Development on Surrogate Models for Predicting Plume Evolution Features of Groundwater Contamination with Natural Attenuation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual and Baseline Models for Constructing Different Representative Simulation Scenarios
2.2. Orthogonal Experiment
2.3. Support Vector Machine (SVM)
2.4. Optimization of SVM Parameters
3. Results and Discussion
3.1. GMS Numerical Simulation Results of Orthogonal Experiment Scenarios
3.2. Identification of Key Controlling Factors
3.3. PSO-SVM Surrogate Model
3.3.1. Model Development Based on the Dataset from Orthogonal Experiment Scenarios
3.3.2. Model Enhancement Based on the Additional Sample Data
3.3.3. Model Reliability Increasing by Dimension Deduction
3.4. Multiple Regression Statistical Surrogate Model
3.5. Discussion
3.5.1. Comparisons between the Two Types of the Developed Surrogate Models
3.5.2. Further Elucidation about the Validation on the Built Surrogate Models
3.5.3. Practicability and Advantage of Prediction Uncertainty Assessment
4. Conclusions
- (1)
- According to the numerical simulations and variance analysis, the key controlling factors affecting the DMPS, T-DMPS and MC-DMPS of contaminant plumes are different. It is indicated that the transport and fate of contaminants in the aquifer are significantly correlated not only with hydrological parameters but also with certain parameters of the aquitard and confined aquifer. The degradation coefficient of the phreatic aquifer is a crucial factor determining the natural attenuation of the contaminants.
- (2)
- The PSO-SVM model prediction accuracy can be gradually enhanced by implementing the measures of effectively increasing the sample data sizes and replacing all of considered input variables with the identified key controlling factors. It is interesting to note that the final developed PSO-SVM models still can present good reliability with the utilization of the limited sample data.
- (3)
- The statistical surrogate models are also constructed by multiple regression based on the same dataset used for the PSO-SVM model. The statistical regression surrogate models also exhibit pretty good fitting accuracy, while in comparison, the PSO-SVM models offer generally higher prediction accuracy than the statistical regression models, particularly by taking the key controlling factors as input variables.
- (4)
- The findings of this study offer effective generic surrogate models along with a scientific basis and investigation approach reference for environmental risk management and remediation pertaining to the commonly existing groundwater contamination.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Demirak, A.; Yilmaz, F.; Tuna, A.L.; Ozdemir, N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 2006, 63, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Shah, M.T.; Khan, S. Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem. Toxicol. 2010, 48, 2855–2864. [Google Scholar] [CrossRef]
- Wang, W.; Jia, J.; Zhang, B.; Xiao, B.; Yang, H.; Zhang, S.; Gao, X.; Han, Y.; Zhang, S.; Liu, Z.; et al. A review of Sustained release materials for remediation of organically contaminated groundwater: Material preparation, applications and prospects for practical application. J. Hazard. Mater. Adv. 2024, 13, 100393. [Google Scholar] [CrossRef]
- Cundy, A.; Bardos, R.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Neu, S.; Mench, M.; Witters, N.; Vangronsveld, J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. 2013, 129, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ravindiran, G.; Rajamanickam, S.; Sivarethinamohan, S.; Sathaiah, B.K.; Ravindran, G.; Muniasamy, S.K.; Hayder, G. A Review of the Status, Effects, Prevention, and Remediation of Groundwater Contamination for Sustainable Environment. Water 2023, 15, 3662. [Google Scholar] [CrossRef]
- Hossain, M.; Bhattacharya, P.; Jacks, G.; von Brömssen, M.; Ahmed, K.M.; Hasan, M.A.; Frape, S.K. Sustainable Arsenic Mitigation–from Field Trials to Implementation for Control of Arsenic in Drinking Water Supplies in Bangladesh. Best Practice Guide on the Control of Arsenic in Drinking Water; Metals and Related Substances in Drinking Water Series; IWA Publishing: London, UK, 2017; pp. 99–116. [Google Scholar]
- Lone, S.A.; Jeelani, G.; Mukherjee, A.; Coomar, P. Arsenic fate in upper Indusr iver basin (UIRB) aquifers: Controls of hydrochemical processes, provenances and water-aquifer matrix interaction. Sci. Total Environ. 2021, 795, 148734. [Google Scholar] [CrossRef]
- Qaiser, F.U.; Zhang, F.; Pant, R.R.; Zeng, C.; Khan, N.G.; Wang, G. Characterization and health risk assessment of arsenic in natural waters of the Indus River Basin, Pakistan. Sci. Total Environ. 2023, 857, 159408. [Google Scholar] [CrossRef]
- Liu, G.; Niu, J.; Zhang, C.; Guo, G. Characterization and assessment of contaminated soil and groundwater at an organic chemical plant site in Chongqing, Southwest China. Environ. Geochem. Health 2016, 38, 607–618. [Google Scholar] [CrossRef]
- Bardos, R.P.; Bone, B.D.; Boyle, R.; Evans, F.; Harries, N.D.; Howard, T.; Smith, J.W. The rationale for simple approaches for sustainability assessment and management in contaminated land practice-ScienceDirect. Sci. Total Environ. 2016, 563, 755–768. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, M.; He, Z.; Zhang, W. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution. Zhongguo Huanjing Kexue/China Environ. Sci. 2018, 38, 1185–1193. [Google Scholar]
- U.S. Environmental Protection Agency. Use of Monitored Natural Attenuation at Superfund, RCRA, Corrective Action and UST Sites EPA’s Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4-17; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
- Rügner, H.; Finkel, M.; Kaschl, A.; Bittens, M. Application of monitored natural attenuation in contaminated land management—A review and recommended approach for Europe. Environ. Sci. Policy 2006, 9, 568–576. [Google Scholar] [CrossRef]
- Amiri, S.; Rajabi, A.; Shabanlou, S.; Yosefvand, F.; Izadbakhsh, M.A. Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci. Inform. 2023, 16, 3227–3241. [Google Scholar] [CrossRef]
- Valivand, F.; Katibeh, H. Simulation and Prediction of Groundwater Pollution Based on GMS: A Case Study in Beijing, China. IOP Conf. Ser. Earth Environ. Sci. 2021, 826, 012014. [Google Scholar]
- Valivand, F.; Katibeh, H. Prediction of nitrate distribution process in the groundwater via 3D modeling. Environ. Model. Assess. 2020, 25, 187–201. [Google Scholar] [CrossRef]
- Tong, X.X.; Ning, L.B.; Dong, S.G. GMS model for assessment and prediction of groundwater pollution of a garbage dumpling site in Luoyang. Miner. Explor. 2012, 35, 197–201. [Google Scholar]
- Gao, Q.F.; Jiao, J.N.; Zhang, Y.Z.; Du, J.X. Application of numerical simulation in groundwater environmental impact assessment based on GMS: A case study of an industrial park. Miner. Explor. 2023, 14, 1236–1243. [Google Scholar]
- Zou, Y.; Yousaf, M.S.; Yang, F.; Deng, H.; He, Y. Surrogate-Based Uncertainty Analysis for Groundwater Contaminant Transport in a Chromium Residue Site Located in Southern China. Water 2024, 16, 638. [Google Scholar] [CrossRef]
- Davis, S.E. Efficient Surrogate Model Development: Impact of Sample Size and Underlying Model Dimensions. Comput. Aided Chem. Eng. 2018, 44, 979–984. [Google Scholar]
- Kanu, O.P.; Ugwoha, E.; Udeh, N.U.; Amah, V. Modelling Groundwater Quality of Aba in Abia State Using Principal Component Analysis and Multiple Linear Regression. J. Eng. Res. Rep. 2023, 25, 39–54. [Google Scholar] [CrossRef]
- Alshahri, A.H.; Elbisy, M.S. Assessment of Using Artificial Neural Network and Support Vector Machine Techniques for Predicting Wave-Overtopping Discharges at Coastal Structures. J. Mar. Sci. Eng. 2023, 11, 539. [Google Scholar] [CrossRef]
- Guneshwor, L.; Eldho, T.I.; Kumar, A.V. Identification of Groundwater Contamination Sources Using Meshfree RPCM Simulation and Particle Swarm Optimization. Water Resour. Manag. 2018, 32, 1517–1538. [Google Scholar] [CrossRef]
- Gad, M.; Gaagai, A.; Eid, M.H.; Szűcs, P.; Hussein, H.; Elsherbiny, O.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Moustapha, M.E.; et al. Groundwater Quality and Health Risk Assessment Using Indexing Approaches, Multivariate Statistical Analysis, Artificial Neural Networks, and GIS Techniques in El Kharga Oasis, Egypt. Water 2023, 15, 1216. [Google Scholar] [CrossRef]
- Krishna, A.K.; Satyanarayanan, M.; Govil, P.K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 2009, 167, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Nuzul, N.B.M.; Hassan, M.K.; Norrima, M.; Amirul, W.M.W.; Heshalini, R.; Tarmizi, A.; Jafferi, J. Automatic dry waste classification for recycling purpose. Int. Conf. Artif. Life Robot. 2022, 3, 1003–1010. [Google Scholar]
- Gai, R.; Guo, Z. A water quality assessment method based on an improved grey relational analysis and particle swarm optimization multi-classification support vector machine. Front. Plant Sci. 2023, 14, 1099668. [Google Scholar] [CrossRef]
- Pang, X.; Hu, H.R.; Zhao, C.; Bai, N.B. Research on air quality classification based on PSO-SVM algorithm. Environ. Sci. Surv. 2023, 42, 63–67. [Google Scholar]
- Xu, G.; Yan, X.-E.; Cao, N.; Ma, J.; Xie, G.; Li, L. Debris Flow Prediction Based on the Fast Multiple Principal Component Extraction and Optimized Broad Learning. Water 2022, 14, 3374. [Google Scholar] [CrossRef]
- Wang, B.L.; Wang, M.Y.; Pang, Y.T. Primary controlling Factors and statistical modeling of plum stability for BTEX in Typical phreatic aquifers. Earth Sci. 2023, 48, 3454–3465. [Google Scholar]
- GBT 14848-2017; Quality Standard for Groundwater. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Vapnik, V. The Natural of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Samandi, V.; Mukhopadhyay, D. Workflow scheduling in cloud computing environment with classification ordinal optimisation using SVM. Int. J. Comput. Sci. Eng. 2021, 24, 563–571. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, W.G.; Zou, J.X.; Yang, D.K.; Shi, H.Y. Quantitative Analysis of Furfural Dissolved in Transformer Oil Based on Raman Spectroscopy. J. Light Scatt. 2018, 30, 46–50. [Google Scholar]
- Li, M.Z.; Zhai, Y.Z.; Zuo, R. Sensitivity Analysis of Parameters in Numerical Simulation of Solute Transport in Groundwater. S.-N. Water Transf. Water Sci. Technol. 2014, 3, 133–137. [Google Scholar]
- Zhang, S.; Liu, Z.; Sun, R.; Liu, W.; Chen, Y. Orthogonal Experimental Study on Remediation of Ethylbenzene Contaminated Soil by SVE. Sustainability 2023, 15, 1168. [Google Scholar] [CrossRef]
- Newell, C.J.; Mcleod, R.K.; Gonzales, J.R. BIOSCREEN: Natural Attenuation Decision Support System. User’s Manual Version 1.3; U.S. Environmental Protectin Protection Agency, Office of Research and Development: Washington DC, USA, 1996.
- Ni, H.; Liu, Y.R.; Long, Z.G. Application of orthogonal design to sensitivity analysis of landslide. Chin. J. Rock Mech. Eng. 2002, 21, 989–992. [Google Scholar]
- Li, L. Quantifying TiO2 Abundance of Lunar Soils: Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect. J. Earth Sci. 2011, 22, 549–565. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values | ||
---|---|---|---|---|---|
Heads between Upstream and Downstream Boundaries (m) | 8 | Phreatic Aquifer | Effective Porosity P1 | 0.25 | |
Heads between Phreatic Aquifer and Confined Aquifer (m) | 1 | Average Thickness M1 (m) | 20 | ||
Recharge Rate R (m/d) | 0.0002 | Permeability Coefficient Kw1 (m/d) | 50 | ||
Concentration of Source Contamination C0 (mg/L) | 500 | Adsorption Coefficient Ka1 (m3/kg) | 0.0005 | ||
Area of Source Contamination A (m2) | 900 | Degradation Coefficient Kd1 (1/d) | 0.003 | ||
Ratio of Source Contamination Thickness to Phreatic Aquifer | 0.25 | Dispersion D1 (m) | 60 | ||
Aquitard | Effective Porosity P2 | 0.15 | Confined Aquifer | Effective Porosity P3 | 0.25 |
Average Thickness M2 (m) | 5 | Average Thickness M3 (m) | 25 | ||
Permeability Coefficient Kw2 (m/d) | 0.008 | Permeability Coefficient Kw3 (m/d) | 50 | ||
Adsorption Coefficient Ka2 (m3/kg) | 0.0005 | Adsorption Coefficient Ka3 (m3/kg) | 0.0005 | ||
Degradation Coefficient Kd2 (1/d) | 0.003 | Degradation Coefficient Kd3 (1/d) | 0.003 | ||
Dispersion D2 (m) | 0.4 | Dispersion D3 (m) | 60 |
Level | (m) | (m) | R (m/d) | Cs (1/Y) | C0 (mg/L) | A (900 m2) | r |
---|---|---|---|---|---|---|---|
1 | 4 | 1 | 0.0001 | 0.1 | 100 | 1 | 0.1 |
2 | 8 | 3 | 0.0002 | 1 | 300 | 25 | 0.5 |
3 | 12 | 5 | 0.0004 | 10 | 800 | 100 | 1 |
Phreatic Aquifer | |||||||
Level | P1 | M1 (m) | Kw1 (m/d) | Ka1 (m3/kg) | Kd1 (1/Y) | D1 | |
1 | 0.15 | 20 | 10 | 0.0001 | 0.1 | 10 | |
2 | 0.25 | 30 | 50 | 0.0005 | 1 | 30 | |
3 | 0.35 | 40 | 100 | 0.001 | 10 | 60 | |
Aquitard | |||||||
Level | P2 | M2 (m) | Kw2 (m/d) | Ka2 (m3/kg) | Kd2 (1/Y) | D2 | |
1 | 0.1 | 2 | 0.005 | 0.0001 | 0.1 | 0.2 | |
2 | 0.15 | 5 | 0.01 | 0.0005 | 1 | 0.4 | |
3 | 0.25 | 8 | 0.03 | 0.001 | 10 | 0.6 | |
Confined Aquifer | |||||||
Level | P3 | M3 (m) | Kw3 (m/d) | Ka3 (m3/kg) | Kd3 (1/Y) | D3 | |
1 | 0.15 | 10 | 10 | 0.0001 | 0.1 | 10 | |
2 | 0.25 | 50 | 60 | 0.0005 | 1 | 30 | |
3 | 0.35 | 120 | 120 | 0.001 | 10 | 60 |
ln(T-DMPS) | ln(DMPS) | ln(MC-DMPS) | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Mean Square Error | F Value | p Value | Mean Square Error | F Value | p Value | Mean Square Error | F Value | p Value |
0.199 | 1.02 | 0.316 | 4.589 | 29.69 | 0.000 ** | 3.474 | 53.35 | 0.000 ** | |
0.087 | 0.45 | 0.507 | 4.750 | 2.84 | 0.099 | 0.388 | 5.96 | 0.018 * | |
lnP1 | 1.483 | 7.63 | 0.008 ** | 0.189 | 1.19 | 0.282 | 2.638 | 40.50 | 0.000 ** |
lnM1 | 0.484 | 2.49 | 0.120 | 0.110 | 0.68 | 0.412 | 0.341 | 5.24 | 0.026 * |
lnKw1 | 1.507 | 7.75 | 0.007 ** | 27.717 | 173.24 | 0.000 ** | 1.621 | 24.89 | 0.000 ** |
lnKa1 | 2.963 | 15.25 | 0.000 ** | 0.024 | 0.15 | 0.699 | 0.404 | 6.20 | 0.016 * |
lnKd1 | 73.055 | 376.04 | 0.000 ** | 41.968 | 262.31 | 0.000 ** | 7.856 | 120.62 | 0.000 ** |
lnD1 | 0.002 | 0.01 | 0.917 | 0.007 | 0.05 | 0.833 | 0.014 | 0.21 | 0.648 |
lnP2 | 1.431 | 7.37 | 0.009 ** | 0.858 | 5.36 | 0.025 * | 0.396 | 6.08 | 0.017 * |
lnM2 | 0.000 | 0.00 | 0.982 | 0.012 | 0.07 | 0.790 | 0.690 | 10.60 | 0.002 ** |
lnKw2 | 0.482 | 2.48 | 0.121 | 0.001 | 0.00 | 0.945 | 0.013 | 0.20 | 0.658 |
lnKa2 | 2.437 | 12.55 | 0.001 ** | 1.770 | 11.07 | 0.002 ** | 0.026 | 0.40 | 0.530 |
lnKd2 | 0.511 | 2.63 | 0.111 | 1.408 | 8.80 | 0.005 ** | 0.013 | 0.20 | 0.659 |
lnD2 | 0.324 | 1.67 | 0.202 | 0.122 | 0.76 | 0.388 | 0.021 | 0.33 | 0.569 |
lnP3 | 0.003 | 0.02 | 0.897 | 0.037 | 0.23 | 0.634 | 0.493 | 7.57 | 0.008 ** |
lnM3 | 0.143 | 0.74 | 0.394 | 2.072 | 12.95 | 0.001 ** | 0.245 | 3.77 | 0.058 |
lnKw3 | 0.437 | 2.25 | 0.140 | 1.772 | 11.07 | 0.002 ** | 0.051 | 0.79 | 0.378 |
lnKa3 | 0.007 | 0.03 | 0.854 | 0.130 | 0.81 | 0.372 | 0.002 | 0.02 | 0.878 |
lnKd3 | 0.085 | 0.44 | 0.512 | 0.360 | 2.25 | 0.140 | 0.435 | 6.68 | 0.013 * |
lnD3 | 0.691 | 3.56 | 0.065 | 0.737 | 4.61 | 0.509 | 0.758 | 11.64 | 0.001 ** |
lnR | 0.521 | 2.68 | 0.108 | 0.597 | 3.73 | 0.044 * | 0.001 | 0.01 | 0.922 |
lnC0 | 0.225 | 1.16 | 0.287 | 0.011 | 0.07 | 0.000 ** | 61.765 | 948.33 | 0.000 ** |
lnA | 0.842 | 4.33 | 0.042 * | 3.429 | 21.43 | 0.329 | 13.293 | 204.10 | 0.000 ** |
lnCs | 0.973 | 5.01 | 0.030 * | 0.156 | 0.97 | 0.792 | 0.121 | 1.86 | 0.178 |
lnr | 1.213 | 6.24 | 0.016 * | 0.195 | 1.22 | 0.276 | 16.048 | 264.40 | 0.000 ** |
Outputs | C (mg/L) | T (Year) | D (m) | T-C (Year-mg/L) | T-D (Year-m) | D-C (m-mg/L) | T-D-C (Year-m-mg/L) |
Classification | C < 5 | T < 20 | D < 2000 | C < 5, T < 20 | T < 20, D < 2000 | D < 2000, C < 5 | T < 20, D < 2000, C < 5 |
Accuracy | 0.833 | 0.833 | 0.875 | 0.917 | 0.833 | 0.875 | 0.965 |
Outputs | C (mg/L) | T (Year) | D (m2) | T-C (Year-mg/L) | T-D (Year-m) | D-C (m-mg/L) | T-D-C (Year-m-mg/L) |
Classification | C < 5 | T < 20 | S < 2000 | C < 5, T < 20 | T < 20, S < 2000 | S < 2000, C < 5 | T < 20, S < 2000, C < 5 |
Accuracy | 0.833 | 0.833 | 0.875 | 0.917 | 0.875 | 0.833 | 0.965 |
Outputs | C (C < 5 mg/L) | T (T < 20 Y) | D (D < 2000 m) | C-T-D (C < 5 mg/L T < 20 Y D < 2000 m) |
---|---|---|---|---|
Accuracy of total factors | 0.625 | 0.333 | 0.917 | 0.75 |
Accuracy when p < 0.05 | 0.583 | 0.333 | 0.833 | 0.75 |
Accuracy when p < 0.01 | 0.417 | 0.333 | 0.734 | 0.672 |
Accuracy of PSO-SVM | 0.833 | 0.833 | 0.875 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, M.; Liu, R. Development on Surrogate Models for Predicting Plume Evolution Features of Groundwater Contamination with Natural Attenuation. Water 2024, 16, 2861. https://doi.org/10.3390/w16192861
Wang Y, Wang M, Liu R. Development on Surrogate Models for Predicting Plume Evolution Features of Groundwater Contamination with Natural Attenuation. Water. 2024; 16(19):2861. https://doi.org/10.3390/w16192861
Chicago/Turabian StyleWang, Yajing, Mingyu Wang, and Runfeng Liu. 2024. "Development on Surrogate Models for Predicting Plume Evolution Features of Groundwater Contamination with Natural Attenuation" Water 16, no. 19: 2861. https://doi.org/10.3390/w16192861
APA StyleWang, Y., Wang, M., & Liu, R. (2024). Development on Surrogate Models for Predicting Plume Evolution Features of Groundwater Contamination with Natural Attenuation. Water, 16(19), 2861. https://doi.org/10.3390/w16192861