Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective
Abstract
:1. Introduction
2. Smart Technology
3. AI Models
3.1. RNN
3.2. ANN
3.3. FNN
3.4. DNN
3.5. CNN
4. Methods of ML and AI
5. Machine Learning and Artificial Intelligence Techniques in Numerous Water- and Wastewater-Treatment Applications
5.1. Disinfection and Chlorination By-Product Management
5.2. Adsorption Procedures
Adsorbent | Contaminated Target | ML Technique | Input Variables | Ref. |
---|---|---|---|---|
Encapsulated nanoscale zero-valent iron | Phosphate | ANN | pH, phosphate concentration, adsorbent dose, stirring rate, and reaction time | [65] |
Natural walnut-activated carbon | Methylene blue (MB), Cd(II) | ANN | pH, MB concentration, Cd(II) concentration, adsorbent mass, and contact time | [49] |
Nickle(II) Oxide nanocomposites | Asphaltenes | RF, ANN, and SVM | Initial copper concentration, adsorbent dose, pH, contact time, and the addition of NaNO3 | [39] |
Typha domingensis (Cattail) biomass | Ni(II), Cd(II) | ANFIS | pH, adsorbent dosage, metal-ions concentration, contact, and biosorbent particle size. | [66] |
Activated carbon | Various organic pollutants | ANFIS, ANN, and SVM | Initial concentration, molar mass of target contaminant, bed height, specific surface area, flow rate, and contact time. | [64] |
5.3. Membrane-Filtration Procedures
5.4. Applications in Surface Water
Algorithms | Determination | Input Factors | Ref. |
---|---|---|---|
RF, DNN, and SVR | BOD prediction | Site actual depth, latitude, longitude, time, DO, total coliform, temperature, salinity, chlorophyll-a, NH3–N, TP, pH, polychlorinated biphenyls count, NOx–N, PO4–P, and TSS | [13] |
PNN | DO prediction | Cl–, alkalinity, PO4–P, COD, BOD, pH, temperature, P, NO3–N, and EC | [85] |
ANN and SVM | TN and TP prediction | DO, TN, river flow, temperature, rainfall, and TP | [13] |
RF | TRP, TP, NO3–N, and NH4–N prediction | EC, temperature, turbulence, chlorophyll-a, DO, pH, and flow rate | [86] |
ANFIS | Algal bloom prediction | NH3–N, COD, DTP, PO4–P, TOC, TN, NO3–N, chlorophyll-a, temperature, BOD, flow rate, EC, total coliform, DO, pH, and fecal coliform | [35] |
SVM and ANN | Chlorophyll-a prediction | Solar radiation, PO4–P, chlorophyll-a, NH3–N, NO3–N, temperature, and wind speed | [87] |
Attention neural network | Water pollution monitoring | Water images | [13] |
5.5. Applications in Wastewater
5.6. Application in Drinking Water
5.7. Applications in Groundwater
5.8. Soft Sensing in Wastewater Treatment Facilities
5.9. Water Infrastructure Resiliency Improvement
5.9.1. Using AI and ML to Improve Water and Resilient Infrastructure
- a.
- Water Quality
- b.
- Predictive Water Supply Maintenance
- c.
- Future Forecast for Flood Risk
- d.
- Water-Resource and Asset Administration
- e.
- Energy Efficiency and Sustainability
5.9.2. What Role May AI Play in Influencing Urban Water Infrastructure in the Future?
- I.
- Decentralization pathway
- II.
- Circular economy pathway
- III.
- Decarbonization pathway
- IV.
- Automation pathway
5.9.3. Time to Harness the Power of AI and ML
6. Conclusions and Future Prospective
- Data availability and quality: ML often requires a substantial amount of high-quality data. Obtaining sufficient data with high precision is challenging in water-treatment and management systems due to financial or technological constraints.
- Limited applicability: ML approaches may not be widely applicable due to the highly complex conditions encountered in real wastewater-treatment and management systems. Therefore, current methods may only be suitable for specific systems.
- Data management and legal considerations: Challenges related to data management, public and legal perspectives, repeatability, and transparency in research need to be addressed to further advance intelligent applications in the field.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Definitions |
WWW | Waste water treatment |
IoT | Internet of Things |
AI | Artificial intelligence |
ML | Machine learning |
ELM | Extreme learning machine |
AS | Search algorithm |
NN | Neural network |
BNN | Biological neural network |
ANN | Artificial neural network |
DNN | Deep neural network |
BANN | Bootstrapped artificial neural network |
BWNN | Bootstrapped wavelet neural network |
ARIMA | Auto-regressive integrated moving average |
CCNN | Cascade correlation neural network |
LSTM | Long short-term memory |
DT | Decision tree |
SVM | Support vector machine |
PSO | Particle swarm optimization |
RF | Random forest |
GB | Gradient boosting |
KNN | K-nearest neighbor |
SOM | Self-organizing map |
ANFIS | Adaptive-network-based fuzzy inference system |
PCA | Principal component analysis |
PLS | Partial least squares regression |
SVR | Support vector regression |
DBPs | Disinfection by-products |
DO | Dissolved oxygen |
BOD | Biological oxygen demand |
COD | Chemical oxygen demand |
TOC | Total organic carbon |
DTP | Dissolved total phosphorus |
TP | Total phosphorus |
TSS | Total suspended solids |
TRP | Total reactive phosphorus |
TN | Total nitrogen |
EC | Electrical conductivity |
TDS | Tsinghua/Temporary DeepSpeed |
FDOM | Fluorescent dissolved organic matter |
BGA-PC | Blue-Green Algae Phycocyanin |
WQI | Water quality index |
References
- Ray, S.S.; Verma, R.K.; Singh, A.; Ganesapillai, M.; Kwon, Y.-N. A holistic review on how artificial intelligence has redefined water treatment and seawater desalination processes. Desalination 2023, 546, 116221. [Google Scholar] [CrossRef]
- Hou, H.; Ren, A.; Yu, L.; Ma, Z.; Zhang, Y.; Liu, Y. An Environmental Impact Assessment of Largemouth Bass (Micropterus salmoides) Aquaculture in Hangzhou, China. Sustainability 2023, 15, 12368. [Google Scholar] [CrossRef]
- Marcelino, K.R.; Wongkiew, S.; Shitanaka, T.; Surendra, K.; Song, B.; Khanal, S.K. Micronanobubble Aeration Enhances Plant Yield and Nitrification in Aquaponic Systems. ACS EST Eng. 2023, 3, 2081–2096. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, C.; Li, P.; Huang, X.; Li, Y. Application of a smart pilot electrochemical system for recycling aquaculture seawater. Aquac. Int. 2023, 1–17. [Google Scholar] [CrossRef]
- Yadav, A.; Noori, M.T.; Biswas, A.; Min, B. A concise review on the recent developments in the internet of things (IoT)-based smart aquaculture practices. Rev. Fish. Sci. Aquac. 2023, 31, 103–118. [Google Scholar] [CrossRef]
- Faherty, A. Tapped out: How Newark, New Jersey’s lead drinking water crisis illuminates the inadequacy of the federal drinking water regulatory scheme and fuels environmental injustice throughout the nation. Environ. Claims J. 2021, 33, 304–327. [Google Scholar] [CrossRef]
- Tariq, A.; Mushtaq, A. Untreated wastewater reasons and causes: A review of most affected areas and cities. Int. J. Chem. Biochem. Sci. 2023, 23, 121–143. [Google Scholar]
- Ebenstein, A. The consequences of industrialization: Evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 2012, 94, 186–201. [Google Scholar] [CrossRef]
- Martínez, R.; Vela, N.; El Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water 2020, 12, 1096. [Google Scholar] [CrossRef]
- Karn, A.L.; Pandya, S.; Mehbodniya, A.; Arslan, F.; Sharma, D.K.; Phasinam, K.; Aftab, M.N.; Rajan, R.; Bommisetti, R.K.; Sengan, S. An integrated approach for sustainable development of wastewater treatment and management system using IoT in smart cities. Soft Comput. 2021, 27, 5159–5175. [Google Scholar] [CrossRef]
- El Sayed, H.Y.; Al-Kady, M.; Siddik, Y. Management of smart water treatment plant using iot cloud services. In Proceedings of the 2019 International Conference on Smart Applications, Communications and Networking (SmartNets), Sharm El Sheikh, Egypt, 17–19 December 2019; pp. 1–5. [Google Scholar]
- Turcios, A.E.; Papenbrock, J. Sustainable treatment of aquaculture effluents—What can we learn from the past for the future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Lowe, M.; Qin, R.; Mao, X. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Krittanawong, C. The rise of artificial intelligence and the uncertain future for physicians. Eur. J. Intern. Med. 2018, 48, e13–e14. [Google Scholar] [CrossRef]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Antoniou, N.; Rapani, A.; Anifandis, G.; Bakas, P.; Bolaris, S.; Pantou, A.; Pantos, K. Are computational applications the “crystal ball” in the IVF laboratory? The evolution from mathematics to artificial intelligence. J. Assist. Reprod. Genet. 2018, 35, 1545–1557. [Google Scholar] [CrossRef]
- Suquet, J.; Godo-Pla, L.; Valentí, M.; Verdaguer, M.; Martin, M.J.; Poch, M.; Monclús, H. Development of an environmental decision support system for enhanced coagulation in drinking water production. Water 2020, 12, 2115. [Google Scholar] [CrossRef]
- Karim, A.; Shahroz, M.; Mustofa, K.; Belhaouari, S.B.; Joga, S.R.K. Phishing Detection System Through Hybrid Machine Learning Based on URL. IEEE Access 2023, 11, 36805–36822. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Lian, Q.; Yin, H.; Peng, J.; Sheng, M.; Wang, Y. Enhancing real-time prediction of effluent water quality of wastewater treatment plant based on improved feedforward neural network coupled with optimization algorithm. Water 2022, 14, 1053. [Google Scholar] [CrossRef]
- Frank, R. Understanding Smart Sensors; Artech House: London, UK, 2013. [Google Scholar]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S. Improving water efficiency in the beverage industry with the internet of things. In Implementing Data Analytics and Architectures for Next Generation Wireless Communications; IGI Global: Hershey, PN, USA, 2022; pp. 18–26. [Google Scholar]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S.; Duong, L.N.K. An internet of things approach for water efficiency: A case study of the beverage factory. Sustainability 2021, 13, 3343. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Singh, N.K.; Yadav, M.; Singh, V.; Padhiyar, H.; Kumar, V.; Bhatia, S.K.; Show, P.-L. Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems. Bioresour. Technol. 2022, 369, 128486. [Google Scholar] [CrossRef]
- Altowayti, W.A.H.; Shahir, S.; Othman, N.; Eisa, T.A.E.; Yafooz, W.M.; Al-Dhaqm, A.; Soon, C.Y.; Yahya, I.B.; Che Rahim, N.A.N.b.; Abaker, M. The role of conventional methods and artificial intelligence in the wastewater treatment: A comprehensive review. Processes 2022, 10, 1832. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F. Evolutionary artificial neural networks: A review. Artif. Intell. Rev. 2013, 39, 251–260. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar]
- Yadav, B.; Gupta, P.K.; Patidar, N.; Himanshu, S.K. Ensemble modelling framework for groundwater level prediction in urban areas of India. Sci. Total Environ. 2020, 712, 135539. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 2009. [Google Scholar]
- Caie, P.D.; Dimitriou, N.; Arandjelović, O. Precision medicine in digital pathology via image analysis and machine learning. In Artificial Intelligence and Deep Learning in Pathology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–173. [Google Scholar]
- Maimon, O.; Rokach, L. Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2. [Google Scholar]
- Cherkassky, V. Fuzzy Inference Systems: A Critical Review. Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications; 1998; pp. 177–197. Available online: https://link.springer.com/book/10.1007/978-3-642-58930-0 (accessed on 15 September 2023).
- Farhoudi, J.; Hosseini, S.; Sedghi-Asl, M. Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins. J. Hydroinformatics 2010, 12, 201–211. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. Overview of long short-term memory neural networks. Deep Learning Classifiers with Memristive Networks: Theory and Application; Springer: Cham/Berlin, Germany, 2020; pp. 139–153. [Google Scholar]
- Ucar, F.; Alcin, O.F.; Dandil, B.; Ata, F. Power quality event detection using a fast extreme learning machine. Energies 2018, 11, 145. [Google Scholar] [CrossRef]
- Mazloom, M.S.; Rezaei, F.; Hemmati-Sarapardeh, A.; Husein, M.M.; Zendehboudi, S.; Bemani, A. Artificial intelligence based methods for asphaltenes adsorption by nanocomposites: Application of group method of data handling, least squares support vector machine, and artificial neural networks. Nanomaterials 2020, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, Z.; Feng, L. Improved neural network with least square support vector machine for wastewater treatment process. Chemosphere 2022, 308, 136116. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Hou, Y.; Hu, J.; Ruan, W.; Xiang, Y.; Wei, X. Decontamination of methylene Blue from simulated wastewater by the mesoporous rGO/Fe/Co nanohybrids: Artificial intelligence modeling and optimization. Mater. Today Commun. 2020, 24, 100709. [Google Scholar] [CrossRef]
- Rodríguez-Rángel, H.; Arias, D.M.; Morales-Rosales, L.A.; Gonzalez-Huitron, V.; Valenzuela Partida, M.; García, J. Machine learning methods modeling carbohydrate-enriched cyanobacteria biomass production in wastewater treatment systems. Energies 2022, 15, 2500. [Google Scholar] [CrossRef]
- Guo, Z.; Du, B.; Wang, J.; Shen, Y.; Li, Q.; Feng, D.; Gao, X.; Wang, H. Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network. RSC Adv. 2020, 10, 13410–13419. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chawla, S.; Cieslak, D.A.; Chawla, N.V. A robust decision tree algorithm for imbalanced data sets. In Proceedings of the 2010 SIAM International Conference on Data Mining, Columbus, OH, USA, 29 April–1 May 2010; pp. 766–777. [Google Scholar]
- Lee, M.W.; Hong, S.H.; Choi, H.; Kim, J.-H.; Lee, D.S.; Park, J.M. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors. Process Biochem. 2008, 43, 1107–1113. [Google Scholar] [CrossRef]
- Li, H.; Osman, H.; Kang, C.; Ba, T. Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng. 2017, 111, 280–291. [Google Scholar] [CrossRef]
- Richardson, S.D. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003, 22, 666–684. [Google Scholar] [CrossRef]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Mazaheri, H.; Ghaedi, M.; Azqhandi, M.A.; Asfaram, A. Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (II) removal from a binary aqueous solution by natural walnut carbon. Phys. Chem. Chem. Phys. 2017, 19, 11299–11317. [Google Scholar] [CrossRef]
- Imo, T.; Oomori, T.; Toshihiko, M.; Tamaki, F. The comparative study of trihalomethanes in drinking water. Int. J. Environ. Sci. Technol. 2007, 4, 421–426. [Google Scholar] [CrossRef]
- Wortmann, F.; Flüchter, K. Internet of things: Technology and value added. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Lin, H.; Dai, Q.; Zheng, L.; Hong, H.; Deng, W.; Wu, F. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study. Chemosphere 2020, 248, 125999. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shen, J.; Qu, Y.; Chen, H.; Zhou, X.; Hong, H.; Sun, H.; Lin, H.; Deng, W.; Wu, F. Using simple and easy water quality parameters to predict trihalomethane occurrence in tap water. Chemosphere 2022, 286, 131586. [Google Scholar] [CrossRef]
- Librantz, A.F.H.; dos Santos, F.C.R.; Dias, C.G. Artificial neural networks to control chlorine dosing in a water treatment plant. Acta Sci. Technol. 2018, 40, 37275. [Google Scholar] [CrossRef]
- Mahato, J.; Gupta, S. Exploring applicability of artificial intelligence and multivariate linear regression model for prediction of trihalomethanes in drinking water. Int. J. Environ. Sci. Technol. 2022, 19, 5275–5288. [Google Scholar] [CrossRef]
- Godo-Pla, L.; Rodríguez, J.J.; Suquet, J.; Emiliano, P.; Valero, F.; Poch, M.; Monclús, H. Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process Saf. Environ. Prot. 2021, 145, 63–70. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.H.; Cho, K.H.; Hong, S.; Kim, Y.M.; Park, Y. Modeling trihalomethanes concentrations in water treatment plants using machine learning techniques. Desalinat. Water Treat. 2018, 111, 125–133. [Google Scholar] [CrossRef]
- Cordero, J.A.; He, K.; Janya, K.; Echigo, S.; Itoh, S. Predicting formation of haloacetic acids by chlorination of organic compounds using machine-learning-assisted quantitative structure-activity relationships. J. Hazard. Mater. 2021, 408, 124466. [Google Scholar] [CrossRef]
- Peleato, N.M. Application of convolutional neural networks for prediction of disinfection by-products. Sci. Rep. 2022, 12, 612. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Karri, R.R.; Sahu, J.; Meikap, B. Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Ind. Crops Prod. 2020, 143, 111927. [Google Scholar] [CrossRef]
- Ullah, S.; Assiri, M.A.; Bustam, M.A.; Al-Sehemi, A.G.; Abdul Kareem, F.A.; Irfan, A. Equilibrium, kinetics and artificial intelligence characteristic analysis for Zn (II) ion adsorption on rice husks digested with nitric acid. Paddy Water Environ. 2020, 18, 455–468. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Pyrgaki, K.; Salih, S.Q.; Tiyasha, T.; Beyaztas, U.; Shahid, S.; Yaseen, Z.M. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model. Chemosphere 2021, 276, 130162. [Google Scholar] [CrossRef] [PubMed]
- Mesellem, Y.; Hadj, A.A.E.; Laidi, M.; Hanini, S.; Hentabli, M. Computational intelligence techniques for modeling of dynamic adsorption of organic pollutants on activated carbon. Neural Comput. Appl. 2021, 33, 12493–12512. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Mostafa, M.K.; Nasr, M. Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron. Sep. Sci. Technol. 2019, 54, 13–26. [Google Scholar] [CrossRef]
- Fawzy, M.; Nasr, M.; Adel, S.; Nagy, H.; Helmi, S. Environmental approach and artificial intelligence for Ni (II) and Cd (II) biosorption from aqueous solution using Typha domingensis biomass. Ecol. Eng. 2016, 95, 743–752. [Google Scholar] [CrossRef]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Wang, J.; Cahyadi, A.; Wu, B.; Pee, W.; Fane, A.G.; Chew, J.W. The roles of particles in enhancing membrane filtration: A review. J. Membr. Sci. 2020, 595, 117570. [Google Scholar] [CrossRef]
- Khan, H.; Khan, S.U.; Hussain, S.; Ullah, A. Modelling of transmembrane pressure using slot/pore blocking model, response surface and artificial intelligence approach. Chemosphere 2022, 290, 133313. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, T.; Zhao, Y.; Jiang, J.; Wang, Y.; Guo, L.; Wang, P. Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China. Environ. Sci. Pollut. Res. 2013, 20, 8909–8923. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J. Support vector machine―An alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river? Environ. Sci. Pollut. Res. 2014, 21, 11036–11053. [Google Scholar] [CrossRef]
- Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A. Water quality prediction using machine learning methods. Water Qual. Res. J. 2018, 53, 3–13. [Google Scholar] [CrossRef]
- Ly, Q.V.; Nguyen, X.C.; Lê, N.C.; Truong, T.-D.; Hoang, T.-H.T.; Park, T.J.; Maqbool, T.; Pyo, J.; Cho, K.H.; Lee, K.-S. Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea. Sci. Total Environ. 2021, 797, 149040. [Google Scholar] [CrossRef]
- Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 2015, 502, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Ammi, Y.; Hanini, S.; Khaouane, L. An artificial intelligence approach for modeling the rejection of anti-inflammatory drugs by nanofiltration and reverse osmosis membranes using kernel support vector machine and Neural Networks. Comptes Rendus. Chim. 2021, 24, 243–254. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ghani, A.A.; Chan, N.W. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 2015, 22, 6208–6219. [Google Scholar] [CrossRef]
- Li, W.; Fang, H.; Qin, G.; Tan, X.; Huang, Z.; Zeng, F.; Du, H.; Li, S. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. 2020, 731, 139099. [Google Scholar] [CrossRef]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar]
- Wu, Y.; Zhang, X.; Xiao, Y.; Feng, J. Attention neural network for water image classification under IoT environment. Appl. Sci. 2020, 10, 909. [Google Scholar] [CrossRef]
- Donders, A.R.T.; Van Der Heijden, G.J.; Stijnen, T.; Moons, K.G. A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 2006, 59, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Tomić, A.Š.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: Inter-and extrapolation performance with inputs’ significance analysis. Sci. Total Environ. 2018, 610, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Zounemat-Kermani, M.; Seo, Y.; Kim, S.; Ghorbani, M.A.; Samadianfard, S.; Naghshara, S.; Kim, N.W.; Singh, V.P. Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida. Appl. Sci. 2019, 9, 2534. [Google Scholar] [CrossRef]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2020, 171, 115454. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Afroozeh, M.; Sohrabi, M.; Davallo, M.; Mimezami, S.; Motlee, F.; Khosravi, M. Application of artificial neural network, fuzzy inference system and adaptive neuro-fuzzy inference system to predict the removal of pb (ii) ions from the aqueous solution by using magnetic graphene/nylon 6. Chem. Sci. J. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Moon, T.; Kim, Y.; Kim, H.; Choi, M.; Kim, C. Fuzzy rule-based inference of reasons for high effluent quality in municipal wastewater treatment plant. Korean J. Chem. Eng. 2011, 28, 817–824. [Google Scholar] [CrossRef]
- Chen, H.; Chen, A.; Xu, L.; Xie, H.; Qiao, H.; Lin, Q.; Cai, K. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agric. Water Manag. 2020, 240, 106303. [Google Scholar] [CrossRef]
- Rosén, C.; Lennox, J. Multivariate and multiscale monitoring of wastewater treatment operation. Water Res. 2001, 35, 3402–3410. [Google Scholar] [CrossRef]
- Foschi, J.; Turolla, A.; Antonelli, M. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters for wastewater disinfection control. Water Res. 2021, 191, 116806. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.T. A traditional first flush assessment of E. coli in urban stormwater runoff. Water Sci. Technol. 2009, 60, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Djerioui, M.; Bouamar, M.; Ladjal, M.; Zerguine, A. Chlorine soft sensor based on extreme learning machine for water quality monitoring. Arab. J. Sci. Eng. 2019, 44, 2033–2044. [Google Scholar] [CrossRef]
- Qin, X.; Gao, F.; Chen, G. Wastewater quality monitoring system using sensor fusion and machine learning techniques. Water Res. 2012, 46, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Ni, B.; Li, W.; Sheng, G.; Yu, H. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chem. Eng. J. 2011, 174, 635–643. [Google Scholar] [CrossRef]
- Cha, D.; Park, S.; Kim, M.S.; Kim, T.; Hong, S.W.; Cho, K.H.; Lee, C. Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning method. Environ. Sci. Technol. 2020, 55, 709–718. [Google Scholar] [CrossRef]
- Egbert, J.; Plonsky, L. Bootstrapping techniques. In A Practical Handbook of Corpus Linguistics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 593–610. [Google Scholar]
- Bouamar, M.; Ladjal, M. Evaluation of the performances of ANN and SVM techniques used in water quality classification. In Proceedings of the 2007 14th IEEE International Conference on Electronics, Circuits and Systems, Marrakech, Morocco, 11–14 December 2007; pp. 1047–1050. [Google Scholar]
- Wu, D.; Wang, H.; Mohammed, H.; Seidu, R. Quality risk analysis for sustainable smart water supply using data perception. IEEE Trans. Sustain. Comput. 2019, 5, 377–388. [Google Scholar] [CrossRef]
- Sokolova, E.; Ivarsson, O.; Lillieström, A.; Speicher, N.K.; Rydberg, H.; Bondelind, M. Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. Sci. Total Environ. 2022, 802, 149798. [Google Scholar] [CrossRef]
- Garrido-Baserba, M.; Corominas, L.; Cortes, U.; Rosso, D.; Poch, M. The fourth-revolution in the water sector encounters the digital revolution. Environ. Sci. Technol. 2020, 54, 4698–4705. [Google Scholar] [CrossRef]
- Chang, K.; Gao, J.L.; Wu, W.Y.; Yuan, Y.X. Water quality comprehensive evaluation method for large water distribution network based on clustering analysis. J. Hydroinformatics 2011, 13, 390–400. [Google Scholar] [CrossRef]
- Wang, D.; Shen, J.; Zhu, S.; Jiang, G. Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model. Desalin. Water Treat. 2020, 173, 133–141. [Google Scholar] [CrossRef]
- Tian, C.; Feng, C.; Chen, L.; Wang, Q. Impact of water source mixture and population changes on the Al residue in megalopolitan drinking water. Water Res. 2020, 186, 116335. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, R. Random bagging classifier and shuffled frog leaping based optimal sensor placement for leakage detection in WDS. Water Resour. Manag. 2019, 33, 3111–3125. [Google Scholar] [CrossRef]
- Almheiri, Z.; Meguid, M.; Zayed, T. Failure modeling of water distribution pipelines using meta-learning algorithms. Water Res. 2021, 205, 117680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, X.; Smith, K.; Inial, G.; Liu, S.; Conil, L.B.; Pan, B. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res. 2019, 164, 114888. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, Z.L.; Carlton, D.D., Jr.; Fontenot, B.E.; Meik, J.M.; Walton, J.L.; Taylor, J.T.; Thacker, J.B.; Korlie, S.; Shelor, C.P.; Henderson, D. A comprehensive analysis of groundwater quality in the Barnett Shale region. Environ. Sci. Technol. 2015, 49, 8254–8262. [Google Scholar] [CrossRef]
- Lee, K.-J.; Yun, S.-T.; Yu, S.; Kim, K.-H.; Lee, J.-H.; Lee, S.-H. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea. J. Hydrol. 2019, 569, 685–697. [Google Scholar] [CrossRef]
- Jeihouni, M.; Toomanian, A.; Mansourian, A. Decision tree-based data mining and rule induction for identifying high quality groundwater zones to water supply management: A novel hybrid use of data mining and GIS. Water Resour. Manag. 2020, 34, 139–154. [Google Scholar] [CrossRef]
- Agrawal, P.; Sinha, A.; Kumar, S.; Agarwal, A.; Banerjee, A.; Villuri, V.G.K.; Annavarapu, C.S.R.; Dwivedi, R.; Dera, V.V.R.; Sinha, J. Exploring artificial intelligence techniques for groundwater quality assessment. Water 2021, 13, 1172. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, H.; Sun, C.; Li, H.; Gao, Y. Multivariate statistical approaches to identify the major factors governing groundwater quality. Appl. Water Sci. 2018, 8, 215. [Google Scholar] [CrossRef]
- Haimi, H.; Mulas, M.; Corona, F.; Vahala, R. Data-derived soft-sensors for biological wastewater treatment plants: An overview. Environ. Model. Softw. 2013, 47, 88–107. [Google Scholar] [CrossRef]
- Boyd, G.; Na, D.; Li, Z.; Snowling, S.; Zhang, Q.; Zhou, P. Influent forecasting for wastewater treatment plants in North America. Sustainability 2019, 11, 1764. [Google Scholar] [CrossRef]
- Wang, G.; Jia, Q.-S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial neural networks for water quality soft-sensing in wastewater treatment: A review. Artif. Intell. Rev. 2022, 55, 565–587. [Google Scholar] [CrossRef]
- Alvi, M.; French, T.; Cardell-Oliver, R.; Keymer, P.; Ward, A. Cost Effective Soft Sensing for Wastewater Treatment Facilities. IEEE Access 2022, 10, 55694–55708. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Y.; Huang, D. Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms. J. Chem. Eng. Jpn. 2016, 49, 925–936. [Google Scholar] [CrossRef]
- Kadri, F.; Sun, Y.; Leiknes, T. Forecasting of Wastewater Treatment Plant Key Features Using Deep Learning-Based Models: A Case Study. IEEE Access 2020, 8, 1–11. [Google Scholar]
- Salman, B.; Salem, O. Modeling failure of wastewater collection lines using various section-level regression models. J. Infrastruct. Syst. 2012, 18, 146–154. [Google Scholar] [CrossRef]
- Suchetana, B.; Rajagopalan, B.; Silverstein, J. Investigating regime shifts and the factors controlling Total Inorganic Nitrogen concentrations in treated wastewater using non-homogeneous Hidden Markov and multinomial logistic regression models. Sci. Total Environ. 2019, 646, 625–633. [Google Scholar] [CrossRef]
- Yuan, X.; Ge, Z.; Huang, B.; Song, Z.; Wang, Y. Semisupervised JITL framework for nonlinear industrial soft sensing based on locally semisupervised weighted PCR. IEEE Trans. Ind. Inform. 2016, 13, 532–541. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, M.W.; Woo, S.H.; Kim, Y.-J.; Park, J.M. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochem. 2006, 41, 2050–2057. [Google Scholar] [CrossRef]
- Antwi, P.; Li, J.; Meng, J.; Deng, K.; Quashie, F.K.; Li, J.; Boadi, P.O. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater. Bioresour. Technol. 2018, 257, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Chang, P.; Li, Z. Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application. Appl. Soft Comput. 2021, 105, 107227. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Wang, Y. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans. Ind. Inform. 2019, 16, 3168–3176. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Vousdoukas, M.; Hynes, W.; Carluccio, S.; Keou, O. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 2022, 35, 100387. [Google Scholar] [CrossRef]
- Asghari, F.; Piadeh, F.; Egyir, D.; Yousefi, H.; Rizzuto, J.P.; Campos, L.C.; Behzadian, K. Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications. Sustainability 2023, 15, 11151. [Google Scholar] [CrossRef]
- Stip, C.; Mao, Z.; Bonzanigo, L.; Browder, G.; Tracy, J. Water Infrastructure Resilience: Examples of Dams, Wastewater Treatment Plants, and Water Supply and Sanitation Systems; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Hollins, L.X.; Eisenberg, D.A.; Seager, T.P. Risk and resilience at the Oroville Dam. Infrastructures 2018, 3, 49. [Google Scholar] [CrossRef]
- Fu, G.; Sun, S.; Hoang, L.; Yuan, Z.; Butler, D. Artificial intelligence underpins urban water infrastructure of the future: A holistic perspective. Camb. Prism. Water 2023, 1, e14. [Google Scholar] [CrossRef]
- Ponti, M.; Seredko, A. Human-machine-learning integration and task allocation in citizen science. Humanit. Soc. Sci. Commun. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Garrido-Baserba, M.; Barnosell, I.; Molinos-Senante, M.; Sedlak, D.L.; Rabaey, K.; Schraa, O.; Verdaguer, M.; Rosso, D.; Poch, M. The third route: A techno-economic evaluation of extreme water and wastewater decentralization. Water Res. 2022, 218, 118408. [Google Scholar] [CrossRef]
- Rani, A.; Snyder, S.W.; Kim, H.; Lei, Z.; Pan, S.-Y. Pathways to a net-zero-carbon water sector through energy-extracting wastewater technologies. NPJ Clean. Water 2022, 5, 49. [Google Scholar] [CrossRef]
- Nakkasunchi, S.; Hewitt, N.J.; Zoppi, C.; Brandoni, C. A review of energy optimization modelling tools for the decarbonisation of wastewater treatment plants. J. Clean. Prod. 2021, 279, 123811. [Google Scholar] [CrossRef]
- Yuan, Z.; Olsson, G.; Cardell-Oliver, R.; van Schagen, K.; Marchi, A.; Deletic, A.; Urich, C.; Rauch, W.; Liu, Y.; Jiang, G. Sweating the assets–the role of instrumentation, control and automation in urban water systems. Water Res. 2019, 155, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Butler, D.; Khu, S.-T. Multiple objective optimal control of integrated urban wastewater systems. Environ. Model. Softw. 2008, 23, 225–234. [Google Scholar] [CrossRef]
- Bakker, M.; Vreeburg, J.; Palmen, L.; Sperber, V.; Bakker, G.; Rietveld, L. Better water quality and higher energy efficiency by using model predictive flow control at water supply systems. J. Water Supply Res. Technol. AQUA 2013, 62, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Man, Y.; Hu, Y.; Li, J.; Hong, M.; Cui, P. A deep learning based dynamic COD prediction model for urban sewage. Environ. Sci. Water Res. Technol. 2019, 5, 2210–2218. [Google Scholar] [CrossRef]
ML and AI Techniques | WWT and Monitoring Applications | Applications | Advantages | Disadvantages | Refs. |
---|---|---|---|---|---|
ANN-General | Modeling of dissolved oxygen concentrations, control, and classification of hydroponic systems; dosage and set point of chlorine; calibration of adsorption process parameters; and modeling of membrane-process parameters. | Supervised ML, regression, and classification. | High-dimensional datasets may be handled. Modeling and prediction outcomes are provided in a timely manner. Forward propagation allows for low-cost, quick processing. For more specific benefits of ANN models, see below. | High computational requirements, particularly during the backward propagation stage. Some models and architectures may be complex to understand independently, and there are specific drawbacks associated with ANN models. | [32] |
SVM/SVR | Three things are modeled: the dissolved oxygen content of rivers, the growth rates of aquaponic plants, and the stages in which plants grow—models of chemical and biological oxygen demand (BOD and COD) for membrane-process parameters. | Supervised ML in classification, regression, and pattern analysis | High-dimensional datasets can be handled, meaning there are more inputs than outputs. Small dataset modifications can be handled. Works with linear and nonlinear data. | Comparatively long training times. Modeling needs great computational power production. SVM/SVR is generally not appropriate for larger datasets. | [33] |
RF | Modeling the percentage removal in the adsorption process. Modeling dissolved oxygen in simple and hybrid ways. | Regression, classification, and machine learning. | Relatively stable with minimal influence of noise and outliers. Capable of managing continuous and categorical inputs, even with missing values/data. | Decision tree “density” determines accuracy and robustness. Model complexity, model training time, and needed computing power all significantly rise with density. | [34] |
FIS | Hydroponics system, environmental, and chlorine dosage set point control. | AI. Decision-making and system control. | The use of fuzzy logic, as opposed to binary logic, better represents how people make decisions. A clearly defined framework allows for an easy interpretation of results and choices. | Terminology can be misunderstood without knowing fuzzy logic. Application is reliant on operator-specified parameters and is susceptible to human error. | [35] |
CNN | DBP formation modeling | Regression, classification, segmentation, and supervised machine learning | Results are frequently viewed as being quite accurate. Results from the parallel model are acquired rapidly. Excels at problem-solving using visual inputs. | Model and architecture are comprehensive and intricate in and of themselves. Considerable computing power is necessary. | [36] |
RNN/LSTM | Simulation of membrane-process parameters and simulation of dissolved oxygen concentrations. | Supervised ML, regression, and Classification. | Suitable for modeling and time-series datasets. Suitable for modeling and sequential datasets. The length of dataset inputs is not constrained. | Training is challenging due to the high computing requirements and the massive and diverse dataset requirements. | [37] |
ELM | Dissolved oxygen concentration and modeling. | Supervised ML, regression, and classification | Short training times. Appropriate for pattern categorization. | Frequently encounters over-fitting or under-fitting if too many or too few concealed nodes are used. | [38] |
AI/ML Models | Objectives | Advantages | Difficulties | Refs. |
---|---|---|---|---|
FNN | Prediction, regression, and classification | Suitable for difficult nonlinear problems; simple to implement and comprehend | Complex model architecture and high cost of computation | [40] |
PSO | Clustering, regression, and classification | Strong universality, high computational efficiency, and simplicity and ease of use | Defective for discrete issues and sensitive to beginning circumstances | [41] |
CNN | Regression, segmentation, and classification | Suitable for modeling photos and extraction of key characteristics from images | Computationally costly and difficult to learn | [42] |
RF | Prediction, regression, and classification | Easy to use and simple, and suited for high-dimensional datasets | Costly to compute, requires thick decision trees to ensure correctness and robustness | [42] |
RNN | Regression, prediction, and classification | Appropriate for time-series modeling | Computationally costly and challenging to train | [43] |
DT | Regression, classification, and optimization | No requirement for processing beforehand, and it is simple to comprehend, interpret, and classify | Unsuitable for uneven datasets and ineffective training | [44] |
PCA | Clustering | Reduces dimensionality, is simple and straightforward to use | Loss of some crucial information and sensitivity to noise in the data | [45] |
DNN | Prediction, regression, and classification | Rapid and accurate forecast- Appropriate for difficult nonlinear problems | No requirement for processing beforehand, and it is simple to comprehend, interpret, and classify | [42] |
SVM | Regression, prediction, and classification | Able to solve situations with huge dimensions and appropriate for complicated separable datasets | Costly in terms of computation and unsuitable for bigger datasets | [42] |
ML/AI Method Used | Target Substance and Disinfectant | Input Parameters | Output | Ref. |
---|---|---|---|---|
BDCM and TCM | Chlorine | UVA254, temperature, pH, and Cl2 concentration | DBP tap concentration | [53] |
ANN | Free residual chlorine set point (FRC) | Production flow rate of the WTP, set point output of the reservoir, FRC of the treated water tank, compensatory system flow rate, FRC output of the WTP (mg/L), and dosage error | WTP FRC set point, chlorine dosage | [54] |
ANN and SVM | TTHM and chlorine (Cl2) | Chlorine, pH, temperature, TOC, UV254 | post-monsoon season (PoM) | [55] |
FIS | Chlorine quantity and chlorine (ClO) | pH, temperature, time, and raw water total organic carbon (TOC) | Chlorine dosage, FRC | [56] |
RBF-ANN | HAA5, BCAA, and HAA9 | UVA254, dissolved organic carbon, bromine concentration, temperature, pH, Cl2 concentration, NO2-N concentration, temperature, pH, and NH4+-N concentration | DBP tap concentration | [52] |
ANN | TTHM and chlorine | Conditions such as temperature, concentration of algae, pH, TOC, amount of chlorophyll-a, post-chlorine, and content of total chlorine | TTHM wastewater content | [57] |
SVM, RF, and ANN | TCAA and DCAA | The number of aromatic bonds, atomic distribution of electronegativity, and hydrophilicity and electrotopological characteristics related to electrostatic interactions | DBP wastewater content | [58] |
THAA, TCAA, and DCAA | Chlorine | Fluorescence spectra | DBP wastewater content | [59] |
Parameter | Algorithm | Input Parameters | Refs. |
---|---|---|---|
Prediction of DO | BWNN, ARIMA, BANN, and ANN | Dissolved oxygen | [70] |
Prediction of BOD | RF, DNN, and SVR | Longitude, latitude, time, site actual depth, total coliform, degree of turbulence at sea, temperature, EC, salinity, chlorophyll-a, transparency, density, PO4–P, NH3–N, TP, NOx–N, pH, DO, and TSS | [70] |
TN and TP prediction | ANN and SVM | Flow travel time, river flow, TN, DO, temperature, and TP | [71] |
Na, Mg, EC, Cl, HCO3−, SO4, TDS, and Ca prediction | ANN and SVM | Na, Mg, temperature, EC, HCO3, SO4, pH, Cl, TDS, and Ca | [72] |
Prediction of algal bloom | ANFIS | TSS, TP, COD, BOD, TOC, DTP, PO4–P, TN, total coliform, NH3–N, NO3–N, chlorophyll-a, temperature, DO, pH, EC, and fecal coliform | [73] |
Prediction of chlorophyll-a | SVM and ANN | Chlorophyll-a, PO4–P, NH3–N, NO3–N, temperature, solar radiation, and wind speed | [74] |
Heavy metal contamination assay | PCA | Cu, Cd, Ni, Zn, Mn, Pb, Cr, and Co | [75] |
Hyperparameter selection optimization | SVR | Chlorophyll-a, EC, BGA-PC, DO, turbidity, fDOM, and pollution sediments | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alprol, A.E.; Mansour, A.T.; Ibrahim, M.E.E.-D.; Ashour, M. Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective. Water 2024, 16, 314. https://doi.org/10.3390/w16020314
Alprol AE, Mansour AT, Ibrahim MEE-D, Ashour M. Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective. Water. 2024; 16(2):314. https://doi.org/10.3390/w16020314
Chicago/Turabian StyleAlprol, Ahmed E., Abdallah Tageldein Mansour, Marwa Ezz El-Din Ibrahim, and Mohamed Ashour. 2024. "Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective" Water 16, no. 2: 314. https://doi.org/10.3390/w16020314