The Impact of Major Ecological Projects on the Water Yield of Mountain Basins, Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Scenario Setting and Simulation
3. Results
3.1. Temporal and Spatial Variation in Water Yield Capacity
3.2. Water Yield Capacity of Different LULC
3.3. Assessment of the Contribution of Engineering Measures to Water Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Wang, C.; Li, W.; Zuo, J. Multi-temporal scale modeling on climatic-hydrological processes in data-scarce mountain basins of Northwest China. Arab. J. Geosci. 2018, 11, 423. [Google Scholar] [CrossRef]
- Schröeter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Wang-Erlandsson, L.; Tobian, A.; van der Ent, R.J.; Fetzer, I.; te Wierik, S.; Porkka, M.; Staal, A.; Jaramillo, F.; Dahlmann, H.; Singh, C.; et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 2022, 3, 380–392. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.-U. Space and time aspects of ecosystem services, using the example of the EU Water Framework Directive. Ecosyst. People 2012, 8, 5–16. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Wu, Y. Incorporating eco-environmental water requirements in integrated evaluation of water quality and quantity—A study for the Yellow River. Water Resour. Manag. 2009, 23, 1067–1079. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.J.; Liu, Z.; Wang, L.; Zhang, W.; Zou, Y.; Jiang, M. Combined effects of multi-land use decisions and climate change on water-related ecosystem services in Northeast China. J. Environ. Manag. 2022, 315, 115131. [Google Scholar] [CrossRef]
- Jansson, Å.; Folke, C.; Rockström, J.; Gordon, L.; Falkenmark, M. Linking freshwater flows and ecosystem services appropriated by people: The case of the baltic sea drainage basin. Ecosystems 1999, 2, 351–366. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, Z.; An, S. Quantifying water provision service supply, demand, and spatial flow in the Yellow River Basin. Sustainability 2022, 14, 10093. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Xia, H.; Kong, W.; Zhou, G.; Sun, O.J. Impacts of landscape patterns on water-related ecosystem services under natural restoration in Liaohe River Reserve, China. Sci. Total Environ. 2021, 792, 148290. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chapin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User‘s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: San Francisco, CA, USA, 2015. [Google Scholar]
- Dennedy-Frank PJMuenich RLChaubey, I.; Ziv, G. Comparing two tool for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef]
- Balist, J.; Malekmohammadi, B.; Jafari, H.R.; Nohegar, A.; Geneletti, D. Modeling the supply, demand, and stress of water resources using ecosystem services concept in Sirvan River Basin (Kurdistan-Iran). Water Supply 2022, 22, 2816–2831. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J.G. Advances in the application of the SWAT model for water resources management. Hydrol. Process. 2005, 19, 749–762. [Google Scholar] [CrossRef]
- Thompson, J.R.; Sorenson, H.R.; Gavin, H.; Refsgaard, A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. J. Hydrol. 2004, 293, 151–179. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW—Coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). In US Geological Survey Techniques and Methods; Techniques and Methods 6–D1; U.S. Geological Survey: Reston, VA, USA, 2008; 240p. [Google Scholar]
- Liu, W.; Park, S.; Bailey, R.T.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Trolle, D.; et al. Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environ. Sci. Eur. 2020, 32, 113. [Google Scholar] [CrossRef]
- Khan, M.A.; Stamm, J. Assessment of the hydrological and coupled soft computing models, based on different satellite precipitation datasets, to simulate streamflow and sediment load in a mountainous catchment. J. Water Clim. Chang. 2023, 14, 610–632. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Li, W.H.; Zhang, B.; Liu, M.C. 2012 Water yield of Xitiaoxi River basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Liniger, H.; Weingartner, R. Mountains and Freshwater Supply. Environmental Science, Geography. 1998, 195. Available online: https://www.fao.org/4/w9300e/w9300e08.htm (accessed on 13 September 2024).
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Zhang, Y.; Shen, J.; Qin, D.; Li, S. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: A case study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Liu, M.; Pei, H.; Shen, Y. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. J. Hydrol. 2022, 612, 128156. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. White Book, Twenty Years of Returning Farmland to Forest and Grassland in China (1999–2019); Chinese National Forestry and Grassland Administration: Beijing, China, 2020. [Google Scholar]
- Cheng, S.; Wang, H.; Liu, J. Variation of runoff in Hutuo River. South-North Water Transf. Water Sci. Technol. 2014, 12, 96–99. [Google Scholar]
- Tian, F.; Yang, Y.; Han, S. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China. Water Sci. Technol. 2009, 60, 2135–2144. [Google Scholar] [CrossRef]
- Natural Capital Project. InVEST 3.14.1; Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences: San Francisco, CA, USA, 2023. [Google Scholar]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Hou, G.R.; Bi, H.J.; Wei, X.; Zhou, Q.Z.; Kong, L.X.; Wang, J.S.; Jia, J.B. Deadfall and soil water-holding functions of three types of woodlands in loess plateau gully areas. J. Soil Water Conserv. 2018, 32, 357–371. [Google Scholar]
Scenario Simulation | Scenario Description | |
---|---|---|
Ecological scenario | Current scenario | LULC in 2000 and 2015 |
S1 | Turn cropland into forest land | |
S2 | Turn cropland into shrub land | |
S3 | Turn cropland into grassland | |
Water conservancy scenario | Current scenario | LULC in 2020 |
S4 | Turn cropland into water |
Type of Scenario | 2000 | 2015 |
---|---|---|
Current | 248.9 | 292.7 |
S1 | 243.4 | 287.3 |
S2 | 243.4 | 287.3 |
S3 | 249.1 | 293.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Shi, M.; Zhao, J.; Meng, L.; Zhang, Y.; Zhang, R.; Yang, H.; Cao, J. The Impact of Major Ecological Projects on the Water Yield of Mountain Basins, Northern China. Water 2024, 16, 2900. https://doi.org/10.3390/w16202900
Hou X, Shi M, Zhao J, Meng L, Zhang Y, Zhang R, Yang H, Cao J. The Impact of Major Ecological Projects on the Water Yield of Mountain Basins, Northern China. Water. 2024; 16(20):2900. https://doi.org/10.3390/w16202900
Chicago/Turabian StyleHou, Xianglong, Miwei Shi, Jianguo Zhao, Lingyao Meng, Yan Zhang, Rongzhi Zhang, Hui Yang, and Jiansheng Cao. 2024. "The Impact of Major Ecological Projects on the Water Yield of Mountain Basins, Northern China" Water 16, no. 20: 2900. https://doi.org/10.3390/w16202900
APA StyleHou, X., Shi, M., Zhao, J., Meng, L., Zhang, Y., Zhang, R., Yang, H., & Cao, J. (2024). The Impact of Major Ecological Projects on the Water Yield of Mountain Basins, Northern China. Water, 16(20), 2900. https://doi.org/10.3390/w16202900