Ecological Discharge Study of Changxinggang River Based on the MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methodology Flowchart
2.3. Data and Materials
- Kaiser–Meyer–Olkin (KMO) and Bartlett’s sphericity test:
- 2.
- Standardization of raw data:
- 3.
- The establishment of the correlation matrix R:
- 4.
- Calculation of eigenvalues, contribution ratios of eigenvalues, and cumulative contribution ratios for the correlation matrix:
- 5.
- Calculation of principal component loadings.
2.4. MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model
2.4.1. Model Principles
2.4.2. The Solution of the Equations
2.4.3. Establishment of the Hydrodynamic Module
Establishment of River Network Files
Establishment of Cross-Section Files
Establishment of boundary condition files
Establishment of Hydrodynamic Parameter Files
Generation of Model Files
2.4.4. Establishment of the Water Environment Module
Establishment of Water Environment Boundary Files
Establishment of Advection–Diffusion Files
Generation of Simulation Files
2.4.5. Parameter Calibration
2.4.6. Model Validation
3. Results
3.1. The Calculation of Ecological Discharge Control Values during Non-Flood Period
3.2. The Calculation of Ecological Discharge Control Values during Flood Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, R.D.; Fang, C.L.; Liu, H.M.; Liu, X.X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Wang, N.; Li, H.D.; Tang, L.; Zhao, L.J.; Qiu, K.B.; Yao, G.H.; Wang, W.M. Urban ecological observation: Objects, systems and criterion of quality control. Acta Ecol. Sin. 2021, 41, 8807–8819. [Google Scholar] [CrossRef]
- Basak, S.M.; Hossain, S.; Tusznio, J.; Grodzińska-Jurczak, M. Social benefits of river restoration from ecosystem services perspective: A systematic review. Environ. Sci. Policy 2021, 124, 90–100. [Google Scholar] [CrossRef]
- Yang, Z.D. Comparison and empirical analysis of the urban economic development level in the Yangtze River urban agglomeration based on an analogical ecosystem perspective. Ecol. Inform. 2021, 64, 101321. [Google Scholar] [CrossRef]
- Kaiser, N.N.; Feld, C.K.; Stoll, S. Does river restoration increase ecosystem services? Ecosyst. Serv. 2020, 46, 101206. [Google Scholar] [CrossRef]
- Kong, L.; Chen, J.X.; Jiang, R.F.; Shi, Y.; Chen, J. Analysis of Watershed Integrated Planning under the Concept of Water Ecological Civilization. Water Resour. Dev. Res. 2019, 19, 6. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Zhou, Z.H.; Sang, X.F.; Wang, H. Water replenishment for ecological flow with an improved water resources allocation model. Sci. Total Environ. 2018, 643, 1152–1165. [Google Scholar] [CrossRef]
- Zhang, P.; Li, K.F.; Wu, Y.L.; Liu, Q.Y.; Zhao, P.X.; Li, Y. Analysis and restoration of an ecological flow regime during the Coreius guichenoti spawning period. Ecol. Eng. 2018, 123, 74–85. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhao, L.L.; Chen, Q.W.; Huang, Z. Analysis of the ecological flow concept. China Water Resour. 2020, 15, 29–32. [Google Scholar]
- Liu, S.Y. A Brief Discussion on the Determination and Protection of River Ecological Flow. Huai River Gov. 2020, 9, 11–12. [Google Scholar]
- Jia, H.F.; Ma, H.T.; Wei, M.J. Calculation of the minimum ecological water requirement of an urban river system and its deployment: A case study in Beijing central region. Ecol. Model. 2011, 222, 3271–3276. [Google Scholar] [CrossRef]
- Peters, D.L.; Baird, D.J.; Monk, W.A.; Armanini, D.G. Establishing Standards and Assessment Criteria for Ecological Instream Flow Needs in Agricultural Regions of Canada. J. Environ. Qual. 2012, 41, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Li, H.E.; Yue, S.Y.; Huang, K. A conceptual decision-making for the ecological base flow of rivers considering the economic value of ecosystem services of rivers in water shortage area of Northwest China. J. Hydrol. 2019, 578, 124126. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, J.W.; Wen, W.; Yang, C.S. Deter-mination and analysis of the ecological flow of Ashi River. Environ. Sci. Technol. 2021, 44, 223–228. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar]
- Nehring, R.B. Evaluation of Instream Flow Methods and Determination of Water Quantity Needs for Streams in the State of Colorado; Colorado Division of Wildlife: Denver, America, 1979. [Google Scholar]
- Liu, C.M.; Men, B.H.; Song, J.X. Eco-Hydraulic Radius Method for Estimating Instream Ecological Water Demand. Prog. Nat. Sci. 2007, 17, 7. [Google Scholar]
- Chen, Z.Y.; Zhou, H.; Wu, W.S.; Yi, P. Determination Method of Zhoushan Ecological Flow of Urban Artificial River. W Resour. Power. 2021, 39, 52–55. [Google Scholar]
- Meng, D. Study on Ecological Water Demand in Artificial River Channels in Plain Areas; Yangzhou University: Yangzhou, China, 2021. [Google Scholar] [CrossRef]
- Tao, H.N.; Liu, X.W.; Li, B.; Hu, X. Research on delicacy management of small watersh ed based on WASP model—Take the Lushui River Basin in Zhuzhou as an example. J. Xiangtan Univ. (Nat. Sci. Ed.) 2023, 45, 1–11. [Google Scholar] [CrossRef]
- Jiang, L.B.; Wang, M.; Gao, X.J. Water Quality Simulation Analysis of the Malian River Reservoir Based on EFDC. Energy Environ. 2021, 5, 89–91. [Google Scholar]
- Liang, L.; Deng, Y.; Zheng, M.F.; Wei, X. Nutrient Enrichment Prediction in the Longchuan River Tributary using the CE-QUAL-W2 Model. Resour. Environ. Yangtze Basin. 2014, 23, 103–111. [Google Scholar] [CrossRef]
- Fan, G.H. A Study on the Health Assessment of Changxing Port River in Changxing County, Zhejiang Province; North China Electric Power University: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Zheng, B.F.; Fan, Y.Y.; Ren, Y.H.; Huang, Q.Y.; Huang, Y. Assessment of Water Environment Carrying Capacity in Typical River Network Areas: A Case Study of Changxing County. Chin. Rural Water Hydropower 2020, 7, 54–59. [Google Scholar]
- State Environmental Protection Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of China. Environmental Quality Standards for Surface Water (GB 3838—2002); Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2002.
- Xiang, W.X.; Chen, J.G.; Li, S.; Li, Z.; Cai, M. Comprehensive Assessment of Water Quality Pollution in Baitan Lake Based on Principal Component Analysis. J. Green Sci. Technol. 2023, 25, 93–97. [Google Scholar] [CrossRef]
- Ding, Y.T.; Mo, L.J.; Huang, D.J.; Ge, S.Y.; Ju, Q.; Gu, H.N. Simulation Study on Improving Water Environment Quality in Plain River Networks with Drainage Based on MIKE11. Chin. Rural Water Hyd. 2023, 9, 166–170. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.L.; Geng, J.J.; Ban, X.; Yang, C.; Lv, X.R. Water Quality Simulation and Assessment of Hong Lake Based on MIKE21 and Grey Model Recognition. Resour. Environ. Yangtze 2018, 27, 2090–2100. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, R.; Zhang, M.H.; Jing, Z.X.; Zhao, Q.; Fan, J.T. Analysis and Simulation Study of the Causes of Cyanobacterial Blooms in Rivers under the Background of Hydraulic Engineering. Res. Environ. Sci. 2017, 30, 1163–1173. [Google Scholar] [CrossRef]
- He, S.F.; Hu, W.; Yang, Z.L.; Feng, T.; Yan, H.L.; Lin, Y.Q.; Chen, Q.W. The Characteristics of Algal Blooms in the Middle and Lower Reaches of the Han River and their Ecological Flow Threshold. Chin. Environ. Sci. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Su, Z.Q. Research on Determination of Ecological Flow Control Targets in Manas River, Xinjiang. Shaanxi Water Res. 2023, 9, 37–39. [Google Scholar] [CrossRef]
- Yu, Z.B.; Zhang, L.; Yao, H.B.; Wan, D.H. Calculation of Ecological Flow and Analysis of Control Measures in Rain-fed Rivers. Guangdong Water Res. Hydropower 2022, 11, 43–47. [Google Scholar]
Month | January | February | March | April | May | June |
---|---|---|---|---|---|---|
Average discharge | 3.54 | 3.07 | 4.39 | 6.58 | 3.94 | 18.02 |
Average maximum discharge | 20.31 | 16.36 | 26.44 | 25.82 | 19.81 | 72.76 |
Average minimum discharge | −3.49 | −5.53 | −6.87 | −5.35 | −4.78 | −1.81 |
Month | July | August | September | October | November | December |
Average discharge | 18.63 | 4.76 | 7.30 | 4.55 | 1.50 | 1.53 |
Average maximum discharge | 77.46 | 42.96 | 49.66 | 23.77 | 9.98 | 9.45 |
Average minimum discharge | −5.76 | −8.15 | −7.75 | −6.58 | −7.28 | −5.11 |
Month | January | February | March | April | May | June |
---|---|---|---|---|---|---|
Average water level | 3.26 | 3.27 | 3.21 | 3.18 | 3.07 | 3.35 |
Average maximum water level | 3.54 | 3.46 | 3.47 | 3.46 | 3.41 | 4.20 |
Average minimum water level | 3.14 | 3.10 | 3.04 | 3.05 | 3.05 | 3.15 |
Month | July | August | September | October | November | December |
Average water level | 3.96 | 3.59 | 3.48 | 3.37 | 3.19 | 3.14 |
Average maximum water level | 4.48 | 4.22 | 3.98 | 3.78 | 3.54 | 3.40 |
Average minimum water level | 3.52 | 3.25 | 3.27 | 3.29 | 3.15 | 3.04 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|
Month | ||||||
January | 10.5 1 | 8.64 | 10.8 | 9.36 | 6.91 | |
February | 8.7 | 12.1 | 8.17 | 10.2 | 9.98 | |
March | 11.6 | 11.4 | 6.23 | 10 | 9.68 | |
April | 8.66 | 10.6 | 6.23 | 7.91 | 9.41 | |
May | 8.26 | 8.7 | 8.26 | 7.61 | 6.9 | |
June | 8.12 | 8.42 | 8.16 | 8.99 | 7.35 | |
July | 7.69 | 5.89 | 6.42 | 9.31 | 8.03 | |
August | 6.98 | 5.92 | 6.23 | 6.4 | 6.27 | |
September | 5.1 | 6.75 | 7.64 | 8.42 | 7.22 | |
October | 6.22 | 6.54 | 8.27 | 6.28 | 8.14 | |
November | 7.22 | 8.15 | 6.2 | 6.48 | 9.21 | |
December | 8.2 | 10.1 | 8.08 | 7.56 | 7.24 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|
Month | ||||||
January | 10.2 * | 9.1 | 6.9 | 7.3 | 9.8 | |
February | 5.1 | 6.9 | 6.2 | 5.7 | 9.7 | |
March | 10.4 | 9.8 | 12.5 | 9.7 | 8.4 | |
April | 16.7 | 15.5 | 20.3 | 14.5 | 15.3 | |
May | 20 | 19.8 | 16.4 | 21.4 | 25.7 | |
June | 19.9 | 25.3 | 25.3 | 29.6 | 26.3 | |
July | 22.5 | 26.8 | 25.4 | 25.4 | 27.6 | |
August | 33.1 | 32.1 | 34.2 | 31.6 | 30.9 | |
September | 27.5 | 28.8 | 31.1 | 30.5 | 30.4 | |
October | 21.2 | 21.8 | 22.5 | 23 | 25 | |
November | 17.1 | 17.6 | 18.4 | 19.1 | 19.5 | |
December | 12.6 | 9.2 | 13.6 | 10.6 | 10.2 |
Water Environment Indicator | Principal Component 1 | Principal Component 2 |
---|---|---|
CODMn | 0.941 | −0.222 |
BOD | 0.720 | −0.140 |
NH3-N | 0.473 | 0.668 |
CODCr | 0.839 | −0.400 |
TP | 0.473 | 0.697 |
Water Environment Indicator | Principal Component 1 | Principal Component 2 |
---|---|---|
CODMn | 0.948 | −0.162 |
BOD | 0.699 | 0.342 |
NH3-N | 0.302 | 0.887 |
CODCr | 0.938 | −0.174 |
TP | 0.755 | −0.253 |
Serial Number | Watershed | Dispersion Coefficient (m2/s) |
---|---|---|
1 | Taihu Lake Basin | 8.00 |
2 | Dongtiao Creek | 2.50 |
3 | Yisuxi River System in Jiangsu Province | 1.00~10.00 |
4 | Funan River | 0.72~15.10 |
5 | South-to-North Water Diversion Middle Route | 15.00~20.00 |
6 | Yellow River Mengjin Section | 40.00 |
Serial Number | Watershed | NH3-N | TP | CODMn | BOD |
---|---|---|---|---|---|
1 | Taihu Lake Basin (Upper Reach) | 0.015~0.312 | 0.027~0.059 | 0.021~0.197 | – |
2 | Zhejiang Xitiao Creek | 0.100~0.200 | 0.010~0.020 | – | – |
3 | Wei River | 0.046 | – | – | 0.160 |
4 | Yanjin River | 0.140 | 0.040 | – | – |
5 | Dongliao River | 0.112~0.333 | – | 0.083~0.217 | 0.147~0.235 |
6 | Pengxi River | 0.110~0.180 | 0.080~0.130 | 0.130~0.250 | – |
Control Indicator | NH3-N | TP | CODMn | BOD | |
---|---|---|---|---|---|
Water Period | |||||
Non-flood period calibration result (mg/d) | 0.144 | – | 0.060 | 0.132 | |
Flood period calibration result (mg/d) | 0.216 | 0.029 | 0.084 | – |
Result Parameter | R2 | Nash–Sutcliffe Coefficient | |
---|---|---|---|
Water level | 4.27% | 0.973 | 0.921 |
Discharge | 5.03% | 0.958 | 0.903 |
Control Indicator | NH3-N | TP | CODMn | BOD | |
---|---|---|---|---|---|
Water Period | |||||
Relative error in non-flood period (%) | 15.18 | – | 7.27 | 8.62 | |
Relative error in flood period (%) | 16.66 | 7.88 | 10.01 | – |
Discharge Hypothetical Value (m3/s) | Maximum NH3-N Concentration (mg/L) | NH3-N Compliance | Maximum CODMn Concentration (mg/L) | CODMn Compliance |
---|---|---|---|---|
1.70 | 1.016 | No | 6.263 | No |
1.90 | 1.011 | No | 6.196 | No |
2.10 | 1.006 | No | 6.131 | No |
2.30 | 1.001 | No | 6.070 | No |
2.33 | 1.000 | Yes | 6.061 | No |
2.50 | 0.998 | Yes | 6.011 | No |
2.54 | 0.995 | Yes | 6.000 | Yes |
2.60 | 0.993 | Yes | 5.982 | Yes |
2.70 | 0.985 | Yes | 5.899 | Yes |
Discharge Hypothetical Value (m3/s) | Maximum Concentration (mg/L) | Compliance Status |
---|---|---|
2.50 | 0.202 | No |
2.60 | 0.201 | No |
2.62 | 0.201 | No |
2.63 | 0.200 | Yes |
2.70 | 0.199 | Yes |
2.80 | 0.197 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Tian, C.; Xu, T.; Liu, Z.; Ma, H.; Zhang, Z.; Dong, X. Ecological Discharge Study of Changxinggang River Based on the MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model. Water 2024, 16, 322. https://doi.org/10.3390/w16020322
Huang D, Tian C, Xu T, Liu Z, Ma H, Zhang Z, Dong X. Ecological Discharge Study of Changxinggang River Based on the MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model. Water. 2024; 16(2):322. https://doi.org/10.3390/w16020322
Chicago/Turabian StyleHuang, Dongjing, Chuanchong Tian, Tao Xu, Zhen Liu, Hongyu Ma, Zexian Zhang, and Xinsheng Dong. 2024. "Ecological Discharge Study of Changxinggang River Based on the MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model" Water 16, no. 2: 322. https://doi.org/10.3390/w16020322
APA StyleHuang, D., Tian, C., Xu, T., Liu, Z., Ma, H., Zhang, Z., & Dong, X. (2024). Ecological Discharge Study of Changxinggang River Based on the MIKE 11 One-Dimensional Hydrodynamic–Water Quality Coupling Model. Water, 16(2), 322. https://doi.org/10.3390/w16020322