Nitrogen Transport Pathways and Source Contributions in a Typical Agricultural Watershed Using Stable Isotopes and Hydrochemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Physiochemical Parameters and Isotope Analysis
2.4. Bayesian Isotope Mixing Model
2.5. Statistical Analysis
3. Results
3.1. Hydrochemical Parameters
3.2. Spatiotemporal Variation in N Components
3.3. Potential Nitrate Sources and Their Contributions
3.3.1. Hydrochemical Indicators
3.3.2. Principal Component Analysis
3.3.3. Isotope Compositions
3.3.4. Source Apportionment
4. Discussion
4.1. Nitrogen Transformation Processes in the Aquatic Environment
4.2. Impact of Hydrological Dynamics and Human Activities
4.3. Uncertainty Analysis and Implications for N Pollution Control
5. Conclusions
- (1)
- Both the surface water and groundwater in Wangmu Lake were found to be impacted by nitrogen pollution. In the surface water, the proportions of sites exceeding pollution thresholds for TN ranged from 16.67% to 33.33%, with a constant 5.56% for NH3-N. In groundwater, the proportions of sites polluted by NH3-N and NO3−-N ranged from 0 to 40% and remained constant at 20%.
- (2)
- Pearson correlation and principal component analysis suggested that nitrogen pollution in both surface water and groundwater originated from similar anthropogenic sources. The SIAR model further confirmed that agricultural fertilizers (AF, 7.1%~78.4%) and manure and sewage (M&S, 2.6%~69.7%) were the primary sources of nitrates for surface water, while M&S (67.9%~73.7%) were the predominant sources in groundwater.
- (3)
- Nitrification, hydrological dynamics, and human activities played significant roles in shaping the nitrogen cycle, influencing the spatiotemporal evolution of nitrogen in various forms, as well as the enrichment of nitrate stable isotopes.
- (4)
- Seasonal variations in hydrochemical components and stable isotopes provided additional insights into nitrogen transformation processes, thereby reducing the uncertainty in nitrate source identification. To effectively mitigate nitrogen pollution in agricultural watersheds, improvements in septic tanks and sewage networks, alongside the adsorption of scientific fertilization practices, are crucial.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biddau, R.; Dore, E.; Da Pelo, S.; Lorrai, M.; Botti, P.; Testa, M.; Cidu, R. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). Water Res. 2023, 232, 119663. [Google Scholar] [CrossRef] [PubMed]
- Beusen, A.H.; Bouwman, A.F.; Van Beek, L.P.; Mogollón, J.M.; Middelburg, J.J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 2016, 13, 2441–2451. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Sun, Y.; Peñuelas, J.; Huang, J.; Sardans, J.; Jiang, Q.; Finlay, J.C.; Britten, G.L.; Follows, M.J.; et al. Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nat. Geosci. 2022, 15, 464–468. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ju, H.Y.; Jiang, H.; Zhang, G.X.; Qi, P.; Li, Z. Identifying nitrate sources and transformations in an agricultural watershed in Northeast China: Insights from multiple isotopes. J. Environ. Manag. 2023, 340, 118023. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.L.; Shan, Z.X.; Ren, L.J. The deep challenge of nitrate pollution in river water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Yang, L.; Deng, J.; Zhao, G.; Guo, X. Spatial-temporal characteristics of nitrogen degradation in typical Rivers of Taihu Lake Basin, China. Sci. Total Environ. 2020, 713, 136456. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, X.; Peng, Z.; Zhang, H.; Hu, W.; Zhou, X. Retention of nitrogen and phosphorus in Lake Chaohu, China: Implications for eutrophication management. Environ. Sci. Pollut. Res. 2020, 27, 41488–41502. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Jia, S.; Mao, B. Multi-methods to investigate spatiotemporal variations of nitrogen-nitrate and its risks to human health in China’s largest fresh water Lake (Poyang Lake). Sci. Total Environ. 2023, 863, 160975. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, M.; Zhou, X.; Li, M.; Xie, S. Defining the sources and the fate of nitrate by using dual isotopes and a Bayesian isotope mixing model: Water–nitrate management in cascade dams of Lancang River. Sci. Total Environ. 2023, 886, 163995. [Google Scholar] [CrossRef]
- Isaza, D.F.G.; Cramp, R.L.; Franklin, C.E. Living in polluted waters: A metaanalysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa. Environ. Pollut. 2020, 261, 114091. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Zhang, D.; Hu, W.; Zhao, X.; Yan, H.; Liu, G.; Chen, A. Nitrogen in soil, manure and sewage has become a major challenge in controlling nitrate pollution in groundwater around plateau lakes, Southwest China. J. Hydrol. 2023, 620, 129541. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, F.; Sun, S.; Zhu, B.; Wang, P. Sources and transformations of nitrate in Qixiangcuo Lake and its inflow rivers in the northern Tibetan plateau. Environ. Sci. Pollut. Res. 2023, 30, 4245–4257. [Google Scholar] [CrossRef] [PubMed]
- Kazakis, N.; Matiatos, I.; Ntona, M.M.; Bannenberg, M.; Kalaitzidou, K.; Kaprara, E.; Manassis, M.; Ioannidou, A.; Vargemezis, G.; Konstantinos, V. Origin, implications and management strategies for nitrate pollution in surface and ground waters based on a δ15N-NO3− and δ18O-NO3− isotope approach. Sci. Total Environ. 2020, 724, 138211. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yue, F.; Wang, X.; Liu, Z.; Shi, Z.; Zhang, P. Identify nitrogen transport paths and sources contribution in karst valley depression area using isotopic approach. J. Environ. Manag. 2023, 337, 117751. [Google Scholar] [CrossRef] [PubMed]
- Burgis, C.R.; Hayes, G.M.; Zhang, W.; Henderson, D.A.; Macko, S.A.; Smith, J.A. Tracking denitrification in green stormwater infrastructure with dual nitrate stable isotopes. Sci. Total Environ. 2020, 747, 141281. [Google Scholar] [CrossRef]
- Hong, S.; Han, Y.; Kim, J.; Lim, B.R.; Park, S.Y.; Choi, H.; Park, M.R.; Kim, E.; Lee, S.; Huh, Y.; et al. A quantitative approach for identifying nitrogen sources in complex yeongsan river watershed, Republic of Korea, based on dual nitrogen isotope ratios and hydrological model. Water 2023, 15, 4275. [Google Scholar] [CrossRef]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Choi, W.J.; Kwak, J.H.; Lim, S.S.; Park, H.J.; Chang, S.X.; Lee, S.M.; Arshad, M.A.; Yun, S.I.; Kim, H.Y. Synthetic fertilizer and livestock manure differently affect δ15N in the agricultural landscape: A review. Agric. Ecosyst. Environ. Times 2017, 237, 1–15. [Google Scholar] [CrossRef]
- Mayer, B.; Boyer, E.W.; Goodale, C.; Jaworski, N.A.; Van Breemen, N.; Howarth, R.W.; Seitzinger, S.; Billen, G.; Lajtha, K.; Nadelhoffer, K.; et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. In The Nitrogen Cycle at Regional to Global Scales; Boyer, E.W., Howarth, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 171–197. [Google Scholar]
- Durka, W.; Schulze, E.D.; Gebauer, G.; Voerkeliust, S. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 1994, 372, 765–767. [Google Scholar] [CrossRef]
- Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut. 2005, 165, 13–35. [Google Scholar] [CrossRef]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef]
- Ji, X.; Shu, L.; Chen, W.; Chen, Z.; Shang, X.; Yang, Y.; Dahlgren, R.A.; Zhang, M. Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/δ18O-NO3− isotopes and SIAR modeling. J. Hazard. Mater. 2022, 438, 129480. [Google Scholar] [CrossRef]
- Cao, M.; Yin, X.; Zhang, J.; Jin, M.; Huang, X. Sources and transformations of nitrogen in an agricultural watershed on the Jianghan Plain, China: An integration of δ15N–NH4+, δ15N–NO3−, δ18O–NO3− and a Bayesian isotope mixing model. Appl. Geochem. 2022, 142, 105329. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Wang, Z. Effect of pollution load reduction on water quality in rural lakes in the shallow hill water network area. Water Sci. Technol. Water Supply 2022, 22, 6213–6229. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA-AWWA-WET: Washington, DC, USA, 1998. [Google Scholar]
- Zhu, A.; Chen, J.; Gao, L.; Shimizu, Y.; Liang, D.; Yi, M.; Cao, L. Combined microbial and isotopic signature approach to identify nitrate sources and transformation processes in groundwater. Chemosphere 2019, 228, 721–734. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standard for Surface Water. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2002.
- GB/T 14848-2017; Standards for Groundwater Quality. General Administration of Quality Supervision, Inspection and Quarantine of China, and Standardization Administration of China: Beijing, China, 2017.
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; De Rosa, R.; Fuoco, I.; Mogelli, G.; Muto, F.; Vanno, E.; et al. Fluid geochemistry in a lowenthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Explor. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Apollaro, C.; Buccianti, A.; Vespasiano, G.; Vardè, M.; Fuoco, I.; Barca, D.; Bloise, A.; Miriello, D.; Cofone, F.; Servidio, A.; et al. Comparative geochemical study between the tap waters and the bottled mineral waters in Calabria (Southern Italy) by compositional data analysis (CoDA)developments. Appl. Geochem. 2019, 107, 19–33. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Wang, Y.; Zhang, S.; Zhang, G.; Han, Y.; Li, M.; Liu, L. Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of urban rivers. J. Environ. Sci. 2023, 124, 187–197. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.P.; Li, Y. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Sci. Total Environ. 2019, 656, 1108–1120. [Google Scholar] [CrossRef]
- Lü, J.; Wang, S.; Liu, B.; Song, X. Spatiotemporal heterogeneity of nitrogen transformation potentials in a freshwater estuarine system. Sci. Total Environ. 2023, 859, 160335. [Google Scholar] [CrossRef]
- Corman, J.R.; Bertolet, B.L.; Casson, N.J.; Sebestyen, S.D.; Kolka, R.K.; Stanley, E.H. Nitrogen and phosphorus loads to temperate seepage lakes associated with allochthonous dissolved organic carbon loads. Geophys. Res. Lett. 2018, 45, 5481–5490. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Shaw, G.D.; White, E.S.; Gammons, C.H. Characterizing groundwater–lake interactions and its impact on lake water quality. J. Hydrol. 2013, 492, 69–78. [Google Scholar] [CrossRef]
- Su, C.; Jiang, J.; Xie, X.; Han, Z.; Wang, M.; Li, J.; Shi, H. Sources and Cycling Processes of Nitrogen Revealed by Stable Isotopes and Hydrochemistry in a Typical Agricultural Lake Basin. Appl. Geochem. 2023, 156, 105662. [Google Scholar] [CrossRef]
- Cao, X.; Yang, S.; Wu, P.; Liu, S.; Liao, J. Coupling stable isotopes to evaluate sources and transformations of nitrate in groundwater and inflowing rivers around the Caohai karst wetland, Southwest China. Environ. Sci. Pollut. Res. 2021, 28, 45826–45839. [Google Scholar] [CrossRef]
- Cao, M.; Hu, A.; Gad, M.; Adyari, B.; Qin, D.; Zhang, L.; Sun, Q.; Yu, C.P. Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Sci. Total Environ. 2022, 823, 153680. [Google Scholar] [CrossRef]
- Gibrilla, A.; Fianko, J.R.; Ganyaglo, S.; Adomako, D.; Anornu, G.; Zakaria, N. Nitrate contamination and source apportionment in surface and groundwater in Ghana using dual isotopes (15N and 18O-NO3) and a Bayesian isotope mixing model. J. Contam. Hydrol. 2020, 233, 103658. [Google Scholar] [CrossRef]
- Zarabi, M.; Jalali, M. Leaching of nitrogen and base cations from calcareous soil amended with organic residues. Environ. Technol. 2012, 33, 1577–1588. [Google Scholar] [CrossRef]
- Lucas, R.W.; Klaminder, J.; Futter, M.N.; Bishop, K.H.; Egnell, G.; Laudon, H.; Högberg, P. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manag. 2011, 262, 95–104. [Google Scholar] [CrossRef]
- Jafarzadegan, M.; Safi-Esfahani, F.; Beheshti, Z. Combining hierarchical clustering approaches using the PCA method. Expert Syst. Appl. 2019, 137, 1–10. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Rao, Z.; Liao, F.; Shi, Z.; Huang, X.; Chen, X.; Yang, Y. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. J. Clean. Prod. 2021, 329, 129697. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Li, Y.; Zwahlen, F.; Boillat, J. Hydrogeochemical characteristics of central Jianghan Plain, China. Environ. Earth Sci. 2012, 68, 765–778. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, P. Hydro-geochemical evolution characteristics of shallow groundwater in northeast of Jianghan Plain, China. Carbonates Evapor. 2021, 36, 1–15. [Google Scholar] [CrossRef]
- Kim, D.M.; Yun, S.T.; Yoon, S.; Mayer, B. Signature of oxygen and sulfur isotopes of sulfate in ground and surface water reflecting enhanced sulfide oxidation in mine areas. Appl. Geochem. 2019, 100, 143–151. [Google Scholar] [CrossRef]
- Ma, R.; Yu, K.; Xiao, S. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Change Biol. 2022, 28, 1008–1022. [Google Scholar] [CrossRef]
- Ji, C.; Zhai, Y.; Zhang, T.; Shen, X.; Bai, Y.; Hong, J. Carbon, energy and water footprints analysis of rapeseed oil production: A case study in China. J. Environ. Manag. 2021, 287, 112359. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, B.; Jia, H.; Chen, Z. Determination sources of nitrate into the three gorges reservoir using nitrogen and oxygen isotopes. Sci. Total Environ. 2019, 687, 128–136. [Google Scholar] [CrossRef]
- Granger, J.; Wankel, S.D. Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc. Nat. Acad. Sci. USA 2016, 113, E6391–E6400. [Google Scholar] [CrossRef]
- McMahon, P.B.; Böhlke, J.K. Denitrification and mixing in a stream-aquifer system: Effects of nitrate loading to surface water. J. Hydrol. 1996, 186, 105–128. [Google Scholar] [CrossRef]
- Guo, X.; Tang, Y.; Xu, Y.; Zhang, S.; Ma, J.; Xiao, S.; Ji, D.; Yang, Z.; Liu, D. Using stable nitrogen and oxygen isotopes to identify nitrate sources in the Lancang River, upper Mekong. J. Environ. Manag. 2020, 274, 111197. [Google Scholar] [CrossRef]
- Arheimer, B.; Liden, R. Nitrogen and phosphorus concentrations from agricultural catchments—Influence of spatial and temporal variables. J. Hydrol. 2000, 227, 140–159. [Google Scholar] [CrossRef]
- Xing, J.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L.; Kang, X.; Wang, Q. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci. Total Environ. 2017, 576, 617–627. [Google Scholar] [CrossRef]
- Wang, C.; Feng, B.; Wang, P.; Guo, W.; Li, X.; Gao, H.; Zhang, B.; Chen, J. Revealing factors influencing spatial variation in the quantity and quality of rural domestic sewage discharge across China. Process Saf. Environ. Prot. 2022, 162, 200–210. [Google Scholar] [CrossRef]
- Su, C.; Su, Y.; Zhang, R.; Xu, X.; Li, J. Spatio-Temporal Variations in Nitrate Sources and Transformations in the Midstream of the Yellow River Determined Based on Nitrate Isotopes and Hydrochemical Compositions. Water 2024, 16, 1173. [Google Scholar] [CrossRef]
- Li, X.; Sardans, J.; Qi, M.; Ni, X.; Zhang, M.; Peñuelas, J.; Yue, K.; Wu, F. Nitrous oxide concentration and flux in min River Basin of Southeast China: Effects of land use, stream order and water variables. J. Hydrol. 2022, 614, 128507. [Google Scholar] [CrossRef]
- Knöller, K.; Vogt, C.; Haupt, M.; Feisthauer, S.; Richnow, H.H. Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification. Biogeochemistry 2011, 103, 371–384. [Google Scholar] [CrossRef]
- Pastén-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Ramírez, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470, 855–864. [Google Scholar] [CrossRef]
- HJ/T 399-2007; Water Quality Determination of the Chemical Oxygen Demand (COD) Fast Digestion-Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2007.
- HJ 897-2017; Water Quality—Determination of Chlorophyll a Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2017.
- HJ 636-2012; Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2012.
- HJ 535-2009; Water Quality―Determination of Ammonia Nitrogen―Nessler’s Reagent Spectrophotometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2009.
- HJ 84-2016; Water Quality-Determination of Inorganic Anions (F−, Cl−, NO2−, Br−, NO3−, PO43−, SO32−, SO42−) -Ion Chromatography. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2016.
- GB 11904-89; Water Quality-Determination of Potassium and Sodium-Flame Atomic Absorption Spectrophotometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 1989.
- GB 11905-89; Water Quality-Determination of Calcium and Magnesium-Atomic Absorption Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 1989.
- Zeng, H.; Wu, J. Tracing the nitrate sources of the Yili River in the Taihu Lake watershed: A dual isotope approach. Water 2014, 7, 188–201. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Yu, Q.; Yan, W.; Li, X.; Lv, S. Dominance of nitrous oxide production by nitrification and denitrification in the shallow Chaohu Lake, Eastern China: Insight from isotopic characteristics of dissolved nitrous oxide. Environ. Pollut. 2019, 255, 113212. [Google Scholar] [CrossRef]
- Fadhullah, W.; Yaccob, N.S.; Syakir, M.I.; Muhammad, S.A.; Yue, F.-J.; Li, S.-L. Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Sci. Total Environ. 2020, 700, 134517. [Google Scholar] [CrossRef]
- Vrzel, J.; Vuković-Gačić, B.; Kolarević, S.; Gačić, Z.; Kračun-Kolarević, M.; Kostić, J.; Aborgiba, M.; Farnleitner, A.; Reischer, G.; Linke, R.; et al. Determination of the sources of nitrate and the microbiological sources of pollution in the Sava River Basin. Sci. Total Environ. 2016, 573, 1460–1471. [Google Scholar] [CrossRef]
- Kruk, M.K.; Mayer, B.; Nightingale, M.; Laceby, J.P. Tracing nitrate sources with a combined isotope approach (δ15NNO3, δ18ONO3 and δ11B) in a large mixed-use watershed in southern Alberta, Canada. Sci. Total Environ. 2019, 703, 135043. [Google Scholar] [CrossRef]
- Matiatos, I.; Lazogiannis, K.; Papadopoulos, A.; Skoulikidis, N.T.; Boeckx, P.; Dimitriou, E. Stable isotopes reveal organic nitrogen pollution and cycling from point and non-point sources in a heavily cultivated (agricultural) Mediterranean river basin. Sci. Total Environ. 2023, 901, 166455. [Google Scholar] [CrossRef]
- Soldatova, E.; Guseva, N.; Sun, Z.X.; Bychinsky, V.; Boeckx, P.; Gao, B. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China). J. Contam. Hydrol. 2017, 202, 59–69. [Google Scholar] [CrossRef]
- Harris, S.J.; Cendon, D.I.; Hankin, S.I.; Peterson, M.A.; Xiao, S.; Kelly, B.F.J. Isotopic evidence for nitrate sources and controls on denitrification in groundwater beneath an irrigated agricultural district. Sci. Total Environ. 2022, 817, 152606. [Google Scholar] [CrossRef]
Parameters | Surface Water | |||||||||||
Dry Season | Transition | Wet Season | ||||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
pH | 7.88 | 8.22 | 8.03 | 0.09 | 7.25 | 8.92 | 8.10 | 0.57 | 6.97 | 8.05 | 7.69 | 0.32 |
Eh (mV) | 93 | 131 | 104 | 9.81 | 114 | 147 | 133 | 10.23 | 131 | 158 | 138 | 6.20 |
EC (μS/cm) | 328 | 1187 | 422 | 198 | 194 | 326 | 271 | 24.39 | 300 | 444 | 339 | 27.08 |
DO (mg/L) | 1.99 | 4.77 | 3.45 | 0.66 | 2.16 | 7.25 | 3.71 | 1.13 | 0.97 | 3.64 | 2.89 | 0.63 |
COD (mg/L) | 36.76 | 129.48 | 64.87 | 19.46 | 6.86 | 95.21 | 29.82 | 23.26 | 5.64 | 41.28 | 25.33 | 8.82 |
Chl-a (mg/L) | 0.01 | 0.05 | 0.03 | 0.01 | 0.024 | 0.210 | 0.084 | 0.058 | 0.010 | 0.378 | 0.077 | 0.074 |
TN (mg/L) | 0.68 | 1.73 | 0.92 | 0.25 | 0.58 | 3.08 | 0.98 | 0.64 | 0.49 | 3.31 | 0.95 | 0.60 |
NH3-N (mg/L) | 0.43 | 1.08 | 0.64 | 0.19 | 0.21 | 1.01 | 0.35 | 0.18 | 0.20 | 2.20 | 0.47 | 0.44 |
NO3−-N (mg/L) | 0.10 | 0.79 | 0.19 | 0.17 | 0.11 | 1.28 | 0.42 | 0.31 | 0.09 | 1.09 | 0.24 | 0.21 |
NO2−-N (mg/L) | ND | 0.19 | 0.05 | 0.07 | ND a | 1.27 | 0.14 | 0.39 | ND | 1.78 | 0.26 | 0.48 |
K (mg/L) | 3.59 | 8.80 | 5.66 | 0.90 | 3.06 | 6.80 | 5.60 | 0.69 | 4.54 | 8.07 | 5.63 | 0.74 |
Na (mg/L) | 12.83 | 25.81 | 19.17 | 3.68 | 8.11 | 21.79 | 17.64 | 2.72 | 15.69 | 29.49 | 20.39 | 2.55 |
Ca (mg/L) | 23.41 | 41.90 | 30.11 | 3.89 | 19.16 | 30.07 | 24.24 | 2.21 | 22.91 | 33.23 | 28.39 | 2.13 |
Mg (mg/L) | 9.08 | 16.07 | 10.28 | 1.47 | 6.67 | 7.94 | 7.17 | 0.27 | 6.14 | 10.47 | 8.19 | 0.80 |
Cl− (mg/L) | 26.78 | 43.87 | 28.72 | 3.67 | 13.87 | 34.52 | 30.68 | 4.26 | 25.20 | 45.47 | 34.47 | 3.80 |
SO42− (mg/L) | 19.76 | 34.58 | 28.20 | 2.76 | 18.33 | 51.85 | 36.03 | 5.72 | 16.21 | 43.69 | 27.44 | 4.79 |
HCO3− (mg/L) | 122 | 195 | 138 | 16.30 | 79.67 | 117.16 | 101.80 | 8.53 | 91.53 | 366.12 | 167.81 | 80.40 |
δ15N-NO3− (‰) | 3.85 | 8.72 | 6.32 | 1.31 | −16.70 | 34.40 | 1.02 | 12.60 | −6.36 | 9.67 | −0.68 | 4.35 |
δ18O-NO3− (‰) | −1.82 | 12.58 | 5.78 | 3.74 | 0.10 | 15.40 | 7.63 | 4.29 | −4.89 | 31.43 | 3.11 | 8.55 |
Parameters | Groundwater | |||||||||||
Dry Season | Transition | Wet Season | ||||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
pH | 6.92 | 7.80 | 7.37 | 0.28 | 6.38 | 7.51 | 7.02 | 0.36 | 5.71 | 8.05 | 7.18 | 0.79 |
Eh (mV) | 115 | 122 | 118 | 2 | 153 | 161 | 157 | 3 | 132 | 144 | 138 | 5 |
EC (μS/cm) | 488 | 917 | 678 | 160 | 416 | 816 | 573 | 178 | 508 | 1002 | 660 | 175 |
DO (mg/L) | 2.12 | 4.50 | 3.68 | 0.84 | 1.88 | 3.84 | 2.94 | 0.72 | 2.74 | 3.80 | 3.39 | 0.40 |
COD (mg/L) | 11.61 | 39.18 | 25.61 | 10.93 | ND | 28.79 | 11.53 | 9.57 | ND | 34.18 | 15.96 | 13.69 |
TN (mg/L) | 1.21 | 29.67 | 13.95 | 10.67 | 1.63 | 46.52 | 16.40 | 16.15 | 1.01 | 17.87 | 10.54 | 7.24 |
NH3-N (mg/L) | 0.39 | 1.00 | 0.68 | 0.23 | 0.09 | 0.17 | 0.11 | 0.03 | 0.09 | 0.83 | 0.27 | 0.28 |
NO3−-N (mg/L) | 0.47 | 25.01 | 10.40 | 8.99 | 1.84 | 48.40 | 15.47 | 17.13 | 1.07 | 23.13 | 12.87 | 9.28 |
NO2−-N (mg/L) | ND | 0.05 | 0.01 | 0.02 | ND | ND | / b | / | ND | ND | / | / |
K (mg/L) | 0.46 | 8.53 | 3.42 | 2.96 | 0.48 | 23.65 | 8.61 | 8.65 | ND | 13.50 | 6.56 | 5.91 |
Na (mg/L) | 49.20 | 65.30 | 56.61 | 5.64 | 23.54 | 68.28 | 46.96 | 15.31 | 25.83 | 67.41 | 46.03 | 14.36 |
Ca (mg/L) | 28.18 | 81.75 | 48.81 | 19.67 | 25.90 | 90.38 | 55.62 | 26.72 | 26.01 | 80.95 | 52.01 | 18.00 |
Mg (mg/L) | 15.99 | 29.70 | 24.15 | 5.24 | 11.79 | 27.82 | 16.42 | 5.89 | 10.57 | 29.30 | 17.74 | 6.32 |
Cl− (mg/L) | 12.87 | 63.44 | 33.18 | 22.88 | 18.66 | 81.36 | 43.37 | 23.17 | 24.17 | 90.17 | 39.98 | 25.21 |
SO42− (mg/L) | 7.28 | 45.18 | 23.03 | 14.01 | 16.19 | 99.95 | 44.66 | 29.94 | 15.43 | 60.70 | 44.29 | 19.41 |
HCO3− (mg/L) | 195.26 | 329.51 | 264.83 | 56.14 | 182.77 | 384.28 | 252.12 | 72.81 | 122.04 | 213.57 | 167.81 | 30.51 |
δ15N-NO3− (‰) | 4.62 | 18.43 | 11.57 | 4.49 | 8.30 | 21.10 | 13.60 | 4.70 | 8.74 | 20.76 | 13.16 | 4.34 |
δ18O-NO3− (‰) | −2.11 | 6.65 | 2.35 | 2.97 | −1.20 | 8.60 | 5.02 | 3.34 | −0.27 | 8.06 | 3.90 | 3.12 |
Isotope Source | Sample Number | δ15N-NO3− Mean | δ15N-NO3− S.D. | δ18O-NO3− Mean | δ18O-NO3− S.D. | Data Source |
---|---|---|---|---|---|---|
Atmospheric deposition (AD) | 7 | −1.35 | 1.76 | 71.76 | 5.67 | [25] |
Nitrogen fertilizers (NFs) | 15 | 1.94 | 3.90 | 14.47 | 4.36 | [25] |
Ammonium fertilizers (AFs) | 12 | 1.35 | 3.64 | −6.53 | 3.88 | [25] |
Soil organic nitrogen (SON) | 12 | 4.17 | 2.31 | −3.60 | 2.76 | [25] |
Manure and sewage (M&S) | 10 | 13.88 | 5.86 | 2.34 | 3.39 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Xiong, Y.; Liu, Y.; Yu, J.; Zou, Y.; Zhu, J.; Fu, S.; Yang, F.; Zhao, M.; Pan, J.; et al. Nitrogen Transport Pathways and Source Contributions in a Typical Agricultural Watershed Using Stable Isotopes and Hydrochemistry. Water 2024, 16, 2803. https://doi.org/10.3390/w16192803
Tang Z, Xiong Y, Liu Y, Yu J, Zou Y, Zhu J, Fu S, Yang F, Zhao M, Pan J, et al. Nitrogen Transport Pathways and Source Contributions in a Typical Agricultural Watershed Using Stable Isotopes and Hydrochemistry. Water. 2024; 16(19):2803. https://doi.org/10.3390/w16192803
Chicago/Turabian StyleTang, Zhi, Yangfu Xiong, Yang Liu, Jinhao Yu, Yuanbing Zou, Jiandong Zhu, Shengbo Fu, Fei Yang, Mingzhe Zhao, Jie Pan, and et al. 2024. "Nitrogen Transport Pathways and Source Contributions in a Typical Agricultural Watershed Using Stable Isotopes and Hydrochemistry" Water 16, no. 19: 2803. https://doi.org/10.3390/w16192803
APA StyleTang, Z., Xiong, Y., Liu, Y., Yu, J., Zou, Y., Zhu, J., Fu, S., Yang, F., Zhao, M., Pan, J., & Yang, S. (2024). Nitrogen Transport Pathways and Source Contributions in a Typical Agricultural Watershed Using Stable Isotopes and Hydrochemistry. Water, 16(19), 2803. https://doi.org/10.3390/w16192803