed and fish production | freshwater | |
15 | Viglia et al. [39] | Farmed catfish | USA | FD 10 | LCA (ReCipe) | ponds | Feed and fish production, Fish processing | freshwater | |
16 | Konstantinidis et al. [40] | Seabass and meagre | Greece | WC | LCA (ReCiPe) | marine cages | Feed and fish production, Fish processing | marine | |
17 | Haslawati et al. [41] | Giant Freshwater Prawn | Malaysia | WC | LCA (ReCiPe) | ponds | Fish production | freshwater | |
18 | Mohanty et al. [42] | Shrimp | India | WF, CWU, CWUI | ✓ | HA | ponds | Fish production | brackish water |
19 | Pattusamy et al. [43] | Shrimp | India | CWUI | ✓ | HA | ponds | Fish production | brackish water |
20 | Mohanty et al. [44] | Carp polyculture | India | CWU, CWUI | ✓ | HA | ponds | Fish production | freshwater |
21 | Das et al. [45] | Carp polyculture | India | CWU | ✓ | HA | large outdoor concrete tanks | Fish production | freshwater |
22 | Adhikari et al. [46] | Freshwater fish | India | CWUI | HA | ponds | Fish production | freshwater | |
23 | Mohanty et al. [47] | Carp-prawn polyculture | India | CWU, CWUI | ✓ | HA | ponds | Fish production | freshwater |
24 | Tucker et al. [48] | Ictalurid catfish | USA | CWUI | HA | ponds | Feed and fish production | freshwater | |
25 | Das et al. [49] | Carp polyculture | India | CWU, CWUI | ✓ | HA | ponds | Fish production | freshwater |
26 | Sharma et al. [50] | Carp polyculture | India | CWUI | ✓ | HA | ponds | Feed and fish production | freshwater |
27 | Mohanty et al. [51] | Carp-prawn polyculture | India | CWU, CWUI | ✓ | HA | ponds | Fish production | freshwater |
28 | Mohanty et al. [52] | Black Tiger Shrimp Penaeus monodon | India | CWU, CWUI | ✓ | HA | ponds | Fish production | brackish water |
29 | Mohanty [53] | Carp-prawn polyculture | India | CWU, CWUI | ✓ | HA | ponds | Fish production | freshwater |
30 | Gephart et al. [54] | Chinese aquaculture | China | WF | WFN | semi-closed and open water systems | Feed and fish production | marine, brackish and freshwater | |
31 | Lima et al. [55] | Nile tilapia fingerling | Brazil | WC | HA (on-site measurement) | low-salinity biofloc system | Fish production | low-salinity water | |
32 | Konstantinidis et al. [56] | Sea Bass | Greece and Albania | WC | LCA (ReCiPe) | marine cages | Feed and fish production | marine | |
33 | Troell et al. [8] | Marine aquaculture species | Global | WF | WFN | NR | Feed production | marine | |
34 | Boyd [19] | Channel Catfish | Alabama | CWU, CWUI | HA | ponds | Fish production | freshwater |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symeonidou, S.; Mente, E. Water Consumption and the Water Footprint in Aquaculture: A Review. Water 2024, 16, 3376. https://doi.org/10.3390/w16233376
Symeonidou S, Mente E. Water Consumption and the Water Footprint in Aquaculture: A Review. Water. 2024; 16(23):3376. https://doi.org/10.3390/w16233376
Chicago/Turabian StyleSymeonidou, Stella, and Elena Mente. 2024. "Water Consumption and the Water Footprint in Aquaculture: A Review" Water 16, no. 23: 3376. https://doi.org/10.3390/w16233376
APA StyleSymeonidou, S., & Mente, E. (2024). Water Consumption and the Water Footprint in Aquaculture: A Review. Water, 16(23), 3376. https://doi.org/10.3390/w16233376