Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network
Abstract
:1. Introduction
2. Methods and Methodological Framework
2.1. Study Area and Basic Information
2.2. DMA-CS Model Framework
2.2.1. Hydraulic Modeling
2.2.2. DMA Partitioning
2.2.3. CS Localization Algorithm Modeling
3. Results and Discussion
3.1. Net2 Pipe Network Partitioning by DMA
3.2. Leakage Localization Using the CS Algorithm
3.3. Testing the Effectiveness of the DMA-CS Algorithm
3.4. Comparative Analysis of the DMA-CS Algorithm and the Traditional DMA Algorithm
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS algorithm | Cuckoo Search algorithm |
CHI | Calinski–Harabasz Index |
DBI | Davies–Bouldin Index |
DMA algorithm | District Metering Area algorithm |
PCA | Principal Component Analysis |
SSEs | Sum of squared errors |
WDNs | Water distribution networks |
Appendix A
Node | Elevation (m) | Basic Water Demand (L/s) | Water Demand (L/s) | Total Water Head (m) | Pressure (KPa) |
---|---|---|---|---|---|
1 | 15.24 | −43.81 | −42.05 | 19.55 | 776.42 |
2 | 30.48 | 0.50 | 0.64 | 19.25 | 613.08 |
3 | 18.29 | 0.88 | 1.11 | 19.21 | 730.71 |
4 | 18.29 | 0.50 | 0.64 | 19.19 | 729.47 |
5 | 30.48 | 0.50 | 0.64 | 19.19 | 609.84 |
6 | 38.10 | 0.32 | 0.40 | 19.06 | 529.10 |
7 | 48.77 | 0.25 | 0.32 | 18.77 | 411.13 |
8 | 33.53 | 0.57 | 0.72 | 18.77 | 560.47 |
9 | 54.86 | 0.88 | 1.11 | 18.74 | 349.50 |
10 | 39.62 | 0.32 | 0.40 | 18.77 | 500.77 |
11 | 56.39 | 2.19 | 2.76 | 18.67 | 331.50 |
12 | 64.01 | 1.01 | 1.27 | 18.52 | 249.66 |
13 | 64.01 | 0.13 | 0.16 | 18.47 | 247.52 |
14 | 60.96 | 0.13 | 0.16 | 18.45 | 276.48 |
15 | 57.91 | 0.13 | 0.16 | 18.44 | 305.78 |
16 | 45.72 | 1.26 | 1.59 | 18.44 | 425.34 |
17 | 54.86 | 1.26 | 1.59 | 18.44 | 335.57 |
18 | 30.48 | 1.26 | 1.59 | 18.44 | 574.61 |
19 | 45.72 | 0.32 | 0.40 | 18.44 | 425.20 |
20 | 51.82 | 1.20 | 1.51 | 18.45 | 365.97 |
21 | 45.72 | 1.01 | 1.27 | 18.45 | 425.68 |
22 | 60.96 | 0.63 | 0.79 | 18.45 | 276.27 |
23 | 70.10 | 0.50 | 0.64 | 18.41 | 184.99 |
24 | 57.91 | 0.69 | 0.87 | 18.43 | 305.37 |
25 | 70.10 | 0.38 | 0.48 | 18.41 | 184.50 |
26 | 71.63 | 0.00 | 16.40 | 18.40 | 169.40 |
27 | 39.62 | 0.50 | 0.64 | 18.40 | 483.25 |
28 | 33.53 | 0.00 | 0.00 | 18.40 | 542.96 |
29 | 33.53 | 0.44 | 0.56 | 18.40 | 542.96 |
30 | 39.62 | 0.19 | 0.24 | 18.40 | 483.18 |
31 | 57.91 | 1.07 | 1.35 | 18.41 | 303.99 |
32 | 33.53 | 1.07 | 1.35 | 18.44 | 544.69 |
33 | 54.86 | 0.09 | 0.12 | 18.45 | 336.05 |
34 | 57.91 | 0.09 | 0.12 | 18.45 | 306.20 |
35 | 33.53 | 0.00 | 0.00 | 18.40 | 542.96 |
36 | 33.53 | 0.06 | 0.08 | 18.40 | 542.96 |
Pipe ID | Pipe Length (m) | Diameter (m) | Roughness Factor | Friction Factor |
---|---|---|---|---|
1 | 835.20 | 4.18 | 100 | 0.035 |
2 | 278.40 | 4.18 | 100 | 0.036 |
3 | 452.40 | 2.78 | 100 | 0.043 |
4 | 417.60 | 2.78 | 100 | 0.045 |
5 | 348.00 | 4.18 | 100 | 0.048 |
6 | 417.60 | 4.18 | 100 | 0.035 |
7 | 939.60 | 4.18 | 100 | 0.035 |
8 | 417.60 | 4.18 | 140 | 0.032 |
9 | 139.20 | 4.18 | 100 | 0.036 |
10 | 348.00 | 2.78 | 140 | 0.036 |
11 | 243.60 | 4.18 | 100 | 0.036 |
12 | 661.20 | 4.18 | 100 | 0.036 |
13 | 208.80 | 4.18 | 100 | 0.036 |
14 | 139.20 | 4.18 | 100 | 0.038 |
15 | 104.40 | 4.18 | 100 | 0.038 |
16 | 522.00 | 2.78 | 100 | 0.045 |
17 | 522.00 | 2.78 | 100 | 0.058 |
18 | 208.80 | 2.78 | 100 | 0.051 |
19 | 243.60 | 4.18 | 100 | 0.056 |
20 | 121.80 | 4.18 | 100 | 0.075 |
21 | 487.20 | 2.78 | 100 | 0.055 |
22 | 382.80 | 4.18 | 100 | 0.050 |
23 | 452.40 | 2.78 | 100 | 0.057 |
24 | 452.40 | 2.78 | 100 | 0.082 |
25 | 452.40 | 2.78 | 100 | 0.057 |
26 | 208.80 | 4.18 | 100 | 0.039 |
27 | 87.00 | 4.18 | 100 | 0.039 |
28 | 104.40 | 4.18 | 100 | 0.039 |
29 | 69.60 | 4.18 | 100 | 0.040 |
30 | 208.80 | 4.18 | 100 | 0.052 |
31 | 139.20 | 2.78 | 100 | 0.054 |
32 | 139.20 | 2.78 | 100 | 0.059 |
34 | 243.60 | 2.78 | 100 | 0.035 |
35 | 348.00 | 2.78 | 100 | 0.072 |
36 | 139.20 | 2.78 | 100 | 0.068 |
37 | 174.00 | 2.78 | 100 | 0.057 |
38 | 174.00 | 2.78 | 100 | 0.021 |
39 | 348.00 | 2.78 | 100 | 0.072 |
40 | 243.60 | 2.78 | 100 | 0.082 |
41 | 104.40 | 2.78 | 100 | 0.135 |
Appendix B
Time | Node 1 | Node 7 | Node 13 | Node 31 | Time | Node 1 | Node 7 | Node 13 | Node 31 |
---|---|---|---|---|---|---|---|---|---|
0:00 | 776.42 | 411.13 | 247.52 | 303.99 | 28:00 | 789.10 | 425.75 | 261.66 | 317.09 |
1:00 | 782.21 | 416.37 | 256.07 | 307.30 | 29:00 | 788.90 | 427.47 | 264.97 | 321.30 |
2:00 | 787.11 | 421.06 | 260.41 | 311.37 | 30:00 | 793.17 | 431.54 | 268.69 | 324.81 |
3:00 | 791.45 | 425.41 | 265.10 | 315.71 | 31:00 | 754.70 | 418.44 | 267.86 | 328.05 |
4:00 | 796.76 | 430.51 | 268.34 | 320.05 | 32:00 | 740.22 | 411.75 | 263.17 | 324.95 |
5:00 | 797.72 | 432.23 | 268.48 | 324.54 | 33:00 | 734.50 | 406.10 | 257.79 | 320.33 |
6:00 | 766.83 | 422.72 | 267.31 | 327.71 | 34:00 | 730.50 | 402.03 | 253.45 | 315.23 |
7:00 | 744.91 | 416.37 | 264.62 | 327.78 | 35:00 | 726.91 | 398.38 | 249.66 | 310.88 |
8:00 | 742.29 | 413.69 | 259.59 | 325.16 | 36:00 | 722.71 | 394.24 | 245.59 | 307.02 |
9:00 | 736.22 | 407.82 | 247.38 | 322.12 | 37:00 | 749.87 | 401.27 | 244.83 | 303.30 |
10:00 | 721.19 | 393.35 | 246.14 | 315.71 | 38:00 | 786.62 | 417.41 | 250.62 | 305.16 |
11:00 | 723.40 | 394.86 | 247.11 | 307.44 | 39:00 | 795.79 | 425.68 | 257.31 | 310.26 |
12:00 | 762.22 | 407.14 | 254.35 | 304.06 | 40:00 | 800.83 | 430.92 | 262.97 | 316.26 |
13:00 | 792.21 | 422.30 | 256.35 | 307.64 | 41:00 | 809.86 | 439.40 | 270.14 | 322.26 |
14:00 | 788.28 | 420.44 | 263.38 | 312.95 | 42:00 | 748.70 | 418.24 | 268.41 | 328.12 |
15:00 | 801.86 | 431.82 | 271.52 | 316.33 | 43:00 | 744.50 | 415.96 | 266.97 | 327.64 |
16:00 | 812.48 | 441.61 | 268.90 | 322.67 | 44:00 | 739.81 | 411.34 | 262.76 | 324.47 |
17:00 | 747.87 | 418.37 | 267.17 | 328.95 | 45:00 | 734.02 | 405.62 | 257.38 | 319.92 |
18:00 | 745.05 | 416.44 | 267.17 | 327.16 | 46:00 | 729.26 | 400.86 | 252.49 | 314.68 |
19:00 | 742.70 | 414.17 | 265.10 | 325.57 | 47:00 | 725.88 | 397.41 | 248.62 | 309.92 |
20:00 | 737.19 | 408.79 | 260.41 | 322.61 | 48:00 | 722.78 | 394.24 | 245.32 | 306.20 |
21:00 | 730.15 | 401.90 | 254.00 | 317.43 | 49:00 | 751.60 | 401.14 | 244.42 | 303.16 |
22:00 | 726.50 | 398.03 | 249.59 | 311.57 | 50:00 | 774.56 | 411.62 | 248.28 | 304.33 |
23:00 | 721.40 | 393.00 | 244.56 | 306.82 | 51:00 | 780.97 | 417.48 | 253.04 | 308.20 |
24:00 | 740.84 | 399.00 | 244.14 | 302.47 | 52:00 | 784.69 | 421.41 | 257.31 | 312.75 |
25:00 | 774.35 | 411.55 | 248.56 | 304.89 | 53:00 | 789.93 | 426.44 | 262.00 | 317.16 |
26:00 | 778.62 | 415.68 | 252.35 | 308.40 | 54:00 | 794.55 | 430.99 | 266.62 | 321.71 |
27:00 | 786.07 | 422.37 | 257.52 | 312.26 | 55:00 | 798.55 | 433.27 | 269.65 | 326.12 |
References
- Shahra, E.Q.; Wu, W.; Gomez, R. Human Health Impact Analysis of Contaminant in IoT-Enabled Water Distributed Networks. Appl. Sci. 2021, 11, 3394. [Google Scholar] [CrossRef]
- Bello, O.; Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.R.; Adedeji, K.B.; Piller, O. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019, 11, 562. [Google Scholar] [CrossRef]
- Tornyeviadzi, H.M.; Seidu, R. Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data. Eng. Appl. Artif. Intell. 2023, 122, 106062. [Google Scholar] [CrossRef]
- Barros, D.; Almeida, I.; Zanfei, A.; Meirelles, G.; Luvizotto, E., Jr.; Brentan, B. An Investigation on the Effect of Leakages on the Water Quality Parameters in Distribution Networks. Water 2023, 15, 324. [Google Scholar] [CrossRef]
- China Statistical Yearbook; China Statistical Press: Beijing, China, 2021.
- Xu, Q.; Liu, R.; Chen, Q.; Li, R. Review on water leakage control in distribution networks and the associated environmental benefits. J. Environ. Sci. 2014, 26, 955–961. [Google Scholar] [CrossRef]
- Morais, D.C.; de Almeida, A.T. Group decision-making for leakage management strategy of water network. Resour. Conserv. Recycl. 2007, 52, 441–459. [Google Scholar] [CrossRef]
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, A.J.; Thu, P.A.; Zia-Ud-Din, M.; Caleiro, A.B. Water Scarcity and Sustainability in an Emerging Economy: A Management Perspective for Future. Sustainability 2021, 13, 144. [Google Scholar] [CrossRef]
- Gao, L.; Cao, J. Review of diagnostic technique for pipe leakage. Mod. Manuf. Eng. 2022, 2, 154–162. [Google Scholar]
- Datta, S.; Sarkar, S. A review on different pipeline fault detection methods. J. Loss Prev. Process Ind. 2016, 41, 97–106. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, J.; Luo, W.; Wang, L. Leakage diagnostic method for water supply pipeline based on ground penetrating radar and image correlation algorithm. Measurement 2024, 237, 115233. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Xin, K.; Tao, T. A review of methods for burst/leakage detection and location in water distribution systems. Water Supply 2015, 15, 429–441. [Google Scholar] [CrossRef]
- Wong, L.; Deo, R.; Rathnayaka, S.; Shannon, B.; Zhang, C.; Chiu, W.K.; Kodikara, J.; Widyastuti, H. Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor. Sensors 2018, 18, 4192. [Google Scholar] [CrossRef] [PubMed]
- Abd Rahman, N.; Muhammad, N.; Mohtar, H.W. Evolution of research on water leakage control strategies: Where are we now? Urban Water J. 2018, 15, 812–826. [Google Scholar] [CrossRef]
- Korkana, P.; Kanakoudis, V.; Patelis, M.; Gonelas, K. Forming District Metered Areas in a Water Distribution Network Using Genetic Algorithms. Procedia Eng. 2016, 162, 511–520. [Google Scholar] [CrossRef]
- Kapelan, Z.; Savic, D.; Walters, G. A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J. Hydraul. Res. 2003, 41, 481–492. [Google Scholar] [CrossRef]
- Gupta, A. A Selective Literature Review on Leak Management Techniques for Water Distribution System. Water Resour. Manag. 2018, 32, 3247–3269. [Google Scholar] [CrossRef]
- Guan, Y.; Lv, M.; Dong, S. Pressure-driven Background Leakage Models and their Application for Leak Localization Using a Multi-population Genetic Algorithm. Water Resour. Manag. 2023, 37, 359–373. [Google Scholar] [CrossRef]
- Nimri, W.; Wang, Y.; Zhang, Z.; Deng, C.; Sellstrom, K. Data-driven approaches and model-based methods for detecting and locating leaks in water distribution systems: A literature review. Neural Comput. Appl. 2023, 35, 11611–11623. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Zhou, Y.; Hu, Y.; Feng, D.; Ji, Y.; Wu, F. Machine learning algorithm based identification method for leakage current types of multiple earthing system Identification method for leakage current types of multiple earthing system. In Proceedings of the 2023 3rd International Conference on Electrical Engineering and Mechatronics Technology 2023, Nanjing, China, 21–23 July 2023; pp. 742–746. [Google Scholar]
- Mosaheb, M.; Zeidouni, M. Above zone pressure interpretation for leaky well characterization and its identification from leaky caprock/fault. J. Pet. Sci. Eng. 2018, 171, 218–228. [Google Scholar] [CrossRef]
- Chen, J.; Feng, X.; Xiao, S. Leakage zone identification for water distribution networks based on the alarm levels of pressure sensors. J. Civ. Struct. Health Monit. 2024, 14, 15–27. [Google Scholar] [CrossRef]
- Daniel, I.; Pesantez, J.; Letzgus, S.; Fasaee, M.A.K.; Alghamdi, F.; Berglund, E.; Mahinthakumar, G.; Cominola, A. A Sequential Pressure-Based Algorithm for Data-Driven Leakage Identification and Model-Based Localization in Water Distribution Networks. J. Water Resour. Plan. Manag. 2022, 148, 04022025. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Liu, K.; Xiao, X.; Xue, C. Research on micro leakage aperture recognition algorithm based on ultrasonic eigenvalue. Transducer Microsyst. Technol. 2022, 41, 42–45. [Google Scholar]
- Song, W.; Wang, S.; Tao, T. A leakage zone identification method for water distribution networks based on virtual pressure partition. Environ. Eng. 2023, 41, 184–191. [Google Scholar]
- Su, W.; Chai, K. Warship Pipeline Leakage Identification and Location Based on VMD and RBF. Ship Eng. 2020, 42, 105–112. [Google Scholar]
- Chen, J.; Feng, X.; Xiao, S. An iterative method for leakage zone identification in water distribution networks based on machine learning. Struct. Health Monit.-Int. J. 2021, 20, 1938–1956. [Google Scholar] [CrossRef]
- Chen, J.; Feng, X.; Xiao, S. A leakage zone identification method for water distribution networks based on the alarm level of pressure sensors. Water Wastewater Eng. 2022, 48, 173–179. [Google Scholar]
- Li, X.; Cao, C.-S.; Hung, S.-F.; Lu, Y.-R.; Cai, W.; Rykov, A.I.; Miao, S.; Xi, S.; Yang, H.; Hu, Z.; et al. Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. Chem 2020, 6, 3440–3454. [Google Scholar] [CrossRef]
- Mohseni, U.; Pathan, A.I.; Agnihotri, P.G.; Patidar, N.; Zareer, S.A.; Kalyan, D.; Saran, V.; Patel, D.; Prieto, C. Design and Analysis of Water Distribution Network Using Epanet 2.0 and Loop 4.0—A Case Study of Narangi Village. In Intelligent Computing & Optimization; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Zhang, F.E.; Yin, Z.N.; Li, H. Application of the EPANET hydraulic model in water supply network optimization. Water Wastewater Eng. 2007, 33, 200–202. [Google Scholar]
- Wu, Z.Y.; Sage, P.; Turtle, D. Pressure-Dependent Leak Detection Model and Its Application to a District Water System. J. Water Resour. Plan. Manag. 2010, 136, 116–128. [Google Scholar] [CrossRef]
- Zheng, Y.W. Genetic algorithm plays a role in municipal water systems. ACM Sigevolution 2006, 1, 2–8. [Google Scholar]
- Wang, J.; Li, Z.; Huang, C.; Li, Z.; Xin, K. leakage location methods of water distribution network based on temporal and pressure spatial features with physical experiment verification. Environ. Eng. 2022, 40, 233–240. [Google Scholar]
- Aranganayagi, S.; Thangavel, K. Clustering categorical data using silhouette coefficient as a relating measure. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications 2007, Sivakasi, India, 13–15 December 2007; pp. 13–17. [Google Scholar]
- Brusco, M.J.; Steinley, D. A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika 2007, 72, 583–600. [Google Scholar] [CrossRef]
- Marutho, D.; Handaka, S.H.; Wijaya, E.; Muljono. The Determination of Cluster Number at k-Mean Using Elbow Method and Purity Evaluation on Headline News. In Proceedings of the 2018 International Seminar on Application for Technology of Information and Communication, Semarang, Indonesia, 21–22 September 2018; pp. 533–538. [Google Scholar]
- Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330. [Google Scholar] [CrossRef]
- Sedighkia, M.; Datta, B.; Fathi, Z. Linking ecohydraulic simulation and optimization system for mitigating economic and environmental losses of reservoirs. AQUA—Water Infrastructure. Ecosyst. Soc. 2022, 71, 229–247. [Google Scholar]
- Trivedi, M.; Shrivastava, R.K. Reservoir operation management using a new hybrid algorithm of Invasive Weed Optimization and Cuckoo Search Algorithm. AQUA—Water Infrastructure. Ecosyst. Soc. 2023, 72, 1607–1628. [Google Scholar]
- Valian, E.; Tavakoli, S.; Mohanna, S.; Haghi, A. Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 2013, 64, 459–468. [Google Scholar] [CrossRef]
Leakage Coefficient k | Time Period | The First Time | The Second Time | The Third Time |
---|---|---|---|---|
k = 0.2 | t = 12 h | 19.38 | 19.18, 17.35 | 19.42 |
t = 24 h | 19.07, 20.20 | 19.46, 17.14, 33.11 | 21.13, 19.04 | |
k = 0.3 | t = 12 h | 19.06, 17.34 | 19.44, 17.16 | 16.43 |
t = 24 h | 18.37, 17.45, 33.43 | 19.02, 18.19 | 18.79, 19.71, 14.65 |
Method Category | Advantages | Disadvantages |
---|---|---|
Traditional Machine Learning Models | High prediction accuracy; powerful data processing capabilities; capable of self-learning and model optimization. | Requires a large amount of labeled data; high computational resource demands; lower model interpretability. |
Data-Driven Models | Based on actual data; real-time capabilities; adaptable to different network environments. | High data quality requirements; complex algorithms and computations needed; limited model generalization capability. |
Traditional Physical Methods | Non-invasive detection; simple operation; relatively low cost. | Susceptible to environmental noise; limited detection range; lower accuracy. |
Traditional DMA Methods | Simple principles; effective zoning management; good real-time performance. | Lower accuracy; poor adaptability to complex networks; extensive manual intervention required. |
DMA-CS Algorithm | High accuracy: Achieves up to 97.43% accuracy through Cuckoo Search optimization; Intelligent Zoning: Combines DMA and CS for smart zoning and precise localization; Efficiency: Optimizes monitoring point layout for improved efficiency; Adaptability: Suitable for water networks of varying sizes and complexity. | Computational resource requirements: Relatively higher than traditional methods; Model Complexity: More complex, requiring professional expertise for maintenance; Data Dependency: Highly dependent on high-quality, high-resolution monitoring data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, F.; Liu, L.; Shan, L.; Liu, B.; Qi, Y. Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network. Water 2024, 16, 2903. https://doi.org/10.3390/w16202903
Xi F, Liu L, Shan L, Liu B, Qi Y. Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network. Water. 2024; 16(20):2903. https://doi.org/10.3390/w16202903
Chicago/Turabian StyleXi, Fei, Luyi Liu, Liyu Shan, Bingjun Liu, and Yuanfeng Qi. 2024. "Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network" Water 16, no. 20: 2903. https://doi.org/10.3390/w16202903
APA StyleXi, F., Liu, L., Shan, L., Liu, B., & Qi, Y. (2024). Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network. Water, 16(20), 2903. https://doi.org/10.3390/w16202903