Modeling the Impact of Wind Drag Coefficient on Wind-Driven Currents in Lake Taihu, China
Abstract
:1. Introduction
- Assess a variety of observed data to establish a linear relationship between and the wind speed (Sheppard 1972 [14], Flather 1976 [15], Large and Pond 1981 [16], Geernaert 1987 [17], Ataktürk and Katsaros 1999 [18]). These kinds of parameterization methods can be written in the general form given by Guan and Xie (2004) [19];
- Take both wind speed and sea state parameters into consideration. Based on the theory of Janssen (1991) [23], some parameterizations have been conducted using an ocean wave model (Tolman and Chalikov 1996 [24]). These mathematical expressions of are often used in numerical simulations of storm surges. Multiple nonlinear parameterization methods of are indicated, and they are related not only to wind speed but also to wind blowing fetch and water depth (Mueller and Veron 2008 [25], Gao 2020 [26]).
- The linear relationship developed by Flather (1976) [15];
- The linear relationship developed by Large and Pond (1981) [16];
- The nonlinear relationship developed by Large and Yeager (2004) [21];
- The nonlinear relationship developed by Andreas (2012) [22];
- The nonlinear relationship considering the influence of wind blowing fetch and water depth developed by Gao (2020) [26].
2. Methodology
2.1. Description of 3D Numerical Model
2.2. Choice of Parameterization Methods
- Flather (1976)-F76 [15]:Flather (1976) [15] parameterized based on the observed data during a storm surge in the northwest European continental shelf. This parameterization was incorporated into the default TELEMAC2D and TELEMAC3D model and is recommended by the Institute of Oceanographic Sciences (Surrey, UK).
- Large and Pond (1981)-LP81 [16]:
- Large and Yeager (2004)-LY04 [21]:Large and Yeager (2004) [21] used a nonlinear formula to describe the relationship between the value and wind speed. Later, this equation was chosen by the Community Climate System Model to represent the momentum transfer rate between the atmosphere and the free surface.
- Andreas (2012)-A12 [22]:Andreas (2012) [22] used the friction velocity coefficient versus the neutral-stability wind speed of 10 m and sea roughness to test the approach given by Foreman and Emeis (1993) [38]. This method has been widely used in the study of ocean circulation and lake modeling (Vieira 2020 [39], Worsnop 2017 [40]).
- Gao (2020)-G20 [26]:Gao (2020) [26] parameterized by fitting the experimental data from a wind tunnel and the observed data from shallow lakes considering the influence of wind blowing fetch and water depth. The purpose of this parameterization method is to study wind-induced currents in shallow lakes. However, it has not been used in numerical simulations yet, and therefore analyzing its applicability in this context is necessary.
3. Numerical Simulation
3.1. Study Area
3.2. Model Setup
4. Results
4.1. Model Calibration
4.2. Effects of Parameterization Methods
4.3. Effects of Grid Resolution
4.4. Computational Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsanis, I.K. Simulation of wind-induced water currents. J. Hydraul. Eng. 1989, 115, 1113–1134. [Google Scholar] [CrossRef]
- Wu, J. Wind-induced drift currents. J. Fluid Mech. 2006, 68, 49–70. [Google Scholar] [CrossRef]
- Li, Y.; Acharya, K.; Yu, Z. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China. Ecol. Eng. 2011, 37, 325–334. [Google Scholar] [CrossRef]
- Jingqiao, M.A.O.; Chen, Q.; Chen, Y. Three-dimensional eutrophication model and application to Taihu Lake, China. J. Environ. Sci. 2008, 20, 278–284. [Google Scholar]
- Li, Y.; Jalil, A.; Du, W.; Gao, X.; Wang, J.; Luo, L.; Li, H.; Dai, S.; Hashim, S.; Yu, Z.; et al. Wind induced reverse flow and vertical profile characteristics in a semi-enclosed bay of large shallow Lake Taihu, China. Ecol. Eng. 2017, 102, 224–233. [Google Scholar] [CrossRef]
- Chu, D.; Zhang, J.; Wu, Y.; Jiao, X.; Qian, S. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea. Estuar. Coast. Shelf Sci. 2019, 231, 106460. [Google Scholar] [CrossRef]
- Kranenburg, C. Wind-driven chaotic advection in a shallow model lake. J. Hydraul. Res. 2010, 30, 29–46. [Google Scholar] [CrossRef]
- Li, Y.P.; Tang, C.Y.; Yu, Z.B.; Acharya, K. Uncertainty and sensitivity analysis of large shallow lake hydrodynamic models. Adv. Water Sci. 2012, 33, 271–277. [Google Scholar]
- Wróbel-Niedźwiecka, I.; Drozdowska, V.; Piskozub, J. Effect of drag coefficient formula choice on wind stress climatology in the North Atlantic and the European Arctic. Oceanologia 2019, 61, 291–299. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L. A review of wind-driven hydrodynamics in large shallow lakes: Importance, process-based modeling and perspectives. Camb. Prism. Water 2023, 1, e16. [Google Scholar] [CrossRef]
- Morales-Marín, L.A.; French, J.R.; Burningham, H. Implementation of a 3D ocean model to understand upland lake wind-driven circulation. Environ. Fluid Mech. 2017, 17, 1255–1278. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, M.; Jiang, H.; Jiang, H.; Tang, J.; Zhang, H.; Qiao, H. Numerical investigation of the effects of aquatic plants on wind-induced currents in Taihu Lake in China. J. Hydrodyn. 2019, 31, 778–787. [Google Scholar] [CrossRef]
- Oliveira, H.; Fernandes, E.; Möller, O., Jr.; García-Rodríguez, F. Relationships between Wind Effect, Hydrodynamics and Water Level in the World’s Largest Coastal Lagoonal System. Water 2019, 11, 2209. [Google Scholar] [CrossRef]
- Sheppard, P.A.; Tribble, D.T.; Garratt, J.R. Studies of turbulence in the surface layer over water (Lough Neagh). Part I. Instrumentation, programme, profiles. Q. J. R. Meteorol. Soc. 1972, 98, 627–641. [Google Scholar]
- Flather, R.A. Results from a Storm Surge Prediction Model of the North-West European Continental Shelf for April, November and December 1973; Report No.24; Institute of Oceanographics Sciences: Surrey, UK, 1976. [Google Scholar]
- Large, W.G.; Pond, S. Open Ocean Momentum Flux Measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Geernaert, G.L.; Larsen, S.E.; Hansen, F. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. Oceans 1987, 92, 13127–13139. [Google Scholar] [CrossRef]
- Ataktürk, S.S.; Katsaros, K.B. Wind Stress and Surface Waves Observed on Lake Washington. J. Phys. Oceanogr. 1999, 29, 633–650. [Google Scholar] [CrossRef]
- Guan, C.; Xie, L. On the Linear Parameterization of Drag Coefficient over Sea Surface. J. Phys. Oceanogr. 2004, 34, 2847–2851. [Google Scholar] [CrossRef]
- Yelland, M.J.; Taylor, P.K. Wind Stress Measurements from the Open Ocean. J. Phys. Oceanogr. 1996, 26, 541–558. [Google Scholar] [CrossRef]
- Large, W.G.; Yeager, S.G. Diurnal to Decadal Global Forcing For Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies; National Center for Atmospheric Research: Boulder, CO, USA, 2004. [Google Scholar]
- Andreas, E.L.; Mahrt, L.; Vickers, D. A New Drag Relation for Aerodynamically Rough Flow over the Ocean. J. Atmos. Sci. 2012, 69, 2520–2537. [Google Scholar] [CrossRef]
- Janssen, P.A.; Peter, A.E.M. Quasi-Linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D. Source Terms in a Third-Generation Wind Wave Model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef]
- Mueller, J.A.; Veron, F. Nonlinear Formulation of the Bulk Surface Stress over Breaking Waves: Feedback Mechanisms from Air-flow Separation. Bound.-Layer Meteorol. 2008, 130, 117–134. [Google Scholar] [CrossRef]
- Gao, A. Study on the wind drag coefficient of shallow lakes considering wind-wave-flow characteristics. Ph.D. Thesis, Nanjing Hydraulic Research Institute, Nanjing, China, 2020. [Google Scholar]
- Mastenbroek, C.; Burgers, G.; Janssen, P.A.E.M. The Dynamical Coupling of a Wave Model and a Storm Surge Model through the Atmospheric Boundary Layer. J. Phys. Oceanogr. 1993, 23, 1856–1866. [Google Scholar] [CrossRef]
- Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; De Cosmo, J.; Katsaros, K.B.; Davidson, K.L.; Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The hexos results. Bound.-Layer Meteorol. 1992, 60, 109–142. [Google Scholar] [CrossRef]
- Ebuchi, N.; Toba, Y.; Kawamura, H. On the wave dependence of sea-surface wind stress. J. Oceanogr. Soc. Jpn. 1990, 46, 177–183. [Google Scholar] [CrossRef]
- Gao, A.; Wu, S.; Chen, L.; Liu, S.; Xu, Z.; Zhao, Y.; Wang, F.; Zhu, S. Experiemental study on the wave height distribution of wind-induced waves in the growth stage under finite water depth. Water Supply 2019, 19, 2079–2270. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Ocean. 1997, 102, 15781–15796. [Google Scholar] [CrossRef]
- Fang, P.; Zhao, B.; Zeng, Z.; Yu, H.; Lei, X.; Tan, J. Effects of Wind Direction on Variations in Friction Velocity with Wind Speed Under Conditions of Strong Onshore Wind. J. Geophys.-Res. 2018, 123, 7340–7353. [Google Scholar] [CrossRef]
- Moon, I.J.; Hara, T.; Ginis, I.; Belcher, S.E.; Tolman, H.L. Effect of Surface Waves on Air–Sea Momentum Exchange. Part I: Effect of Mature and Growing Seas. J. Atmos. Sci. 2004, 61, 2321–2333. [Google Scholar] [CrossRef]
- Costi, J.; Marques, W.C.; de Paula Kirinus, E.; de Freitas Duarte, R.; Arigony-Neto, J. Water level variability of the Mirim—São Gonçalo system, a large, subtropical, semi-enclosed coastal complex. Adv. Water Resour. 2018, 117, 75–86. [Google Scholar] [CrossRef]
- Kopmann, R.; Markofsky, M. Three-dimensional water quality modelling with TELEMAC-3D. Hydrol. Process. 2000, 14, 2279–2292. [Google Scholar] [CrossRef]
- Ji, Z.-G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; John Wiley: Hoboken, NJ, USA, 2008; Volume 89, p. 676. [Google Scholar]
- Chen, C.; Wang, L.; Ji, R.; Budd, J.W.; Schwab, D.J.; Beletsky, D.; Fahnenstiel, G.L.; Verploeg, H.; Eadie, B.; Cotner, J. Impacts of suspended sediment on the ecosystem in Lake Michigan: A comparison between the 1998 and 1999 plume events. J. Geophys. Res. 2004, 109, 1–18. [Google Scholar] [CrossRef]
- Foreman, R.J.; Emeis, S. Revisiting the Definition of the Drag Coefficient in the Marine Atmospheric Boundary Layer. J. Phys. Oceanogr. 1993, 40, 2325–2332. [Google Scholar] [CrossRef]
- Vieira, V.M.; Mateus, M.; Canelas, R.; Leitão, F. The FuGas 2.5 Updated for the Effects of Surface Turbulence on the Transfer Velocity of Gases at the Atmosphere–Ocean Interface. J. Mar. Sci. Eng. 1989, 8, 435. [Google Scholar] [CrossRef]
- Worsnop, R.P.; Bryan, G.H.; Lundquist, J.K.; Zhang, J.A. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications. Bound.-Layer Meteorol. 2017, 165, 55–86. [Google Scholar] [CrossRef]
- Hu, W.; Jørgensen, S.E.; Zhang, F. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecol. Model. 2006, 190, 367–398. [Google Scholar] [CrossRef]
- Mellor, G.L.; Ezer, T.; Oey, L.Y. The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models. J. Atmos. Ocean. Technol. 1994, 11, 1126–1134. [Google Scholar] [CrossRef]
- Murphy, A.H. Climatology, Persistence, and Their Linear Combination as Standards of Reference in Skill Scores. Weather. Forecast. 1992, 7, 692–698. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q. Numerical study of hydrodynamic process in Chaohu Lake. J. Hydrodyn. Ser. B 2015, 27, 720–729. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Ding, W.; Zhu, G.; Zhang, Y.; Gao, G.; Xu, H.; Li, W.; Dong, B.; Luo, L. Field Observation of Different Wind-Induced Basin-Scale Current Field Dynamics in a Large, Polymictic, Eutrophic Lake. J. Geophys. Res. Ocean. 2018, 123, 6945–6961. [Google Scholar] [CrossRef]
Grid Resolution | Nodes | Elements | Vertical Layers |
---|---|---|---|
800 m × 800 m | 8222 | 4367 | 20 |
400 m × 400 m | 29,472 | 15,163 | 20 |
100 m × 100 m | 105,083 | 53,681 | 20 |
Indicator | F76 | LP81 | LY04 | A12 | G20 |
---|---|---|---|---|---|
SS ( 5 m/s) | 0.6339 | 0.7072 | 0.7121 | 0.7373 | 0.7908 |
SS ( 5 m/s) | 0.4107 | 0.5692 | 0.5809 | 0.5750 | 0.6520 |
SS (Total) | 0.5592 | 0.6697 | 0.6950 | 0.7050 | 0.7623 |
Indicator | F76 | LP81 | LY04 | A12 | G20 |
---|---|---|---|---|---|
SS ( 5 m/s) | 0.7276 | 0.7862 | 0.7539 | 0.7890 | 0.8333 |
SS ( 5 m/s) | 0.6180 | 0.6498 | 0.6738 | 0.6760 | 0.7897 |
SS (Total) | 0.6894 | 0.7191 | 0.7241 | 0.7468 | 0.7940 |
Parameterization | Indicator | 100 m × 100 m | 400 m × 400 m | 800 m × 800 m |
---|---|---|---|---|
F76 | SS coefficient | 0.6894 | 0.6997 | 0.6788 |
LP81 | SS coefficient | 0.7191 | 0.7204 | 0.7021 |
LY04 | SS coefficient | 0.7241 | 0.7225 | 0.7001 |
A12 | SS coefficient | 0.7468 | 0.7333 | 0.7055 |
G20 | SS coefficient | 0.7934 | 0.6824 | 0.5138 |
Parameterization | 100 m × 100 m | 400 m × 400 m | 800 m × 800 m |
---|---|---|---|
F76 | 11.51 h | 20.51 h | 57.67 h |
LP81 | 11.75 h | 20.21 h | 57.92 h |
LY04 | 12.54 h | 21.26 h | 60.35 h |
A12 | 12.95 h | 21.84 h | 60.33 h |
G20 | 52.87 h | 87.50 | 143.5 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Dou, Y.; Yu, G.; Yu, J.; Liao, J.; Gao, A.; Zhang, Z.; Wu, C. Modeling the Impact of Wind Drag Coefficient on Wind-Driven Currents in Lake Taihu, China. Water 2024, 16, 2985. https://doi.org/10.3390/w16202985
Zhu C, Dou Y, Yu G, Yu J, Liao J, Gao A, Zhang Z, Wu C. Modeling the Impact of Wind Drag Coefficient on Wind-Driven Currents in Lake Taihu, China. Water. 2024; 16(20):2985. https://doi.org/10.3390/w16202985
Chicago/Turabian StyleZhu, Chunyue, Yanbin Dou, Guohua Yu, Junjun Yu, Jiaqing Liao, Ang Gao, Zhengxian Zhang, and Chenhui Wu. 2024. "Modeling the Impact of Wind Drag Coefficient on Wind-Driven Currents in Lake Taihu, China" Water 16, no. 20: 2985. https://doi.org/10.3390/w16202985
APA StyleZhu, C., Dou, Y., Yu, G., Yu, J., Liao, J., Gao, A., Zhang, Z., & Wu, C. (2024). Modeling the Impact of Wind Drag Coefficient on Wind-Driven Currents in Lake Taihu, China. Water, 16(20), 2985. https://doi.org/10.3390/w16202985