Temporal Variability of Hydroclimatic Extremes: A Case Study of Vhembe, uMgungundlovu, and Lejweleputswa District Municipalities in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Annual Streamflow Analysis
2.3.2. Generalized Extreme Value Distribution
2.3.3. Standardized Streamflow Index, Drought Duration, and Severity
2.3.4. Trend Analysis
3. Results
3.1. Streamflow Characteristics
3.1.1. Annual Mean and Maximum Streamflow
3.1.2. Seasonal Streamflow
3.1.3. Generalized Extreme Value Analysis
3.1.4. High and Low Flow
3.2. Hydrological Extremes
3.2.1. Trends in Standardized Streamflow Index
3.2.2. The Proportion of Wet and Dry Years
3.2.3. Trends in Drought Duration and Severity
4. Discussion
5. Conclusions
- -
- Six out of the seven assessed rainfall districts in uMgungundlovu District Municipality exhibited negative trends in both annual mean and maximum streamflow, as well as in high and low flow, suggesting that streamflow has declined across the district municipality during the 1985–2023 investigated period. Moreover, negative trends in SSI were detected in six of the river stations, further suggesting an increase in drought conditions during the period of analysis.
- -
- In Lejweleputswa District Municipality, five and all seven of the river gauged stations showed positive trends in annual and maximum streamflow, respectively. Moreover, six of the river gauged stations depicted positive trends in high/low flow and in the SSI-3/6 time series. The results for Lejweleputswa suggest that the district municipality has experienced increased streamflow (which could be associated with floods) and decreased drought conditions over the investigated period.
- -
- The Vhembe District Municipality has experienced both an increase (upper north) and decrease (southeastern parts) in streamflow and SSI-3/6 during the 1985–2023 study period, suggesting that the region is characterized by both localized dry and wet conditions that could be associated with drought and floods, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagna, P.; Dipama, J.M.; Vissin, E.W.; Diomande, B.I.; Diop, C.; Chabi, P.A.B.; Sambou, P.C.; Sane, T.; Karambiri, B.L.C.N.; Koudamiloro, O.; et al. Climate Change and Water Resources in West Africa: A Case Study of Ivory Coast, Benin, Burkina Faso, and Senegal. In Climate Change and Water Resources in Africa; Diop, S., Scheren, P., Niang, A., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-disaster planning and preparedness for floods and droughts: A systematic review. Int. J. Disaster Risk Reduct. 2019, 38, 101207. [Google Scholar] [CrossRef]
- IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptations, and Vulnerability. Contribution of Working Group Fourth Assessment Report of the IPCC; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y.; Fekete, B.M. Historical trends in mean and extreme runoff and streamflow based on observations and climate models. Water 2016, 8, 189. [Google Scholar] [CrossRef]
- Kusangaya, S.; Mazvimavi, D.; Shekede, M.D.; Masunga, B.; Kunedzimwe, F.; Manatsa, D. Climate Change Impact on Hydrological Regimes and Extreme Events in Southern Africa. In Climate Change and Water Resources in Africa; Diop, S., Scheren, P., Niang, A., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- EM-DAT: The International Disaster Database. Available online: https://doc.emdat.be/docs (accessed on 24 September 2024).
- Botai, C.M.; Botai, J.O.; De Wit, J.P.; Ncongwane, K.P.; Adeola, A.M. Drought Characteristics over the Western Cape Province, South Africa. Water 2017, 9, 876. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Adeola, A.M.; de Wit, J.P.; Ncongwane, K.P.; Zwane, N.N. Drought risk analysis in the Eastern Cape Province of South Africa: The copula lens. Water 2020, 12, 1938. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A.M.; Dessalegne, T. El Niño Southern Oscillation link to the Blue Nile River Basin hydrology. Hydrol. Process. 2009, 23, 3653–3660. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Swain, S.S.; Mishra, A.; Chatterjee, C.; Sahoo, B. Climate-changed versus land-use altered streamflow: A relative contribution assessment using three complementary approaches at a decadal time-spell. J. Hydrol. 2021, 596, 126064. [Google Scholar] [CrossRef]
- Rodgers, K.; Roland, V.; Hoos, A.; Crowley-Ornelas, E.; Knight, R. An Analysis of Streamflow Trends in the Southern and Southeastern US from 1950–2015. Water 2020, 12, 3345. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; de Wit, J.P.; Ncongwane, K.P.; Murambadoro, M.; Barasa, P.M.; Adeola, A.M. Hydrological Drought Assessment Based on the Standardized Streamflow Index: A Case Study of the Three Cape Provinces of South Africa. Water 2021, 13, 3498. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Zwane, N.N.; Hayombe, P.; Wamiti, E.K.; Makgoele, T.; Murambadoro, M.D.; Adeola, A.M.; Ncongwane, K.P.; de Wit, J.P.; et al. Hydroclimatic extremes in the Limpopo River Basin, South Africa, under changing climate. Water 2020, 12, 3299. [Google Scholar] [CrossRef]
- Lakhraj-Governder, R.; Grab, S.W. Rainfall and river flow trends for the Western Cape Province, South Africa. S. Afr. J. Sci. 2019, 115, 1–6. [Google Scholar]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Hao, X. Responses of snowmelt runoff to climatic change in an inland river basin, northwestern China, over the past 50 years. Hydrol. Earth Syst. Sci. 2010, 15, 1979–1987. [Google Scholar] [CrossRef]
- Kuriqi, A.; Ali, R.; Pham, Q.B.; Montenegro Gambini, J.; Gupta, V.; Malik, A.; Linh, N.T.T.; Joshi, Y.; Anh, D.T.; Nam, V.T.; et al. Seasonality shift and streamflow flow variability trends in central India. Acta Geophys. 2020, 68, 1461–1475. [Google Scholar] [CrossRef]
- Islam, A.; Sikka, A.K.; Saha, B.; Singh, A. Streamflow response to climate change in the Brahmani River Basin, India. Water Resour. Manag. 2012, 26, 1409–1424. [Google Scholar] [CrossRef]
- Patil, R.; Wei, Y.; Pullar, D.; Shulmeister, J. Evolution of streamflow patterns in Goulburn-Broken catchment during 1884–2018 and its implications for floodplain management. Ecol. Indic. 2020, 113, 106277. [Google Scholar] [CrossRef]
- Zhang, X.S.; Amirthanathan, G.E.; Bari, M.A.; Laugesen, R.M.; Shin, D.; Kent, D.M.; MacDonald, A.M.; Turner, M.E.; Tuteja, N.K. How streamflow has changed across Australia since the 1950s: Evidence from the network of hydrologic reference stations. Hydrol. Earth Syst. Sci. 2016, 20, 3947–3965. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Vivekanandan, N. Flood frequency analysis using method of moments and L-moments of probability distributions. Cogent Eng. 2015, 2, 1018704. [Google Scholar] [CrossRef]
- Ilinca, C.; Stanca, S.C.; Anghel, C.G. Assessing Flood Risk: LH-Moments Method and Univariate Probability Distributions in Flood Frequency Analysis. Water 2023, 15, 3510. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Hosking, J.R.M. Algorithm AS 215: Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1985, 34, 301–310. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Gilleland, E.; Katz, R.W. Package ‘extRemes’. J. Stat. Softw. 2016, 72, 1–39. [Google Scholar] [CrossRef]
- Modarres, R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess. 2007, 21, 223–233. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Lopez-Moreno, I.; Vicente-Serrano, S. Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). Phisica A 2012, 391, 1662–1678. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–183. [Google Scholar]
- WMO. Standardized Precipitation Index User Guide; Svoboda, M., Hayes, M., Wood, D., Eds.; WMO-No. 1090; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Shiau, J.T.; Feng, S.; Nadaraiah, S. Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol. Process. 2007, 21, 2157–2163. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Grin: London, UK, 1975. [Google Scholar]
- Wang, J.; Lin, H.; Huang, J.; Jiang, C.; Xie, Y.; Zhou, M. Variations of drought tendency, frequency, and characteristics and their responses to climate change under CMIP5 RCP scenarios in Huai River Basin, China. Water 2019, 11, 2174. [Google Scholar] [CrossRef]
- Kahya, E.; Kalayci, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Dixon, H.; Lawler, D.M.; Shamseldin, A.Y. Streamflow trends in western Britain. Geophys. Res. Lett. 2006, 33, L19406. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Li, B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. Appl. Climatol. 2013, 111, 537–545. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: Case study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Using standardized indicators to analyse dry/wet conditions and their applications for monitoring drought/floods: A study in the Logone catchment, Lake Chad Basin. Hydrol. Sci. J. 2017, 62, 2720–2736. [Google Scholar] [CrossRef]
- Jury, M.R. Historical and projected climatic trends in KwaZulu-Natal: 1950–2100. Water SA 2022, 48, 369–379. [Google Scholar] [CrossRef]
- Ntleko, T.P.Z. Exploring extreme rainfall events in KwaZulu-Natal over the period 1989–2019. Master’s Thesis, University of Witwatersrand, Johannesburg, South Africa, 2023. [Google Scholar]
- Mosase, E.; Ahiablame, L. Rainfall and temperature in the Limpopo River Basin, southern Africa: Means variations and trends from 1979 to 2013. Water 2018, 10, 364. [Google Scholar] [CrossRef]
- Zhu, T.; Ringler, C. Climate Change Implications for Water Resources in the Limpopo River Basin. Technical Report April; IFPRI: Washington, DC, USA, 2010. [Google Scholar]
- Botai, C.M.; Botai, J.O.; Dlamini, L.; Zwane, N.; Phaduli, E. Characteristics of Droughts in South Africa: A Case Study of Free State and North West Provinces. Water 2016, 8, 439. [Google Scholar] [CrossRef]
- Adeola, O.M.; Masinde, M.; Botai, J.O.; Adeola, A.M.; Botai, C.M. An Analysis of Precipitation Extreme Events Based on the SPI and EDI Values in the Free State Province, South Africa. Water 2021, 13, 3058. [Google Scholar] [CrossRef]
- Ndlovu, M.S.; Demlie, M. Assessment of Meteorological Drought and Wet Conditions Using Two Drought Indices Across KwaZulu-Natal Province, South Africa. Atmosphere 2020, 11, 623. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Porhajašová, J.I.; Babošová, M.; Sabouhi Sabouni, M.; Mohammadi, H.; Rastegari Henneberry, S.; Shahnoushi Foroushani, N. The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region. Agriculture 2022, 12, 1056. [Google Scholar] [CrossRef]
- Veijalainen, N.; Ahopelto, L.; Marttunen, M.; Jääskeläinen, J.; Britschgi, R.; Orvomaa, M.; Belinskij, A.; Keskinen, M. Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts. Sustainability 2019, 11, 2450. [Google Scholar] [CrossRef]
- Lebek, K.; Twomey, M.; Krueger, T. Municipal failure, unequal access and conflicts over water: A hydrosocial perspective on water insecurity of rural households in KwaZulu-Natal, South Africa. Water Altern. 2021, 14, 271–292. [Google Scholar]
- Free State Economy Green Strategy. 2014. Available online: https://www.dffe.gov.za/sites/default/files/docs/greeneconomystrategy_freestate.pdf (accessed on 10 August 2024).
Station Name | District Municipality | Latitude | Longitude | Catchment Area (km2) | Mean Flow (m3/s) | Maximum Flow (m3/s) |
---|---|---|---|---|---|---|
U2H005 | uMgungundlovu | −29.576 | 30.603 | 2519 | 9.59 | 357.8 |
U2H006 | uMgungundlovu | −29.382 | 30.278 | 339 | 2.64 | 131.5 |
U2H013 | uMgungundlovu | −29.513 | 30.094 | 299 | 3.61 | 151.0 |
U6H003 | uMgungundlovu | −29.804 | 30.516 | 417 | 1.07 | 169.0 |
U7H007 | uMgungundlovu | −29.862 | 30.244 | 114 | 4.35 | 151.0 |
V2H004 | uMgungundlovu | −29.072 | 30.246 | 1541 | 7.21 | 526.7 |
V2H007 | uMgungundlovu | −29.239 | 29.788 | 118 | 1.04 | 38.4 |
A7H008 | Vhembe | −22.227 | 29.990 | 202,985 | 24.35 | 698.67 |
A8H009 | Vhembe | −22.634 | 30.402 | 157 | 1.46 | 8.86 |
A8H010 | Vhembe | −22.634 | 30.399 | 109 | 1.22 | 17.18 |
A9H003 | Vhembe | −22.898 | 30.524 | 62 | 1.79 | 159.29 |
A9H006 | Vhembe | −23.036 | 30.278 | 16 | 1.30 | 22.80 |
A9H012 | Vhembe | −22.769 | 30.889 | 2268 | 5.34 | 366.34 |
B9H001 | Vhembe | −22.839 | 31.237 | 648 | 1.41 | 57.06 |
C2H061 | Lejweleputswa | −27.390 | 26.464 | 80,235 | 47.11 | 784.93 |
C4H004 | Lejweleputswa | −27.935 | 26.124 | 15,935 | 6.82 | 586.65 |
C4H008 | Lejweleputswa | −28.286 | 27.143 | 3667 | 2.98 | 208.16 |
C4H010 | Lejweleputswa | −28.509 | 26.778 | - | 1.66 | 419.26 |
C5H015 | Lejweleputswa | −28.808 | 26.112 | 6400 | 6.822 | 586.65 |
C6H002 | Lejweleputswa | −27.399 | 26.613 | 7773 | 5.99 | 626.68 |
C9H021 | Lejweleputswa | −27.654 | 25.597 | 108,585 | 41.13 | 744.04 |
Station Name | District Municipality | Trends [SON] | Trends [DJF] | Trends [MAM] | Trends [JJA] |
---|---|---|---|---|---|
U2H005 | uMgungundlovu | −0.185 | −0.236 | −0.247 | −0.171 |
U2H006 | uMgungundlovu | 0.001 | −0.204 | −0.036 | −0.045 |
U2H013 | uMgungundlovu | −0.104 | −0.104 | −0.061 | 0.020 |
U6H003 | uMgungundlovu | 0.001 | −0.115 | −0.039 | 0.126 |
U7H007 | uMgungundlovu | −0.072 | −0.144 | −0.101 | −0.066 |
V2H004 | uMgungundlovu | −0.352 | −0.242 | −0.104 | −0.188 |
V2H007 | uMgungundlovu | −0.152 | 0.072 | 0.050 | 0.066 |
A7H008 | Vhembe | 0.091 | 0.390 | 0.401 | 0.224 |
A8H009 | Vhembe | 0.136 | 0.215 | 0.096 | 0.082 |
A8H010 | Vhembe | 0.176 | 0.260 | 0.252 | 0.265 |
A9H003 | Vhembe | 0.078 | 0.047 | 0.088 | 0.096 |
A9H006 | Vhembe | −0.159 | −0.048 | −0.229 | −0.366 |
A9H012 | Vhembe | 0.121 | −0.023 | −0.064 | 0.072 |
B9H001 | Vhembe | −0.182 | 0.034 | 0.261 | 0.063 |
C2H061 | Lejweleputswa | −0.023 | 0.193 | 0.298 | 0.541 |
C4H004 | Lejweleputswa | −0.231 | 0.077 | 0.045 | 0.115 |
C4H008 | Lejweleputswa | 0.325 | 0.247 | 0.149 | 0.314 |
C4H010 | Lejweleputswa | 0.441 | 0.287 | 0.298 | 0.355 |
C5H015 | Lejweleputswa | −0.074 | 0.266 | 0.174 | 0.004 |
C6H002 | Lejweleputswa | −0.036 | 0.123 | 0.109 | 0.438 |
C9H021 | Lejweleputswa | 0.174 | 0.220 | 0.250 | 0.333 |
Vhembe | uMgungundlovu | Lejweleputswa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Station | Location | Scale | Shape | Station | Location | Scale | Shape | Station | Location | Shape | Shape |
A7H008 | 348.9 | 294.1 | −0.4 | U2H005 | 24.2 | 19.8 | 0.9 | C2H061 | 409.8 | 263.7 | −0.7 |
A8H009 | 1.2 | 1.0 | 0.7 | U2H006 | 17.0 | 10.0 | 0.4 | C4H004 | 83.5 | 97.9 | 0.4 |
A8H010 | 0.6 | 0.9 | 1.3 | U2H013 | 16.3 | 13.3 | 0.4 | C4H008 | 0.1 | 0.2 | 2.7 |
A9H003 | 5.3 | 4.6 | 0.6 | U6H003 | 6.1 | 7.4 | 0.9 | C4H010 | 8.5 | 49.0 | 5.8 |
A9H006 | 0.3 | 0.7 | 2.6 | U7H007 | 1.3 | 1.6 | 1.1 | C5H015 | 81.0 | 80.4 | 0.9 |
A9H012 | 47.7 | 46.3 | 0.3 | V2H004 | 47.2 | 31.6 | 0.5 | C6H002 | 242.0 | 218.0 | −0.5 |
B9H001 | 1.3 | 5.9 | 4.6 | V2H007 | 7.7 | 3.9 | 0.2 | C2H061 | 78.6 | 74.3 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botai, C.M.; de Wit, J.P.; Botai, J.O. Temporal Variability of Hydroclimatic Extremes: A Case Study of Vhembe, uMgungundlovu, and Lejweleputswa District Municipalities in South Africa. Water 2024, 16, 2924. https://doi.org/10.3390/w16202924
Botai CM, de Wit JP, Botai JO. Temporal Variability of Hydroclimatic Extremes: A Case Study of Vhembe, uMgungundlovu, and Lejweleputswa District Municipalities in South Africa. Water. 2024; 16(20):2924. https://doi.org/10.3390/w16202924
Chicago/Turabian StyleBotai, Christina M., Jaco P. de Wit, and Joel O. Botai. 2024. "Temporal Variability of Hydroclimatic Extremes: A Case Study of Vhembe, uMgungundlovu, and Lejweleputswa District Municipalities in South Africa" Water 16, no. 20: 2924. https://doi.org/10.3390/w16202924
APA StyleBotai, C. M., de Wit, J. P., & Botai, J. O. (2024). Temporal Variability of Hydroclimatic Extremes: A Case Study of Vhembe, uMgungundlovu, and Lejweleputswa District Municipalities in South Africa. Water, 16(20), 2924. https://doi.org/10.3390/w16202924