Evaluation of Integrated Anaerobic/Aerobic Conditions for Treating Dye-Rich Synthetic and Real Textile Wastewater Using a Soda Lake Derived Alkaliphilic Microbial Consortia
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design, and Description
2.2. WW Source and Synthetic WW Preparation
2.3. Inoculum Source
2.4. Inoculum Preparation and Culturing Conditions
2.5. Treatment Performance Evaluation
2.6. Metabolite Analysis Using FTIR and GC–MS
3. Result and Discussion
3.1. Treatment Performance of the Integrated Treatment Process
3.1.1. Dye Decolorization
3.1.2. Chemical and Biological Oxygen Demand
3.1.3. Total Kjeldahl Nitrogen (TKN)
3.2. Inorganic Nitrogens, Sulfur Compounds, and Phosphate
3.3. Degraded Chemical Products Analysis
3.3.1. FTIR Spectral Analysis
3.3.2. Identification of Degraded Organic Substances Using GC–MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Cho, S.; Saratale, G.D.; Kadam, A.A.; Varjani, S.; Palem, R.R.; Mulla, S.I.; Kim, D.; Shin, H. Lignin-Mediated Silver Nanoparticle Synthesis for Photocatalytic Degradation of Reactive Yellow 4G and In Vitro Assessment of Antioxidant, Antidiabetic, and Antibacterial Activities. Polymers 2022, 14, 648. [Google Scholar] [CrossRef] [PubMed]
- Tizazu, S.; Tesfaye, G.; Andualem, B.; Wang, A.; Guadie, A. Evaluating the Potential of Thermo-Alkaliphilic Microbial Consortia for Azo Dye Biodegradation under Anaerobic-Aerobic Conditions: Optimization and Microbial Diversity Analysis. J. Environ. Manag. 2022, 323, 116235. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M. Microbial Strategies for Discoloration and Detoxification of Azo Dyes from Textile Effluents. Res. J. Microbiol. 2017, 12, 1–9. [Google Scholar] [CrossRef]
- Parisi, M.L.; Fatarella, E.; Spinelli, D.; Pogni, R.; Basosi, R. Environmental Impact Assessment of an Eco-Efficient Production for Coloured Textiles. J. Clean. Prod. 2015, 108, 514–524. [Google Scholar] [CrossRef]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of Textile Dyes on Health and Ecosystem: A Review of Structure, Causes, and Potential Solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.; Teixeira, J.A. Microbial Degradation of Dyes: An Overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [CrossRef]
- Khan, R.; Bhawana, P.; Fulekar, M.H. Microbial Decolorization and Degradation of Synthetic Dyes: A Review. Rev. Environ. Sci. Biotechnol. 2013, 12, 75–97. [Google Scholar] [CrossRef]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced Oxidation Processes for In-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment: A Review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Azanaw, A.; Birlie, B.; Teshome, B.; Jemberie, M. Case Studies in Chemical and Environmental Engineering Textile Effluent Treatment Methods and Eco-Friendly Resolution of Textile Wastewater. Case Stud. Chem. Environ. Eng. 2022, 6, 100230. [Google Scholar] [CrossRef]
- Azimi, B.; Abdollahzadeh-Sharghi, E.; Bonakdarpour, B. Anaerobic-Aerobic Processes for the Treatment of Textile Dyeing Wastewater Containing Three Commercial Reactive Azo Dyes: Effect of Number of Stages and Bioreactor Type. Chin. J. Chem. Eng. 2021, 39, 228–239. [Google Scholar] [CrossRef]
- Baêta, B.E.L.; Lima, D.R.S.; Queiroz Silva, S.; Aquino, S.F. Influence of the Applied Organic Load (OLR) on Textile Wastewater Treatment Using Submerged Anaerobic Membrane Bioreactors (SAMBR) in the Presence of Redox Mediator and Powdered Activated Carbon (PAC). Braz. J. Chem. Eng. 2016, 33, 817–825. [Google Scholar] [CrossRef]
- Jayapal, M.; Jagadeesan, H.; Shanmugam, M.; Danisha, J.P.; Murugesan, S. Sequential Anaerobic-Aerobic Treatment Using Plant Microbe Integrated System for Degradation of Azo Dyes and Their Aromatic Amines by-Products. J. Hazard. Mater. 2018, 354, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.H.; Basheer, F. Treatment of Adsorbable Organic Halide (AOX) from Pulp and Paper Industry Wastewater Using Aerobic Granules in Pilot Scale SBR. J. Water Process Eng. 2017, 19, 60–66. [Google Scholar] [CrossRef]
- Bogale, F.M.; Teffera, B.; Aragaw, T.A. Recent Developments in Integrated Anaerobic/Aerobic (A/O) Process for Textile Industry Wastewater Treatment: A Review. J. Hazard. Mater. Adv. 2024, 14, 100438. [Google Scholar] [CrossRef]
- Işik, M.; Sponza, D.T. Anaerobic/Aerobic Treatment of a Simulated Textile Wastewater. Sep. Purif. Technol. 2008, 60, 64–72. [Google Scholar] [CrossRef]
- Shoukat, R.; Khan, S.J.; Jamal, Y. Hybrid Anaerobic-Aerobic Biological Treatment for Real Textile Wastewater. J. Water Process Eng. 2019, 29, 100804. [Google Scholar] [CrossRef]
- Gadow, S.I.; Li, Y.Y. Development of an Integrated Anaerobic/Aerobic Bioreactor for Biodegradation of Recalcitrant Azo Dye and Bioenergy Recovery: HRT Effects and Functional Resilience. Bioresour. Technol. Rep. 2020, 9, 100388. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M.; Gessesse, A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of Dye Degradation From Textile Industry Wastewater. Front. Physiol. 2022, 13, 908370. [Google Scholar] [CrossRef]
- Guadie, A.; Gessesse, A.; Xia, S. Halomonas sp. Strain A55, a Novel Dye Decolorizing Bacterium from Dye-Uncontaminated Rift Valley Soda Lake. Chemosphere 2018, 206, 59–69. [Google Scholar] [CrossRef] [PubMed]
- APHA Standard. Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1998. [Google Scholar]
- Bremner, M. Nitrogen-Total. In Methods of Soil Analysis Part 3. Chemical Methods-SSSA Book Series 5; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Nguyen, T.L.; Saleh, M.A. Thermal Degradation of Azobenzene Dyes. Results Chem. 2020, 2, 100085. [Google Scholar] [CrossRef]
- Jain, K.; Shah, V.; Chapla, D.; Madamwar, D. Decolorization and Degradation of Azo Dye—Reactive Violet 5R by an Acclimatized Indigenous Bacterial Mixed Cultures-SB4 Isolated from Anthropogenic Dye Contaminated Soil. J. Hazard. Mater. 2012, 213–214, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Malik, A. Toxicity Evaluation of Textile Effluents and Role of Native Soil Bacterium in Biodegradation of a Textile Dye. Environ. Sci. Pollut. Res. 2018, 25, 4446–4458. [Google Scholar] [CrossRef]
- Deng, Z.; Fung, K.Y.; Ng, K.M.; Wei, C. Design of Anaerobic Fluidized Bed Bioreactor—Dyeing Effluents. Chem. Eng. Sci. 2016, 139, 273–284. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. [Google Scholar] [CrossRef]
- Zafar, S.; Bukhari, D.A.; Rehman, A. Azo Dyes Degradation by Microorganisms—An Efficient and Sustainable Approach. Saudi J. Biol. Sci. 2022, 29, 103437. [Google Scholar] [CrossRef]
- Barathi, S.; Aruljothi, K.N.; Karthik, C.; Padikasan, I.A.; Ashokkumar, V. Biofilm Mediated Decolorization and Degradation of Reactive Red 170 Dye by the Bacterial Consortium Isolated from the Dyeing Industry Wastewater Sediments. Chemosphere 2022, 286, 131914. [Google Scholar] [CrossRef]
- Baêta, B.E.L.; Lima, D.R.S.; Silva, S.Q.; Aquino, S.F. Evaluation of Soluble Microbial Products and Aromatic Amines Accumulation during a Combined Anaerobic/Aerobic Treatment of a Model Azo Dye. Chem. Eng. J. 2015, 259, 936–944. [Google Scholar] [CrossRef]
- Zieliński, M.; Kazimierowicz, J.; Dębowski, M. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. Energies 2023, 16, 83. [Google Scholar] [CrossRef]
- Plascencia-Jatomea, R.; González, I.; Gómez, J.; Monroy, O. Operation and Dynamic Modeling of a Novel Integrated Anaerobic-Aerobic-Anoxic Reactor for Sewage Treatment. Chem. Eng. Sci. 2015, 138, 31–40. [Google Scholar] [CrossRef]
- Mareai, B.M.; Fayed, M.; Aly, S.A.; Elbarki, W.I. Performance Comparison of Phenol Removal in Pharmaceutical Wastewater by Activated Sludge and Extended Aeration Augmented with Activated Carbon. Alexandria Eng. J. 2020, 59, 5187–5196. [Google Scholar] [CrossRef]
- Andrio, D.; Asmura, J.; Yenie, E.; Putri, K. Enhancing BOD 5 /COD Ratio Co-Substrate Tofu Wastewater and Cow Dung during Ozone Pretreatment. MATEC Web Conf. 2019, 276, 06027. [Google Scholar] [CrossRef]
- Afanga, H.; Zazou, H.; Titchou, F.E.; Rakhila, Y.; Akbour, R.A.; Elmchaouri, A.; Ghanbaja, J.; Hamdani, M. Integrated Electrochemical Processes for Textile Industry Wastewater Treatment: System Performances and Sludge Settling Characteristics. Sustain. Environ. Res. 2020, 30, 2. [Google Scholar] [CrossRef]
- Narayanan, C.M.; Narayan, V. Biological Wastewater Treatment and Bioreactor Design: A Review. Sustain. Environ. Res. 2019, 29, 33. [Google Scholar] [CrossRef]
- Punzi, M.; Nilsson, F.; Anbalagan, A.; Svensson, B.M.; Jönsson, K.; Mattiasson, B.; Jonstrup, M. Combined Anaerobic-Ozonation Process for Treatment of Textile Wastewater: Removal of Acute Toxicity and Mutagenicity. J. Hazard. Mater. 2015, 292, 52–60. [Google Scholar] [CrossRef]
- Paździor, K.; Wrębiak, J.; Klepacz-Smółka, A.; Gmurek, M.; Bilińska, L.; Kos, L.; Sójka-Ledakowicz, J.; Ledakowicz, S. Influence of Ozonation and Biodegradation on Toxicity of Industrial Textile Wastewater. J. Environ. Manag. 2017, 195, 166–173. [Google Scholar] [CrossRef]
- Awolusi, O.O.; Kumari, S.; Bux, F. Evaluation of Ammonia Oxidizing Bacterial Community Structure of a Municipal Activated Sludge Plant by 454 High-Throughput Pyrosequencing. Environ. Process. 2018, 5, 43–57. [Google Scholar] [CrossRef]
- Pan, K.L.; Gao, J.F.; Li, H.Y.; Fan, X.Y.; Li, D.C.; Jiang, H. Ammonia-Oxidizing Bacteria Dominate Ammonia Oxidation in a Full-Scale Wastewater Treatment Plant Revealed by DNA-Based Stable Isotope Probing. Bioresour. Technol. 2018, 256, 152–159. [Google Scholar] [CrossRef]
- Zhu, B.; Friedrich, S.; Wang, Z.; Táncsics, A.; Lueders, T. Availability of Nitrite and Nitrate as Electron Acceptors Modulates Anaerobic Toluene-Degrading Communities in Aquifer Sediments. Front. Microbiol. 2020, 11, 1867. [Google Scholar] [CrossRef]
- Ali, Y.; Simachew, A.; Gessesse, A. Diversity of Culturable Alkaliphilic Nitrogen-Fixing Bacteria from a Soda Lake in the East African Rift Valley. Microorganisms 2022, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Ersoy Omeroglu, E.; Sudagidan, M.; Yurt, M.N.Z.; Tasbasi, B.B.; Acar, E.E.; Ozalp, V.C. Microbial Community of Soda Lake Van as Obtained from Direct and Enriched Water, Sediment and Fish Samples. Sci. Rep. 2021, 11, 18364. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lan, S.M.; Zhu, Z.P.; Zhang, C.; Zeng, G.M.; Liu, Y.G.; Cao, W.C.; Song, B.; Yang, H.; Wang, S.F.; et al. The Bioenergetics Mechanisms and Applications of Sulfate-Reducing Bacteria in Remediation of Pollutants in Drainage: A Review. Ecotoxicol. Environ. Saf. 2018, 158, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, B.; Ye, L.; Peng, Y. The Combined Effects of COD/N Ratio and Nitrate Recycling Ratio on Nitrogen and Phosphorus Removal in Anaerobic/Anoxic/Aerobic (A2/O)-Biological Aerated Filter (BAF) Systems. Biochem. Eng. J. 2015, 93, 235–242. [Google Scholar] [CrossRef]
- Assefa, R.; Bai, R.; Leta, S.; Kloos, H. Nitrogen Removal in Integrated Anaerobic–Aerobic Sequencing Batch Reactors and Constructed Wetland System: A Field Experimental Study. Appl. Water Sci. 2019, 9, 136. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Aditya, L.; Vu, H.P.; Johir, A.H.; Bennar, L.; Ralph, P.; Hoang, N.B.; Zdarta, J.; Nghiem, L.D. Nutrient Removal by Algae-Based Wastewater Treatment. Curr. Pollut. Rep. 2022, 8, 369–383. [Google Scholar] [CrossRef]
- Ogunlaja, A.; Nwankwo, I.N.; Omaliko, M.E.; Olukanni, O.D. Biodegradation of Methylene Blue as an Evidence of Synthetic Dyes Mineralization during Textile Effluent Biotreatment by Acinetobacter pittii. Environ. Process. 2020, 7, 931–947. [Google Scholar] [CrossRef]
- Adebajo, S.O.; Ojo, A.E.; Bankole, P.O.; Oladotun, A.O.; Akintokun, P.O.; Ogunbiyi, E.O.; Bada, A. Degradation of Paint and Textile Industrial Effluents by Indigenous Bacterial Isolates. Bioremediat. J. 2023, 27, 412–421. [Google Scholar] [CrossRef]
- Patil, P.; Desai, N.; Govindwar, S.; Jadhav, J.P.; Bapat, V. Degradation Analysis of Reactive Red 198 by Hairy Roots of Tagetes patula L. (Marigold). Planta 2009, 230, 725–735. [Google Scholar] [CrossRef]
- Ikram, M.; Naeem, M.; Zahoor, M.; Hanafiah, M.M.; Oyekanmi, A.A.; Islam, N.U.; Ullah, M.; Mahnashi, M.H.; Al Ali, A.; Jalal, N.A.; et al. Bacillus Subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. Int. J. Mol. Sci. 2022, 23, 10637. [Google Scholar] [CrossRef]
- Amin, S.; Rastogi, R.P.; Chaubey, M.G.; Jain, K.; Divecha, J.; Desai, C.; Madamwar, D. Degradation and Toxicity Analysis of a Reactive Textile Diazo Dye-Direct Red 81 by Newly Isolated Bacillus Sp. DMS2. Front. Microbiol. 2020, 11, 576680. [Google Scholar] [CrossRef] [PubMed]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Ferreira, L.F.R.; Bilal, M.; Iqbal, H.M.N.; Bharagava, R.N. Environment Friendly Degradation and Detoxification of Congo Red Dye and Textile Industry Wastewater by a Newly Isolated Bacillus Cohnni (RKS9). Environ. Technol. Innov. 2021, 22, 101425. [Google Scholar] [CrossRef]
- Guo, G.; Tian, F.; Zhang, C.; Liu, T.; Yang, F.; Hu, Z.; Liu, C.; Wang, S.; Ding, K. Performance of a Newly Enriched Bacterial Consortium for Degrading and Detoxifying Azo Dyes. Water Sci. Technol. 2019, 79, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Su, W.T.; Lin, C.H. Fungal-Bacterial Synergism Enhanced Decolorization of Reactive Red 120 by Response Surface Methodology. Int. Biodeterior. Biodegrad. 2013, 82, 1–8. [Google Scholar] [CrossRef]
- Bankole, P.O.; Adekunle, A.A.; Obidi, O.F. Mycodecolorization of Reactive Red HE7B Dye by Achaetomium Strumarium and Aspergillus Flavus and Shelf Life Determination. Cogent Environ. Sci. 2017, 3, 1278646. [Google Scholar] [CrossRef]
- Ahmed, F.; Dewani, R.; Pervez, M.K.; Mahboob, S.J.; Soomro, S.A. Non-Destructive FT-IR Analysis of Mono Azo Dyes. Bulg. Chem. Commun. 2016, 48, 71–77. [Google Scholar]
- Li, H.X.; Xu, B.; Tang, L.; Zhang, J.H.; Mao, Z.G. Reductive Decolorization of Indigo Carmine Dye with Bacillus Sp. MZS10. Int. Biodeterior. Biodegrad. 2015, 103, 30–37. [Google Scholar] [CrossRef]
- Abdullah, M.I.; Öztürk, A.; Bayol, E. Biosorption of Astrazon Red Dye by the Bacterium Rhodopseudomonas Sp. Strain 51ATA. Environ. Earth Sci. 2021, 80, 49. [Google Scholar] [CrossRef]
- Kurade, M.B.; Waghmode, T.R.; Jadhav, M.U.; Jeon, B.H.; Govindwar, S.P. Bacterial-Yeast Consortium as an Effective Biocatalyst for Biodegradation of Sulphonated Azo Dye Reactive Red 198. RSC Adv. 2015, 5, 23046–23056. [Google Scholar] [CrossRef]
- Ghobadi Nejad, Z.; Borghei, S.M.; Yaghmaei, S. Biodegradation of Synthetic Dye Using Partially Purified and Characterized Laccase and Its Proposed Mechanism. Int. J. Environ. Sci. Technol. 2019, 16, 7805–7816. [Google Scholar] [CrossRef]
- Saravanan, S.; Carolin, C.F.; Kumar, P.S.; Chitra, B.; Rangasamy, G. Biodegradation of Textile Dye Rhodamine-B by Brevundimonas Diminuta and Screening of Their Breakdown Metabolites. Chemosphere 2022, 308, 136266. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, S.; Bankole, P.O.; Sadasivam, S.K. Microbial Degradation of Azo Dyes by Textile Effluent Adapted, Enterobacter Hormaechei under Microaerophilic Condition. Microbiol. Res. 2021, 250, 126805. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.U.; Hinsu, A.T.; Kotadiya, R.J.; Rank, J.K.; Andharia, K.N.; Kothari, R.K. Decolorization and Biodegradation of Textile Di-Azo Dye Acid Blue 113 by Pseudomonas Stutzeri AK6. 3 Biotech 2020, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.T.; Salem, S.S.; Mohamed, A.A.; El-Gamal, M.S.; Awad, M.F.; Fouda, A. Biological Treatment of Real Textile Effluent Using Aspergillus Flavus and Fusarium Oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J. Fungi 2021, 7, 193. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kumar, A. Enhanced Degradation of Anthraquinone Dyes by Microbial Monoculture and Developed Consortium through the Production of Specific Enzymes. Sci. Rep. 2021, 11, 7678. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Vieira, A.; Carvalho, G.; Oehmen, A.; Pinheiro, H.M.; Barreto Crespo, M.T.; Lourenço, N.D. Oerskovia Paurometabola Can Efficiently Decolorize Azo Dye Acid Red 14 and Remove Its Recalcitrant Metabolite. Ecotoxicol. Environ. Saf. 2020, 191, 110007. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, P.K.; Singh, R.P. Enzymatic Decolorization and Degradation of Azo Dyes—A Review. Int. Biodeterior. Biodegrad. 2015, 104, 21–31. [Google Scholar] [CrossRef]
Operating Conditions | Unit | Anaerobic | Aerobic | Clarifier |
---|---|---|---|---|
Reactor volume | L | 2 | 4 | 4 |
Hydraulic retention time (HRT) | Hours | 18 | 36 | 36 |
Flow rate (Q) | mL/h | 111.11 | 111.111 | |
Inoculum size | % (v/v) | 20 (for synthetic WW) | 20 | - |
% (v/v) | 50 (for actual WW) | 50 | ||
Temperature | °C | Ambient (25 ± 2) | ||
pH | - | 10.2 ± 0.3 | - | |
Analysis time | days | - | 5 | |
Dye concentration (for single dye) | mg/L | 50–800 | - |
Chemical Oxygen Demand (COD) Analysis | ||||||||
Samples | Residual COD, mg/L | NEQS | Removal Efficiency (%) | |||||
Untreated | Anaerobic reactor | aerobic reactor | Clarifier | Anaerobic reactor | aerobic reactor | Clarifier | ||
Synthetic WW | 684 ± 12.0 | 258 ± 10.07 | 114.67 ± 3.51 | 78.67 ± 3.06 | 150 | 62.28 | 83.24 | 88.50 |
Real WW (round I) | 496.0 ± 8.0 | 165 ± 7.07 | 80.67 ± 5.97 | 68.5 ± 6.4 | 66.73 | 85.69 | 86.32 | |
Real WW (round II) | 1417.5 ± 25 | 450 ± 14.14 | 115 ± 9.90 | 94.0 ± 8.5 | 70.34 | 91.88 | 93.37 | |
Biochemical Oxygen Demand (BOD) Analysis | ||||||||
Sampling | Residual BOD, mg/L | NEQS | Removal Efficiency (%) | |||||
Untreated | Anaerobic reactor | aerobic reactor | Clarifier | Anaerobic reactor | aerobic reactor | Clarifier | ||
Synthetic WW | 75.33 ± 3.06 | 54.67 ± 3.06 | 39.33 ± 2.89 | 34.67 ± 2.31 | 80 | 27.43 | 47.79 | 53.98 |
Real WW (round I) | 56.0 ± 2.00 | 38.0 ± 2.00 | 25.7 ± 1.53 | 24.0 ± 2.00 | 32.1 | 54.2 | 57.1 | |
Real WW (round II) | 324.3 ± 4.51 | 265.7 ± 6.03 | 103.0 ± 7.55 | 84.7 ± 3.06 | 18.1 | 68.2 | 73.9 | |
BOD/COD | ||||||||
Untreated | Anaerobic Reactor | aerobic reactor | Clarifier | |||||
Synthetic WW | 0.11 | 0.21 | 0.34 | 0.44 | ||||
Real WW (round I) | 0.113 | 0.230 | 0.319 | 0.352 | ||||
Real WW (round II) | 0.229 | 0.590 | 0.896 | 0.901 |
Sample | Total Ammonia | Nitrite | Nitrate | Sulfate | Sulfide | Phosphate |
---|---|---|---|---|---|---|
Round I collected WW samples | ||||||
Source (Chitu) | 0.6 ± 0.03 | 0.20 ± 0.01 | 8.83 ± 0.44 | 81.67 ± 4.08 | ND | 0.30 ± 0.02 |
Untreated | 0.74 ± 0.04 | 1.05 ± 0.05 | 18.27 ± 0.91 | 47.67 ± 2.38 | 0.15 ± 0.007 | 6.67 ± 0.33 |
5 day | 9.73 ± 0.49 | 0.11 ± 0.01 | 6.81 ± 0.34 | 45.0 ± 2.25 | ND | ND |
10 day | 5.02 ± 0.25 | 0.49 ± 0.02 | 25.40 ± 1.27 | 68.0 ± 3.4 | 0.033 ± 0.002 | 0.30 ± 0.02 |
Steady State | 2.11 ± 0.1 | 0.04 ± 0.00 | 7.13 ± 0.36 | 18.33 ± 0.92 | ND | ND |
Round II collected WW samples | ||||||
Untreated | 2.8 ± 0.08 | 0.08 ± 0.001 | 3.75 ± 0.012 | 23.0 ± 2.65 | 1.79 ± 0.101 | 9.65 ± 0.129 |
5 day | 6.79 ± 0.105 | 0.06 ± 0.002 | 1.64 ± 0.010 | 29.0 ± 2.0 | 0.08 ± 0.012 | 0.66 ± 0.02 |
10 day | 6.48 ± 0.12 | 0.04 ± 0.003 | 2.78 ± 0.020 | 23.0 ± 2.0 | 0.07 ± 0.021 | 9.21 ± 0.101 |
Steady State | 1.29 ± 0.05 | 0.04 ± 0.001 | 2.29 ± 0.012 | 19.33 ± 0.58 | 0.13 ± 0.006 | 1.13 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragaw, T.A.; Suarez, C.; Paul, C.J.; Simachew, A. Evaluation of Integrated Anaerobic/Aerobic Conditions for Treating Dye-Rich Synthetic and Real Textile Wastewater Using a Soda Lake Derived Alkaliphilic Microbial Consortia. Water 2024, 16, 2937. https://doi.org/10.3390/w16202937
Aragaw TA, Suarez C, Paul CJ, Simachew A. Evaluation of Integrated Anaerobic/Aerobic Conditions for Treating Dye-Rich Synthetic and Real Textile Wastewater Using a Soda Lake Derived Alkaliphilic Microbial Consortia. Water. 2024; 16(20):2937. https://doi.org/10.3390/w16202937
Chicago/Turabian StyleAragaw, Tadele Assefa, Carolina Suarez, Catherine J. Paul, and Addis Simachew. 2024. "Evaluation of Integrated Anaerobic/Aerobic Conditions for Treating Dye-Rich Synthetic and Real Textile Wastewater Using a Soda Lake Derived Alkaliphilic Microbial Consortia" Water 16, no. 20: 2937. https://doi.org/10.3390/w16202937
APA StyleAragaw, T. A., Suarez, C., Paul, C. J., & Simachew, A. (2024). Evaluation of Integrated Anaerobic/Aerobic Conditions for Treating Dye-Rich Synthetic and Real Textile Wastewater Using a Soda Lake Derived Alkaliphilic Microbial Consortia. Water, 16(20), 2937. https://doi.org/10.3390/w16202937