Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure
Abstract
1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Sampling and Laboratory Procedure
2.3. Statistical Method
3. Results
4. Discussion
5. Conclusions
- The benthic macroinvertebrate communities are influenced by local conditions at the site, and the littoral zooplankton shows similar behavior, albeit to a lesser extent.
- Pelagic zooplankton exhibits a strong dependency on drift and its production in the upper reaches of the river. The composition of pelagic organisms remains relatively consistent downstream, even in a highly altered river environment.
- In small lowland watercourses impacted by strong anthropopressure, the applicability of the River Continuum Concept schemes is less pronounced for drifting organisms compared to sedentary organisms.
- To improve the biodiversity values and ecological state of a river, restoration treatments of the bed and shore zones are required.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schinegger, R.; Trautwein, C.; Melcher, A.; Schmutz, S. Multiple human pressures and their spatial patterns in European running waters. Water Environ. J. 2012, 26, 261–273. [Google Scholar] [CrossRef]
- Wohl, E. The significance of small streams. Front. Earth Sci. 2017, 11, 447–456. [Google Scholar] [CrossRef]
- Jurczak, T.; Wagner, I.; Wojtal-Frankiewicz, A.; Frankiewicz, P.; Bednarek, A.; Łapińska, M.; Kaczkowski, K.; Zalewski, M. Comprehensive approach to restoring urban recreational reservoirs. Part 1–Reduction of nutrient loading through low-cost and highly effective ecohydrological measures. Ecol. Eng. 2019, 131, 81–98. [Google Scholar] [CrossRef]
- Brooker, M.P. The Ecological Effects of Channelization. Geogr. J. 1985, 151, 63–69. [Google Scholar] [CrossRef]
- Zhou, T.; Endreny, T. The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services. Water 2020, 12, 1680. [Google Scholar] [CrossRef]
- Gob, F.; Houbrechts, G.; Hiver, J.M.; Petit, F. River dredging, channel dynamics and bedload transport in an incised meandering river (the River Semois, Belgium). River Res. Applic. 2005, 21, 791–804. [Google Scholar] [CrossRef]
- Manap, N.; Voulvoulis, N. Data analysis for environmental impact of dredging. J. Clean. Prod. 2016, 137, 394–404. [Google Scholar] [CrossRef]
- Fuller, M.R.; Doyle, M.W.; Strayer, D.L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 2015, 1355, 31–51. [Google Scholar] [CrossRef]
- Tripathi, B.D.; Sikandar, M.; Shukla, S.C. Physico-chemical characterization of city sewage discharged into river Ganga at Varanasi, India. Environ. Int. 1991, 17, 469–478. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef]
- Poole, G.; Berman, C. An Ecological Perspective on In-Stream Temperature: Natural Heat Dynamics and Mechanisms of Human-CausedThermal Degradation. Environ. Manag. 2007, 27, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Sługocki, Ł.; Czerniawski, R. Water Quality of the Odra (Oder) River before and during the Ecological Disaster in 2022: A Warning to Water Management. Sustainability 2023, 15, 8594. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Larsen, S.; Bruno, M.C.; Vaughan, I.P.; Zolezzi, G. Testing the River Continuum Concept with geostatistical stream-network models. Ecol. Complex. 2019, 39, 100773. [Google Scholar] [CrossRef]
- Roebuck, J.A., Jr.; Seidel, M.; Dittmar, T.; Jaffé, R. Controls of Land Use and the River Continuum Concept on Dissolved Organic Matter Composition in an Anthropogenically Disturbed Subtropical Watershed. Environ. Sci. Technol. 2020, 54, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Tomanova, S.; Tedesco, P.A.; Campero, M.; Van Damme, P.A.; Moya, N.; Oberdorff, T. Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: A test of the River Continuum Concept. Fundamental and Applied Limnology. Arch. Hydrobiol. 2007, 170, 233–241. [Google Scholar] [CrossRef]
- Demars, B.O.; Kemp, J.L.; Friberg, N.; Usseglio-Polatera, P.; Harper, D.M. Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecol. Indic. 2012, 23, 301–311. [Google Scholar] [CrossRef]
- Lampart-Kałużniacka, M.; Celińska-Spodar, A. Monitoring miejskiego odcinka Dzierżęcinki z wykorzystaniem makrobentosu w celu renaturyzacji koryta rzeki. Rocz. Ochr. Sr. 2008, 10, 444–457. [Google Scholar]
- Lampart-Kałużniacka, M.; Zdoliński, P.; Chrzanowski, K.; Górajek, A.; Masian, P. Assessment of quality of various water types based on macrobenthic bioindicators. Rocz. Ochr. Sr. 2009, 11, 63–74. [Google Scholar]
- Radwan, S. Freshwater Fauna of Poland; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Polska, 2004; pp. 1–447. [Google Scholar]
- Rybak, J.I.; Błędzki, L.A. Planktonic Crustaceans of Freshwaters; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 2010; pp. 1–366. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 5 December 2023).
- Czerniawski, R.; Domagała, J. Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra). Hydrobiologia 2010, 638, 137–149. [Google Scholar] [CrossRef]
- Sługocki, Ł.; Czerniawski, R.; Kowalska-Góralska, M.; Teixeira, C.A. Hydro-modifications matter: Influence of vale transformation on microinvertebrate communities (Rotifera, Cladocera, and Copepoda) of upland rivers. Ecol. Indic. 2021, 122, 107259. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Karpowicz, M. Rotifera in lake subhabitats. Aquat. Ecol. 2021, 55, 1285–1296. [Google Scholar] [CrossRef]
- Napiórkowski, P.; Bąkowska, M.; Mrozińska, N.; Szymańska, M.; Kolarova, N.; Obolewski, K. The effect of hydrological connectivity on the zooplankton structure in floodplain lakes of a regulated large river (the Lower Vistula, Poland). Water 2019, 11, 1924. [Google Scholar] [CrossRef]
- Halabowski, D.; Bielańska-Grajner, I.; Lewin, I.; Sowa, A. Diversity of rotifers in small rivers affected by human activity. Diversity 2022, 14, 127. [Google Scholar] [CrossRef]
- Czerniawski, R.; Sługocki, Ł. Analysis of zooplankton assemblages from man-made ditches in relation to current velocity. Oceanol. Hydrobiol. Stud. 2017, 46, 199–211. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Krupa, E.G.; Barinova, S.S.; Romanova, S.M. Ecological mapping in assessing the impact of environmental factors on the aquatic ecosystem of the Arys River Basin, South Kazakhstan. Diversity 2019, 11, 239. [Google Scholar] [CrossRef]
- Su, P.; Wang, X.; Lin, Q.; Peng JSong, J.; Fu, J.; Wang, S.; Cheng, D.; Bai, H.; Li, Q. Variability in macroinvertebrate community structure and its response to ecological factors of the Weihe River Basin, China. Ecol. Eng. 2019, 140, 105595. [Google Scholar] [CrossRef]
- Growns, I.; Murphy, J.F.; Jones, J.I. The effects of altered flow and bed sediment on macroinvertebrates in stream mesocosms. Mar. Freshw. Res. 2017, 68, 496–505. [Google Scholar] [CrossRef]
- Li, F.; Chung, N.; Bae, M.J.; Kwon, Y.S.; Park, Y.S. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshw. Biol. 2012, 57, 2107–2124. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wang, L.; Lu, D.; Cai, D.; Wang, B. Influences of dispersal and local environmental factors on stream macroinvertebrate communities in Qinjiang River, Guangxi, China. Aquat. Biol. 2014, 20, 185–194. [Google Scholar] [CrossRef]
Site | TEMP (°C) | O2 (mg/L) | pH | COND (µS cm) | TDS (g/L) | CL (mg/L) | CHL A (µg/L) | NO3 (mg/L) | NH4 (mg/L) | SAL (g/L) | S.S. (mg/L) | PTOT (mg/L) | NTOT (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | mean | 11.44 | 8.22 | 7.48 | 384.67 | 0.2429 | 107.02 | 4.37 | 3.09 | 1.36 | 0.19 | 13.83 | 0.63 | 2.52 |
SD | 7.36 | 2.69 | 0.78 | 66.85 | 0.0403 | 92.10 | 3.29 | 3.22 | 1.72 | 0.04 | 15.67 | 0.78 | 1.71 | |
min | 0.81 | 4.21 | 6.00 | 215.00 | 0.1378 | 25.60 | 1.31 | 0.27 | 0.32 | 0.10 | 4.00 | 0.11 | 0.50 | |
max | 23.06 | 11.80 | 8.32 | 492.00 | 0.3174 | 280.00 | 12.30 | 9.61 | 5.60 | 0.23 | 63.00 | 2.84 | 5.30 | |
2 | mean | 12.02 | 8.13 | 7.31 | 670.92 | 0.4251 | 197.25 | 3.63 | 3.75 | 4.51 | 0.33 | 15.00 | 0.51 | 4.25 |
SD | 7.00 | 2.35 | 0.74 | 120.93 | 0.0822 | 125.74 | 2.32 | 3.27 | 5.96 | 0.06 | 12.96 | 0.18 | 3.22 | |
min | 3.07 | 4.12 | 5.82 | 474.00 | 0.3035 | 68.68 | 1.48 | 0.50 | 1.15 | 0.24 | 5.00 | 0.19 | 0.80 | |
max | 23.96 | 11.50 | 8.04 | 861.00 | 0.5571 | 438.00 | 9.20 | 10.31 | 22.26 | 0.42 | 50.00 | 0.89 | 12.60 | |
3 | mean | 11.99 | 7.98 | 7.25 | 651.33 | 0.4152 | 197.51 | 3.51 | 3.67 | 3.73 | 0.32 | 14.67 | 0.80 | 4.65 |
SD | 6.72 | 2.19 | 0.78 | 85.99 | 0.0542 | 119.92 | 2.49 | 3.25 | 3.83 | 0.04 | 7.76 | 0.86 | 3.27 | |
min | 3.04 | 4.40 | 5.71 | 537.00 | 0.3441 | 82.48 | 1.32 | 0.52 | 1.16 | 0.25 | 6.00 | 0.13 | 1.70 | |
max | 23.34 | 10.67 | 7.99 | 792.00 | 0.5075 | 430.00 | 10.10 | 10.04 | 14.96 | 0.41 | 30.00 | 3.20 | 12.50 | |
4 | mean | 11.89 | 7.89 | 7.24 | 624.08 | 0.3882 | 189.11 | 3.39 | 3.80 | 3.50 | 0.30 | 13.83 | 0.78 | 3.64 |
SD | 6.75 | 2.12 | 0.84 | 78.38 | 0.0489 | 115.76 | 2.35 | 3.84 | 3.52 | 0.05 | 7.46 | 0.82 | 2.68 | |
min | 2.70 | 4.28 | 5.52 | 482.00 | 0.2824 | 84.85 | 1.29 | 0.50 | 1.22 | 0.19 | 6.00 | 0.15 | 1.10 | |
max | 23.81 | 10.33 | 8.01 | 724.00 | 0.4415 | 426.00 | 9.40 | 11.72 | 13.55 | 0.36 | 26.00 | 3.00 | 10.50 | |
5 | mean | 11.60 | 8.26 | 7.14 | 563.25 | 0.3619 | 182.28 | 3.54 | 3.76 | 2.79 | 0.28 | 13.50 | 0.73 | 3.67 |
SD | 7.14 | 3.30 | 0.92 | 102.82 | 0.0626 | 118.42 | 2.31 | 4.09 | 2.19 | 0.06 | 7.81 | 0.65 | 2.82 | |
min | 1.31 | 3.82 | 5.05 | 326.00 | 0.2087 | 75.01 | 1.18 | 0.51 | 0.89 | 0.16 | 5.00 | 0.15 | 1.20 | |
max | 24.05 | 15.00 | 8.13 | 719.00 | 0.4415 | 420.00 | 8.80 | 12.18 | 7.33 | 0.36 | 29.00 | 2.14 | 9.80 | |
Jamno | mean | 11.96 | 8.33 | 6.80 | 481.67 | 0.3026 | 218.04 | 6.32 | 5.44 | 2.19 | 0.22 | 17.61 | 0.85 | 3.97 |
SD | 7.59 | 3.77 | 2.37 | 168.96 | 0.1039 | 133.88 | 9.31 | 4.58 | 1.75 | 0.08 | 9.53 | 0.71 | 2.79 | |
min | 1.31 | 3.30 | 0.92 | 102.82 | 0.0626 | 72.50 | 1.18 | 0.35 | 0.89 | 0.06 | 5.00 | 0.15 | 1.00 | |
max | 26.00 | 15.20 | 9.32 | 719.00 | 0.4415 | 420.00 | 34.00 | 12.18 | 7.33 | 0.36 | 32.00 | 2.14 | 9.80 |
Quantitative Similarity | Binary Similarity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zooplankton | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
2 | 0.51 | 1.00 | |||||||||
3 | 0.52 | 0.68 | 1.00 | 1.00 | |||||||
4 | 0.59 | 0.66 | 0.85 | 1.00 | 1.00 | 1.00 | |||||
5 | 0.68 | 0.52 | 0.57 | 0.64 | 1.00 | 1.00 | 1.00 | 1.00 | |||
J | 0.07 | 0.07 | 0.06 | 0.06 | 0.08 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | |
Macroinvertebrates | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
2 | 0.60 | 0.71 | |||||||||
3 | 0.34 | 0.42 | 0.60 | 0.59 | |||||||
4 | 0.34 | 0.41 | 0.75 | 0.80 | 0.63 | 0.70 | |||||
5 | 0.36 | 0.45 | 0.75 | 0.68 | 0.65 | 0.65 | 0.82 | 0.84 | |||
J | 0.24 | 0.28 | 0.52 | 0.55 | 0.57 | 0.48 | 0.44 | 0.61 | 0.65 | 0.67 |
Zooplankton | Macroinvertebrates | |
---|---|---|
r | 0.01 | 0.81 |
p-value | 0.3416 | 0.0083 |
Zooplankton | |||
---|---|---|---|
df | R2 | Adj. R2 | |
Site | 4 | 0.03797 | −0.032 |
Month | 15 | 0.73732 | 0.64777 |
Site + Month | 19 | 0.77568 | 0.66913 |
Macroinvertebrates | |||
Site | 4 | 0.14819 | −0.07895 |
Month | 3 | 0.37264 | 0.25501 |
Site + Month | 7 | 0.52084 | 0.24133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krepski, T.; Sługocki, Ł.; Goździk, I.; Humiczewski, M.; Popko, R.; Czerniawski, R. Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure. Water 2024, 16, 262. https://doi.org/10.3390/w16020262
Krepski T, Sługocki Ł, Goździk I, Humiczewski M, Popko R, Czerniawski R. Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure. Water. 2024; 16(2):262. https://doi.org/10.3390/w16020262
Chicago/Turabian StyleKrepski, Tomasz, Łukasz Sługocki, Iwona Goździk, Maciej Humiczewski, Rafał Popko, and Robert Czerniawski. 2024. "Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure" Water 16, no. 2: 262. https://doi.org/10.3390/w16020262
APA StyleKrepski, T., Sługocki, Ł., Goździk, I., Humiczewski, M., Popko, R., & Czerniawski, R. (2024). Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure. Water, 16(2), 262. https://doi.org/10.3390/w16020262