Capacity Assessment of a Combined Sewer Network under Different Weather Conditions: Using Nature-Based Solutions to Increase Resilience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrologic-Hydraulic Simulation of a Combined Sewer Network
2.2. Nature-Based Solutions Located in the Urban Fabric
2.3. Study Area and Capacity Assessment Process
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iliadis, C.; Galiatsatou, P.; Glenis, V.; Prinos, P.; Kilsby, C. Urban flood modelling under extreme rainfall conditions for building-level flood exposure analysis. Hydrology 2023, 10, 172. [Google Scholar] [CrossRef]
- Kvitsjoen, J.; Paus, K.H.; Bjerkholt, J.T.; Fergus, T.; Lindholm, O. Intensifying rehabilitation of combined sewer systems using trenchless technology in combination with low impact development and green infrastructure. Water Sci. Technol. 2021, 83, 2947–2962. [Google Scholar] [CrossRef] [PubMed]
- Gogien, F.; Dechesne, M.; Martinerie, R.; Lipeme Kouyi, G. Assessing the impact of climate change on Combined Sewer Overflows based on small time step future rainfall timeseries and long-term continuous sewer network modelling. Water Res. 2023, 230, 119504. [Google Scholar] [CrossRef] [PubMed]
- Galiatsatou, P.; Iliadis, C. Intensity-duration-frequency curves at ungauged sites in a changing climate for sustainable stormwater networks. Sustainability 2022, 14, 1229. [Google Scholar] [CrossRef]
- Langeveld, J.G.; Schilperoort, R.P.S.; Weijers, S.R. Climate change and urban wastewater infrastructure: There is more to explore. J. Hydrol. 2013, 476, 112–119. [Google Scholar] [CrossRef]
- Willems, P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. J. Hydrol. 2013, 496, 166–177. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A. Adaptation of urban drainage networks to climate change: A review. Sci. Total Environ. 2021, 771, 145431. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Yazdanfar, Z.; Sharma, A. Urban drainage system planning and design–challenges with climate change and urbanization: A review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef]
- Chen, J.; Theller, L.; Gitau, M.W.; Engel, B.A.; Harbor, J.M. Urbanization impacts on surface runoff of the contiguous United States. J. Environ. Manag. 2017, 187, 470–481. [Google Scholar] [CrossRef]
- Salerno, F.; Gaetano, V.; Gianni, T. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Res. 2018, 144, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hassan, B.T.; Yassine, M.; Amin, D. Comparison of urbanization, climate change, and drainage design impacts on urban flashfloods in an arid region: Case study, New Cairo, Egypt. Water 2022, 14, 2430. [Google Scholar] [CrossRef]
- Cho, S.Y.; Chang, H. Recent research approaches to urban flood vulnerability, 2006–2016. Nat. Hazards 2017, 88, 633–649. [Google Scholar] [CrossRef]
- Rus, K.; Kilar, V.; Koren, D. Resilience assessment of complex urban systems to natural disasters: A new literature review. Int. J. Disaster Risk Red. 2018, 31, 311–330. [Google Scholar] [CrossRef]
- Fenner, R.; O’donnell, E.; Ahilan, S.; Dawson, D.; Kapetas, L.; Krivtsov, V.; Ncube, S.; Vercruysse, K. Achieving urban flood resilience in an uncertain future. Water 2019, 11, 1082. [Google Scholar] [CrossRef]
- Voskamp, I.M.; de Luca, C.; Polo-Ballinas, M.B.; Hulsman, H.; Brolsma, R. Nature-based solutions tools for planning urban climate adaptation: State of the art. Sustainability 2021, 13, 6381. [Google Scholar] [CrossRef]
- Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.; Sumi, T. Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities. J. Environ. Manag. 2023, 344, 118260. [Google Scholar] [CrossRef]
- Caroppi, G.; Pugliese, F.; Gerundo, C.; De Paola, F.; Stanganelli, M.; Urciuoli, G.; Nadim, F.; Oen, A.; Andres, P.; Giugni, M. A comprehensive framework tool for performance assessment of NBS for hydro-meteorological risk management. J. Environ. Plan. Manag. 2024, 67, 1231–1257. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Griffiths, G.; Sang, Y.; Feng, M. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Plavšić, J.; Doong, D.J.; Bahlmann, T.; Alves, A.; Tseng, L.; Randelovic, A.; Todorovic, A.; Kocic, Z.; et al. Incorporating stakeholders’ preferences into a multi-criteria framework for planning large-scale Nature-Based Solutions. Ambio 2021, 50, 1514–1531. [Google Scholar] [CrossRef] [PubMed]
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.K.; Bolan, N.; Zhu, Y.G.; Balasubramanian, R. Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. Resour. Conserv. Recycl. 2022, 186, 106578. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Castiglione, B.; Palha, P. Nature-based solutions for socially and environmentally responsible new cities: The contribution of green roofs. In Circular Economy and Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–255. [Google Scholar]
- Greksa, A.; Blagojević, B.; Grabić, J. Nature-based solutions in Serbia: Implementation of rain gardens in the suburban community Kać. Environ. Process. 2023, 10, 41. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Mendes, A.M.; Santos, C. Green roofs as an urban NbS strategy for rainwater retention: Influencing factors—A review. Water 2023, 15, 2787. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Phil. Trans. R. Soc. B 2020, 375, 20190124. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Martín, E.G.; Giordano, R.; Pagano, A.; Van Der Keur, P.; Costa, M.M. Using a system thinking approach to assess the contribution of nature-based solutions to sustainable development goals. Sci. Total Environ. 2020, 738, 139693. [Google Scholar] [CrossRef]
- Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sanchez, A.; Boogaard, F.; Kluck, J. Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustainability 2019, 11, 6361. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; Hullebusch, E.D.V.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Singh, A.; Sarma, A.K.; Hack, J. Cost-effective optimization of nature-based solutions for reducing urban floods considering limited space availability. Environ. Process. 2020, 7, 297–319. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, Z.; Ke, Q.; Liu, J.; Irannezhad, M.; Fan, D.; Hou, M.; Sun, L. Nature-based solutions for urban pluvial flood risk management. WIREs Water 2020, 7, e1421. [Google Scholar] [CrossRef]
- Quaranta, E.; Fuchs, S.; Liefting, H.J.; Schellart, A.; Pistocchi, A. Costs and benefits of combined sewer overflow management strategies at the European scale. J. Environ. Manag. 2022, 318, 115629. [Google Scholar] [CrossRef]
- Ramísio, P.J.; Brito, R.S.; Beceiro, P. Accessing synergies and opportunities between nature-based solutions and urban drainage systems. Sustainability 2022, 14, 16906. [Google Scholar] [CrossRef]
- Hamers, E.M.; Maier, H.R.; Zecchin, A.C.; van Delden, H. Effectiveness of nature-based solutions for mitigating the impact of pluvial flooding in urban areas at the regional scale. Water 2023, 15, 642. [Google Scholar] [CrossRef]
- Farina, A.; Di Nardo, A.; Gargano, R.; van der Werf, J.A.; Greco, R. A simplified approach for the hydrological simulation of urban drainage systems with SWMM. J. Hydrol. 2023, 623, 129757. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Brirhet, H.; Benaabidate, L. Comparison of two hydrological models (lumped and distributed) over a pilot area of the issen watershed in the Souss Basin, Morocco. Eur. Sci. J. 2016, 12, 347–358. [Google Scholar] [CrossRef]
- Paudel, M.; Nelson, E.J.; Downer, C.W.; Hotchkiss, R. Comparing the capability of distributed and lumped hydrologic models for analyzing the effects of land use change. J. Hydroinform. 2011, 13, 461–473. [Google Scholar] [CrossRef]
- Kaleris, V.; Langousis, A. Comparison of two rainfall–runoff models: Effects of conceptualization on water budget components. Hydrol. Sci. J. 2017, 62, 729–748. [Google Scholar] [CrossRef]
- Smith, M.B.; Seo, D.-J.; Koren, V.I.; Reed, S.M.; Zhang, Z.; Duan, Q.; Moreda, F.; Cong, S. The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol. 2005, 298, 4–26. [Google Scholar] [CrossRef]
- dos Santos, F.M.; de Oliveira, R.P.; Mauad, F.F. Lumped versus distributed hydrological modeling of the Jacaré-Guaçu Basin, Brazil. J. Environ. Eng. 2018, 144, 04018056. [Google Scholar] [CrossRef]
- InfoWorks ICM Help Documentation. Available online: https://help-innovyze.refined.site/space/infoworksicm/18219088/ (accessed on 31 May 2024).
- Sheng, J.G.; Dan, Y.D.; Liu, C.S.; Ma, L.M. Study of Simulation in Storm Sewer System of Zhenjiang Urban by Infoworks ICM. Model. Appl. Mech. Mater. 2012, 193, 683–686. [Google Scholar] [CrossRef]
- Peng, H.-Q.; Liu, Y.; Wang, H.-W.; Ma, L.-M. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model. Environ. Sci. Pollut. Res. 2015, 22, 15712–15721. [Google Scholar] [CrossRef]
- Biswas, R.R. Modelling seismic effects on a sewer network using Infoworks ICM. Indian J. Sci. Technol. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-resolution hydrological-hydraulic modeling of urban floods using InfoWorks ICM. Sustainability 2021, 13, 10259. [Google Scholar] [CrossRef]
- Leitao, J.; Simoes, N.; Pina, R.D.; Ochoa-Rodriguez, S.; Onof, C.; Sa Marques, A. Stochastic evaluation of the impact of sewer inlets’ hydraulic capacity on urban pluvial flooding. Stoch. Environ. Res. Risk Assess. 2017, 31, 1907–1922. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, Z.; Hong, S.; Song, S. Flood risk zoning by using 2D hydrodynamic modeling: A case study in Jinan City. Math. Probl. Eng. 2017, 2017, 5659197. [Google Scholar] [CrossRef]
- InfoWorks ICM Help/SWMM Model. Available online: https://help.autodesk.com/view/IWICMS/2024/ENU/?guid=GUID-5FF080B6-BD22-489C-933A-E3105FE5FBBC/ (accessed on 31 May 2024).
- Primin, O.; Ten, A.; Khudyakova, D. Hydraulic calculations of storm sewer networks. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 163, p. 03012. [Google Scholar]
- Moazzem, S.; Bhuiyan, M.; Muthukumaran, S.; Fagan, J.; Jegatheesan, V. A critical review of Nature-based Systems (NbS) to treat stormwater in response to climate change and urbanization. Curr. Pollut. Rep. 2024, 10, 286–311. [Google Scholar] [CrossRef]
- Blagojević, B.; Vasilevska, L.; Anđelković, D.; Bogojević, A.; Lousada, S.A. Framework for assessing Nature-based urban stormwater management solutions: A preliminary spatial analysis approach applied to southeast Serbia. Water 2023, 15, 3604. [Google Scholar] [CrossRef]
- Yang, S.; Ruangpan, L.; Sanchez Torres, A.; Vojinovic, Z. Multi-objective Optimisation Framework for Assessment of Trade-Offs between Benefits and Co-benefits of Nature-based Solutions. Water Resour. Manag. 2023, 37, 2325–2345. [Google Scholar] [CrossRef]
- Twohig, C.; Casali, Y.; Aydin, N.Y. Can green roofs help with stormwater floods? A geospatial planning approach. Urban For. Urban Green. 2022, 76, 127724. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations, and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Daniels, B.J.; Yeakley, J.A. Catchment-scale hydrologic effectiveness of residential rain gardens: A case study in Columbia, Maryland, USA. Water 2024, 16, 1304. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Garrido, F.; Painenao, D.; Sotil, A. Evaluation of the use of permeable interlocking concrete pavement in Chile: Urban infrastructure solution for adaptation and mitigation against climate change. Water 2023, 15, 4219. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Ho, M.-C.; Chiou, Y.-S.; Huang, L.-L. Assessing the performance of permeable pavement in mitigating flooding in urban areas. Water 2023, 15, 3551. [Google Scholar] [CrossRef]
- Nazarpour, S.; Gnecco, I.; Palla, A. Evaluating the effectiveness of bioretention cells for urban stormwater management: A systematic review. Water 2023, 15, 913. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells. J. Irrig. Drain. Eng. 2011, 137, 132–143. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Uncertainty and rank order in the analytic hierarchy process. Eur. J. Oper. Res. 1987, 32, 107–117. [Google Scholar] [CrossRef]
- Zionts, S.; Wallenius, J. An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Manag. Sci. 1983, 29, 519–529. [Google Scholar] [CrossRef]
- Kaliszewski, I.; Podkopaev, D. Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Syst. Appl. 2016, 54, 155–161. [Google Scholar] [CrossRef]
- Kourtis, I.; Papadopoulou, C.; Papadopoulou, M.P.; Laspidou, C.S.; Tsihrintzis, V.A. A multi-criteria analysis framework for assessment of Nature-based solutions (NbS). In Proceedings of the 7th IAHR Europe Congress, Athens, Greece, 7–9 September 2022; Volume 9. [Google Scholar]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- Kaykhosravi, S.; Khan, U.T.; Jadidi, M.A. A simplified geospatial model to rank LID solutions for urban runoff management. Sci. Total Environ. 2022, 831, 154937. [Google Scholar] [CrossRef]
- Yang, Z.; Ahmad, S.; Bernardi, A.; Shang, W.L.; Xuan, J.; Xu, B. Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework. Appl. Energy 2023, 332, 120492. [Google Scholar] [CrossRef]
- Nasrin, T.; Sharma, A.K.; Muttil, N. Impact of short duration intense rainfall events on sanitary sewer network performance. Water 2017, 9, 225. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- Kilsdonk, R.A.H.; Bomers, A.; Wijnberg, K.M. Predicting urban flooding due to extreme precipitation using a long short-term memory neural network. Hydrology 2022, 9, 105. [Google Scholar] [CrossRef]
- Zafirakou, A. Sustainable Urban Water Management. In Book City Networks. Collaboration and Planning for Health and Sustainability, 1st ed.; Karakitsiou, A., Migdalas, A., Rassia, S.T., Pardalos, P.M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 128, pp. 227–258. [Google Scholar]
- Guo, Y.; Zhang, S.; Liu, S. Runoff reduction capabilities and irrigation requirements of green roofs. Water Resour. Manag. 2014, 28, 1363–1378. [Google Scholar] [CrossRef]
- Soulis, K.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
Characteristic | Description (Range) |
---|---|
Shape | Egg-shaped and Circular |
Diameter | Egg-shaped: 600 × 1000 mm–1500 × 2600 mm, Circular: 300 mm–1500 mm |
Slope | 0.1–4% (flat sewers and sewers with reverse slope are not included) |
Length | 4 m–120 m |
Age | 10–100 years |
Baseflow (l/s) | Diurnal Pattern Factor | Per Capita Flow Rate (l/c/d) | Population within a Subcatchment |
---|---|---|---|
0.00–3.5 | 0.22–1.63 | 300 | 0–723 |
Surface Type | Parameters | ||
---|---|---|---|
Initial Loss (m) | Runoff Coefficient | Runoff Routing Value | |
Impervious | 0.00–0.007 | 0.1–1.00 | 0.013–1.00 |
Pervious | 0.005–0.012 | 0.10–0.50 | 0.41 |
Criterion | Flood Mitigation | Environmental Benefits | Social Acceptance | Applicability | Energy Efficiency | Weights |
---|---|---|---|---|---|---|
Flood mitigation | 1 | 3 | 5 | 1/3 | 5 | 0.258 |
Environmental benefits | 1/3 | 1 | 3 | 1/5 | 3 | 0.127 |
Social acceptance | 1/5 | 1/3 | 1 | 1/7 | 1/3 | 0.046 |
Applicability | 3 | 5 | 7 | 1 | 6 | 0.491 |
Energy efficiency | 1/5 | 1/3 | 3 | 1/6 | 1 | 0.078 |
Criterion | Weights AHP Method | Green Roofs | Rain Gardens | Permeable Pavements | Bioretention Areas |
---|---|---|---|---|---|
Flood mitigation | 0.258 | 4 | 3 | 3 | 5 |
Environmental benefits | 0.127 | 3 | 4 | 3 | 4 |
Social acceptance | 0.046 | 4 | 3 | 4 | 2 |
Applicability | 0.491 | 5 | 4 | 3 | 1 |
Energy efficiency | 0.078 | 4 | 1 | 1 | 1 |
Final score | 0.917 | 0.729 | 0.610 | 0.526 |
Type of NBS | Parameters | ||
---|---|---|---|
Surface | Soil | Drainage Mat | |
Storage Depth: 15 mm | Porosity: 0.40 | Thickness: 50 mm | |
Green Roofs | Veg. Vol. Frac.: 0.9 | Conductivity: 5 mm/hr | Void Fraction: 0.80 |
Surface Slope: 1% | Field Capacity: 0.30 | Flow Coef.: 0.40 |
Return Period of Storm Events | Conditions | No Basement Flooding (No. of Pipes) | Basement Flooding (No. of Pipes) | Surface Flow (No. of Pipes) |
---|---|---|---|---|
2 years (scenario 1) | Existing | 281 | - | - |
Proposed | 281 | - | - | |
10 years (scenario 2) | Existing | 180 | 98 | 3 |
Proposed | 279 | 2 | - | |
50 years (scenario 3) | Existing | - | 229 | 52 |
Proposed | 258 | 23 | - | |
100 years (scenario 4) | Existing | - | 194 | 87 |
Proposed | 237 | 44 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiatsatou, P.; Zafeirakou, A.; Nikoletos, I.; Gkatzioura, A.; Kapouniari, M.; Katsoulea, A.; Malamataris, D.; Kavouras, I. Capacity Assessment of a Combined Sewer Network under Different Weather Conditions: Using Nature-Based Solutions to Increase Resilience. Water 2024, 16, 2862. https://doi.org/10.3390/w16192862
Galiatsatou P, Zafeirakou A, Nikoletos I, Gkatzioura A, Kapouniari M, Katsoulea A, Malamataris D, Kavouras I. Capacity Assessment of a Combined Sewer Network under Different Weather Conditions: Using Nature-Based Solutions to Increase Resilience. Water. 2024; 16(19):2862. https://doi.org/10.3390/w16192862
Chicago/Turabian StyleGaliatsatou, Panagiota, Antigoni Zafeirakou, Iraklis Nikoletos, Argyro Gkatzioura, Maria Kapouniari, Anastasia Katsoulea, Dimitrios Malamataris, and Ioannis Kavouras. 2024. "Capacity Assessment of a Combined Sewer Network under Different Weather Conditions: Using Nature-Based Solutions to Increase Resilience" Water 16, no. 19: 2862. https://doi.org/10.3390/w16192862
APA StyleGaliatsatou, P., Zafeirakou, A., Nikoletos, I., Gkatzioura, A., Kapouniari, M., Katsoulea, A., Malamataris, D., & Kavouras, I. (2024). Capacity Assessment of a Combined Sewer Network under Different Weather Conditions: Using Nature-Based Solutions to Increase Resilience. Water, 16(19), 2862. https://doi.org/10.3390/w16192862