Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase
Abstract
:1. Introduction
- (1)
- identify the spatial distribution characteristics of anthropogenic source phosphorus input intensity in PLB;
- (2)
- identify the impact of climate change on the TP loading of typical rivers in the PLB;
- (3)
- identify the characteristics of phosphorus transport in PLB under the premise of climate change and crop yield increase.
2. Materials and Methods
2.1. Study Area
2.2. Climate Change Scenarios
2.3. Spatial Set-Up of SimplyP and Model Input
2.4. Watershed P Management Scenarios
3. Results and Discussion
3.1. Time Variation Characteristics of Anthropogenic Phosphorus Emission in PLB
3.2. Spatial Emission Characteristics of Anthropogenic Source Phosphorus in PLB
3.3. Response Mechanism of the Phosphorus Transport Process to Climate Change in PLB
3.3.1. Effects of Climate Change on Agricultural Non-Point Source Phosphorus Flux into the River
3.3.2. Effects of Climate Change on the TP Fluxes at the Lake Inlets of Typical Rivers in the PLB
3.4. Assessment of Agricultural Non-Point Source Phosphorus Management Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2009. [Google Scholar]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ma, L.; Gao, Z.; Wang, F.; Sims, J.; Ma, W.; Zhang, F. The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010. J. Environ. Qual. 2013, 42, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Gallet, A.; Flisch, R.; Ryser, J.; Frossard, E.; Sinaj, S. Effect of phosphate fertilization on crop yield and soil phosphorus status. J. Plant Nutr. Soil Sci. 2003, 166, 568–578. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y. Spatiotemporal evolution and driving factors of fertilizer reduction control in Zhejiang Province. Sci. Total Environ. 2019, 660, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, T.; Tian, S. Evaluating Fertilizer Use Efficiency and Spatial Correlation of Its Determinants in China: A Geographically Weighted Regression Approach. Int. J. Environ. Res. Public Health 2020, 17, 8830. [Google Scholar] [CrossRef]
- Jackson-Blake, L.A.; Starrfelt, J. Do higher data frequency and Bayesian auto-calibration lead to better model calibration? Insights from an application of INCA-P, a process-based river phosphorus model. J. Hydrol. 2015, 527, 641–655. [Google Scholar] [CrossRef]
- Zhang, R.; Li, C.; Fu, K.; Li, C.; Li, C. Phosphorus Alters Starch Morphology and Gene Expression Related to Starch Biosynthesis and Degradation in Wheat Grain. Front. Plant Sci. 2018, 8, 2252. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, Q.; Pan, J.; Sun, L.; Sun, Y.; Xue, Y.; Song, K. Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Sci. Rep. 2019, 9, 19802. [Google Scholar] [CrossRef]
- El Mazlouzi, M.; Morel, C.; Chesseron, C.; Robert, T.; Mollier, A. Contribution of External and Internal Phosphorus Sources to Grain P Loading in Durum Wheat (Triticum durum L.) Grown Under Contrasting P Levels. Front. Plant Sci. 2020, 11, 870. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Yindong, T.; Ziwei, C.; Yingting, W.; Miao, Q.; Yuyi, W.; Mengshi, Z.; Yan, L.; Jian, S.; Hefeng, Z.; Ruonan, W.; et al. Exploring dynamics of riverine phosphorus exports under future climate change using a process-based catchment model. J. Hydrol. 2022, 605, 127344. [Google Scholar] [CrossRef]
- Elser, J.; Bennett, E. A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef]
- Farkas, C.; Beldring, S.; Bechmann, M.; Deelstra, J. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model. Soil Use Manag. 2013, 29, 124–137. [Google Scholar] [CrossRef]
- Rao, J.; Ji, X.; Ouyang, W.; Zhao, X.; Lai, X. Dilemma Analysis of China Agricultural Non-point Source Pollution Based on Peasants’ Household Surveys. Procedia Environ. Sci. 2012, 13, 2169–2178. [Google Scholar] [CrossRef]
- Guo, W.; Fu, Y.; Ruan, B.; Ge, H.; Zhao, N. Agricultural non-point source pollution in the Yongding River Basin. Ecol. Indic. 2014, 36, 254–261. [Google Scholar] [CrossRef]
- Ockenden, M.; Deasy, C.; Benskin, C.; Beven, K.; Burke, S.; Collins, A.; Evans, R.; Falloon, P.; Forber, K.; Hiscock, K.; et al. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total. Environ. 2016, 548–549, 325–339. [Google Scholar] [CrossRef]
- Couture, R.-M.; Moe, S.J.; Lin, Y.; Kaste, L.; Haande, S.; Solheim, A.L. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Sci. Total Environ. 2018, 621, 713–724. [Google Scholar] [CrossRef]
- Fang, D.; Hao, L.; Cao, Z.; Huang, X.; Qin, M.; Hu, J.; Liu, Y.; Sun, G. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. J. Hydrol. 2020, 587, 124869. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Jarvie, H.P. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef]
- Crossman, J.; Futter, M.; Oni, S.; Whitehead, P.; Jin, L.; Butterfield, D.; Baulch, H.; Dillon, P. Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. J. Great Lakes Res. 2012, 39, 19–32. [Google Scholar] [CrossRef]
- Sun, C.; Zhen, L.; Giashuddin Miah, M. Comparison of the ecosystem services provided by China’s Poyang Lake wetland and Bangladesh’s Tanguar Haor wetland. Ecosyst. Serv. 2017, 26, 411–421. [Google Scholar] [CrossRef]
- Zhen, L.; Li, F.; Huang, H.; Dilly, O.; Liu, J.; Wei, Y.; Cao, X. Households’ willingness to reduce pollution threats in the Poyang Lake region, southern China. J. Geochem. Explor. 2011, 110, 5–22. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. National Lakes Assessment: A Collaborative Survey of the Nations Lakes; Office of Water and Office of Research and Development: Washington, DC, USA, 2009. [Google Scholar]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Withers, P.J.A.; van Dijk, K.C.; Neset, T.-S.S.; Nesme, T.; Oenema, O.; Rubæk, G.H.; Schoumans, O.F.; Smit, B.; Pellerin, S. Stewardship to tackle global phosphorus inefficiency: The case of Europe. AMBIO 2015, 44, 193–206. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Akhtar, K.; Jiang, L. Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field. Sci. Rep. 2021, 11, 10048. [Google Scholar] [CrossRef]
- Xu, M.-G.; Li, D.-C.; Li, J.-M.; Qin, D.-Z.; Kazuyuki, Y.; Hosen, Y. Effects of Organic Manure Application with Chemical Fertilizers on Nutrient Absorption and Yield of Rice in Hunan of Southern China. Agric. Sci. China 2008, 7, 1245–1252. [Google Scholar] [CrossRef]
- Shaheen, S.; Tsadilas, C. Phosphorus Sorption and Availability to Canola Grown in an Alfisol Amended with Various Soil Amendments. Commun. Soil Sci. Plant Anal. 2013, 44, 89–103. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Y.; Nie, J.; Liao, Y.; Zhu, Q. Substituting chemical P fertilizer with organic manure: Effects on double-rice yield, phosphorus use efficiency and balance in subtropical China. Sci. Rep. 2021, 11, 8629. [Google Scholar] [CrossRef]
- Jackson-Blake, L.A.; Sample, J.E.; Wade, A.J.; Helliwell, R.C.; Skeffington, R.A. Are our dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P. Water Resour. Res. 2017, 53, 5382–5399. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Chen, C.A.; Hsu, H.H.; Liang, H.C. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia—ScienceDirect. Weather. Clim. Extrem. 2021, 31, 100303. [Google Scholar] [CrossRef]
- Wang, R.N.; Peng, W.Q.; Liu, X.B.; Wu, W.Q.; Chen, X.K.; Zhang, S.J.; Jiang, C.L. Quantitative estimation of the impacts of climate change and anthropogenic activities on inflow variations in the Poyang Lake Basin during the last 55 years. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012080. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, L.; Jiang, J.; Fan, H. Spatiotemporal Variations of Summer Precipitation and Their Correlations with the East Asian Summer Monsoon in the Poyang Lake Basin, China. Water 2019, 11, 1705. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Lu, J.; Fu, X.; Zhang, Y.; Liang, D.; Xu, Q. Precipitation projections using a spatiotemporally distributed method: A case study in the Poyang Lake watershed based on the MRI-CGCM3. Hydrol. Earth Syst. Sci. 2019, 23, 1649–1666. [Google Scholar] [CrossRef]
- Rojas, R.; Feyen, L.; Dosio, A.; Bavera, D. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol. Earth Syst. Sci. 2011, 15, 2599–2620. [Google Scholar] [CrossRef]
- Wei, S.; Dai, Y.; Liu, B. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar]
- Lamontagne, J.R.; Barber, C.A.; Vogel, R.M. Improved estimators of model performance efficiency for skewed hydrologic data. Water Resour. Res. 2020, 56, e2020WR029001. [Google Scholar] [CrossRef]
- Clark, M.P.; Vogel, R.M.; Lamontagne, J.R.; Mizukami, N.; Knoben, W.J.M.; Tang, G.; Gharari, S.; Freer, J.E.; Whitfield, P.H.; Shook, K.R.; et al. The abuse of popular performance metrics in hydrologic modeling. Water Resour. Res. 2021, 57, e2020WR029001. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46, W05521. [Google Scholar] [CrossRef]
- Nguyen, D.A.; Duong, S.H.; Tran, P.A.; Cao, H.H.; Ho, B.Q. Combination of data-driven models and interpolation technique to develop of PM10 map for Hanoi, Vietnam. Sci. Rep. 2020, 10, 19268. [Google Scholar] [CrossRef]
- Jackson-Blake, L.A.; Wade, A.J.; Futter, M.N.; Butterfield, D.; Couture, R.-M.; Cox, B.A.; Crossman, J.; Ekholm, P.; Halliday, S.J.; Jin, L.; et al. The INtegrated CAtchment model of phosphorus dynamics (INCA-P): Description and demonstration of new model structure and equations. Environ. Model. Softw. 2016, 83, 356–386. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X.; et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–511. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.; Zhu, G.; Gao, G. Improving water quality in China: Environmental investment pays dividends. Water Res. 2017, 118, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yu, X.; Wang, X.; Wang, Y.; Tian, J.; Xu, L.; Wang, C. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China. Chemosphere 2013, 90, 329–337. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Zhu, S.; Gao, Y.; Zheng, X. Meta-analysis on the responses of soil bulk density to supplementation of organic fertilizers in croplands in China. J. Agric. Resour. Environ. 2021, 38, 867–873. [Google Scholar]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Han, C.; Liu, Z.; Wang, X. Optimal Selection of Empirical Reference Evapotranspiration Method in 36 Different Agricultural Zones of China. Agronomy 2022, 12, 31. [Google Scholar] [CrossRef]
Data | Data Description | Data Source |
---|---|---|
GlobeLand 30 m—2010 | Ecological land classification and land use classifications (ELC) GIS layer | National Geographic Information Resources Catalogue Service System |
Watershed boundary and geographic feature data | Grid and Vector GIS maps | HydroSHEDS (https://www.hydrosheds.org/) (accessed on 1 July 2022) |
Temperature, precipitation and evaporation | Daily time series (2006–2018) | China surface climate data daily value dataset (V3.0) |
Discharge, suspended sediment | Daily time series (2011, 2012, 2017, 2018) | Hydrological Yearbook of the People’s Republic of China–Hydrological data of Poyang Lake Basin |
Total phosphorus | Monthly time series (2011, 2012, 2017, 2018) | Ministry of Ecology and Environment of China |
Net anthropogenic phosphorus input | 6 high-resolution GIS grid maps of NAPI from non-point and point each year (2006–2018) | China Statistical Yearbook |
Initial total soil P content and bulk density | TP content and BD soil profile data sets of eight standard layers (topsoil was extracted to layer 1–4) | Land–Atmosphere Interaction Research Group at Sun Yat-sen University (http://globalchange.bnu.edu.cn) (accessed on 1 July 2022) |
Sub-Watershed | Emission Intensity (kg/km2/year) | Area (km2) | Emission Flux (10,000 tons) |
---|---|---|---|
G B | 914 | 80,504.39 | 7.36 |
F B | 979 | 15,659.72 | 1.53 |
Xin B | 895 | 15,367.62 | 1.38 |
Rao B | 693 | 16,110.27 | 1.12 |
Xiu B | 656 | 14,471.20 | 0.95 |
Total | 868 | 142,113.21 | 12.33 |
Modeled Rivers | Historical Period (tons) (2011–2018) | RCP (tons) (2020–2049) | % Increase | ||
---|---|---|---|---|---|
RCP2.6 | RCP4.5 | RCP8.5 | |||
Ganjiang | 6789 | 9690 | 10,439 | 8897 | 31.1–53.8% |
Fuhe | 1016 | 1421 | 1561 | 1286 | 26.6–53.6% |
Xinjiang | 1040 | 1576 | 1698 | 1441 | 38.6–63.3% |
Raohe | 600 | 891 | 967 | 813 | 35.5–61.2% |
Xiushui | 984 | 1514 | 1651 | 1386 | 40.9–67.8% |
Total | 10,430 | 15,092 | 16,316 | 13,823 | 32.5–56.4% |
Scenario | Livestock and Poultry Breeding (%) | Inorganic Phosphate Fertilizer (%) | Crop Yield (%) | Bulk Density (%) | NAPI (kg/km2/year) |
---|---|---|---|---|---|
Baseline | 0 | 0 | 0 | 0 | 868 |
Scenario I | +2.20% | 0 | +0.60% | −4.53% | 1027 |
Scenario II | +2.20% | −2.50% | +0.60% | −9.0% | 842 |
Scenario | RCP2.6 (tons) | RCP4.5 (tons) | RCP8.5 (tons) | |||
---|---|---|---|---|---|---|
Baseline | 15,092 | — | 16,316 | — | 13,823 | — |
Scenario I (Comparison Baseline) | 15,711 | +4.1% | 16,995 | +4.16% | 14,392 | +4.12% |
Scenario II (Comparison Scenario I) | 15,161 | −3.5% | 16,380 | −3.62% | 13,901 | −3.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Huang, X.; Chen, Z.; Zhuge, X.; Tong, Y.; Lu, X.; Lin, Y. Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase. Water 2024, 16, 295. https://doi.org/10.3390/w16020295
Gao L, Huang X, Chen Z, Zhuge X, Tong Y, Lu X, Lin Y. Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase. Water. 2024; 16(2):295. https://doi.org/10.3390/w16020295
Chicago/Turabian StyleGao, Liwei, Xin Huang, Ziwei Chen, Xingchen Zhuge, Yindong Tong, Xueqiang Lu, and Yan Lin. 2024. "Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase" Water 16, no. 2: 295. https://doi.org/10.3390/w16020295
APA StyleGao, L., Huang, X., Chen, Z., Zhuge, X., Tong, Y., Lu, X., & Lin, Y. (2024). Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase. Water, 16(2), 295. https://doi.org/10.3390/w16020295