LSTM Model Integrated Remote Sensing Data for Drought Prediction: A Study on Climate Change Impacts on Water Availability in the Arid Region
Abstract
:1. Introduction
2. Case Study, Data Acquisition, and Description
3. Methodology
3.1. SPEI Calculation
3.2. Long Short-Term Memory
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayl, K.N.; Sulaiman, S.O.; Kamel, A.H.; Muhammad, N.S.; Abdullah, J.; Al-Ansari, N. Minimizing the Impacts of Desertification in an Arid Region: A Case Study of the West Desert of Iraq. Adv. Civ. Eng. 2021, 2021, 5580286. [Google Scholar] [CrossRef]
- Kolawole, E.S.; Okonkwo, W.I. Impacts of Climate Change on Environment and the Remedies. Int. J. Weather Clim. Chang. Conserv. Res. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Afan, H.A.; Mohtar, W.H.M.W.; Aksoy, M.; Ahmed, A.N.; Khaleel, F.; Khan, M.H.; Kamel, A.H.; Sherif, M.; El-Shafie, A. Geneticizing input selection based advanced neural network model for sediment prediction in different climate zone. Ain Shams Eng. J. 2024, 15, 102760. [Google Scholar] [CrossRef]
- Oukaddour, K.; Le Page, M.; Fakır, Y. Toward a Redefinition of Agricultural Drought Periods—A Case Study in a Mediterranean Semi-Arid Region. Remote Sens. 2023, 16, 83. [Google Scholar] [CrossRef]
- de Jesus, E.T.; Amorim, J.d.S.; Junqueira, R.; Viola, M.R.; de Mello, C.R. Meteorological and hydrological drought from 1987 to 2017 in doce river basin, Southeastern Brazil. Rev. Bras. Recur. Hidricos 2020, 25, 1–10. [Google Scholar] [CrossRef]
- Almawla, A.S.; Kamel, A.H.; Lateef, A.M. Modelling of Flow Patterns over Spillway with CFD (Case Study: Haditha Dam in Iraq). Int. J. Des. Nat. Ecodynamics 2021, 16, 373–385. [Google Scholar] [CrossRef]
- Nagpal, M.; Heilemann, J.; Klauer, B.; Gawel, E.; Klassert, C.; Nagpal, M.; Heilemann, J.; Klauer, B.; Gawel, E.; Klassert, C. Hydro-economic assessment of biophysical drought impacts on agriculture. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. EGU24-17486. [Google Scholar]
- Kamel, A.H.; Afan, H.A.; Sherif, M.; Ahmed, A.N.; El-Shafie, A. RBFNN versus GRNN modeling approach for sub-surface evaporation rate prediction in arid region. Sustain. Comput. Inform. Syst. 2021, 30, 100514. [Google Scholar] [CrossRef]
- Sulaiman, S.O.; Kamel, A.H.; Sayl, K.N.; Alfadhel, M.Y. Water resources management and sustainability over the Western desert of Iraq. Environ. Earth Sci. 2019, 78, 495. [Google Scholar] [CrossRef]
- Al-Salihi, Z.A.; Kamel, A.H.; Abdulhameed, I.M. Effects of the Climate Change on the Tigris River Basin in Iraq. Int. J. Des. Nat. Ecodynamics 2022, 17, 585–593. [Google Scholar] [CrossRef]
- Jaafar, Q.N.; Sayl, K.N.; Kamel, A.H. Numerical Modelling of River Training Work: A review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1222, 12010. [Google Scholar] [CrossRef]
- Al-Salihi, Z.A.; Kamel, A.H.; Abdulhameed, I.M. Effect of Climate Changes on Water Resources in Iraq: A Review Study. AIP Conf. Proc. 2024, 3009, 030079. [Google Scholar] [CrossRef]
- Hakeem, M.; Abu-Alshaeer, M.; Ahemd, M. Impact of Land Surface Changes on Air Temperatures in Baghdad City. Kuwait J. Sci. 2020, 47, 118–126. [Google Scholar]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- KA, A.S.H. Analysis of some extreme temperature indices over Iraq. MAUSAM 2020, 71, 423–430. [Google Scholar]
- Mohammed, A.S.; Al-Hadeethi, B.; Almawla, A.S. Daily Evapotranspiration Prediction at Arid and Semiarid Regions by Using Multiple Linear Regression Technique at Ramadi City in Iraq Region. IOP Conf. Ser. Earth Environ. Sci. 2023, 1222, 12033. [Google Scholar] [CrossRef]
- Yehia, M.A.; Al-Taai, O.T.; Ibrahim, M.K. Spatiotemporal Distribution of Minimum-Maximum Temperature over Iraq for the Period (1980–2017). IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012026. [Google Scholar] [CrossRef]
- Mohammed, D.R.; Mohammed, R.K. Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study. Tikrit J. Eng. Sci. 2024, 31, 161–171. [Google Scholar] [CrossRef]
- Zorko, M.; Kovač, I.; Kovač, S.; Stanko, D.; Pandzic, K. Impact of global warming onaverage annual air temperature in Varaždin. Environ. Eng. 2022, 9, 95–103. [Google Scholar] [CrossRef]
- Alves, L.M.; Fowler, H.; de Jesus da Costa Barreto, N.; Llopart, M. Climate Change and Climate Variability. In Precipitation: Earth Surface Responses and Processes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 53–68. ISBN 9780128226995. [Google Scholar] [CrossRef]
- Faiz, M.A.; Zhang, Y.; Tian, X.; Tian, J.; Zhang, X.; Ma, N.; Aryal, S. Drought index revisited to assess its response to vegetation in different agro-climatic zones. J. Hydrol. 2022, 614, 128543. [Google Scholar] [CrossRef]
- Singh, I.; Mishra, A.K.; Suryavanshi, S.; Sherring, A.; Kumar, M. A Comparison of the Frequency and Intensity of Standardized Precipitation Index (SPI) and the Rainfall Anomaly Index (RAI) during the Meteorological Drought across Harohar-Punpun Basin (India). Int. J. Environ. Clim. Chang. 2024, 14, 36–47. [Google Scholar] [CrossRef]
- Madonna, F.; Essa, Y.H.; Marra, F.; Serva, F.; Gardiner, T.; Sarakhs, F.K.; Tramutola, E.; Rosoldi, M. Uncertainties on Climate Extreme Indices Estimated from U.S. Climate Reference Network (USCRN) Near-Surface Temperatures. J. Geophys. Res. Atmos. 2023, 128, e2022JD038057. [Google Scholar] [CrossRef]
- Almawla, A.S.; Al-Hadeethi, B.; Mohammed, A.S.; Kamel, A.H. Predictive Modeling of Daily Evapotranspiration in Arid Regions Using Artificial Neural Networks. Int. J. Des. Nat. Ecodynamics 2024, 19, 955–962. [Google Scholar] [CrossRef]
- Hameed, M.M.; Khaleel, F.; Khaleel, D. Employing a robust data-driven model to assess the environmental damages caused by installing grouted columns. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change, Sakheer, Bahrain, 15–17 November 2021; pp. 305–309. [Google Scholar]
- Alawsi, M.A.; Zubaidi, S.L.; Al-Ansari, N.; Al-Bugharbee, H.; Ridha, H.M. Tuning ANN hyperparameters by CPSOCGSA, MPA, and SMA for short-term SPI drought forecasting. Atmosphere 2022, 13, 1436. [Google Scholar] [CrossRef]
- Yang, W.; Doulabian, S.; Shadmehri Toosi, A.; Alaghmand, S. Unravelling the Drought Variance Using Machine Learning Methods in Six Capital Cities of Australia. Atmosphere 2023, 15, 43. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network. Soft Comput. 2019, 23, 8399–8412. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Chang. 2020, 11, 771–799. [Google Scholar] [CrossRef]
- Al Moteri, M.; Alrowais, F.; Mtouaa, W.; Aljehane, N.O.; Alotaibi, S.S.; Marzouk, R.; Hilal, A.M.; Ahmed, N.A. An enhanced drought forecasting in coastal arid regions using deep learning approach with evaporation index. Environ. Res. 2024, 246, 118171. [Google Scholar] [CrossRef]
- Mohammadi, B. Modeling various drought time scales via a merged artificial neural network with a firefly algorithm. Hydrology 2023, 10, 58. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef]
- Son, H.; Kim, C. A deep learning approach to forecasting monthly demand for residential–sector electricity. Sustainability 2020, 12, 3103. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Huete, A. An improved SPEI drought forecasting approach using the long short-term memory neural network. J. Environ. Manag. 2021, 283, 111979. [Google Scholar] [CrossRef] [PubMed]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model. Sci. Total Environ. 2021, 755, 142638. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Huang, A.; Li, B.; Guo, J. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Sayl, K.N.; Kamel, A.H. Ground Water Recharge Mapping in Iraqi Western Desert. Int. J. Des. Nat. Ecodynamics 2022, 17, 913–920. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Sayl, K.N.; Kamel, A.H. Modeling of Spatially Distributed Soil Moisture in the Iraqi Western Desert. AIP Conf. Proc. 2024, 3009, 030058. [Google Scholar] [CrossRef]
- SPEIbase: Standardised Precipitation-Evapotranspiration Index database, Version 2.8 [Deprecated]. Earth Engine Data Catalog. Google for Developers. Available online: https://developers.google.com/earth-engine/datasets/catalog/CSIC_SPEI_2_8 (accessed on 13 April 2024).
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4128–4144. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Bo, M.; Guo, Y.; Tao, H.; Liu, G.; Li, S.; Pu, W. SPEIPM-Based research on drought impact on maize yield in North China Plain. J. Integr. Agric. 2015, 14, 660–669. [Google Scholar]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237–238, 105–122. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Liu, M.-D.; Ding, L.; Bai, Y.-L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. Energy Convers. Manag. 2021, 233, 113917. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, G.; Tian, R.; Sun, Y. Application of a Hybrid CEEMD-LSTM Model Based on the Standardized Precipitation Index for Drought Forecasting: The Case of the Xinjiang Uygur Autonomous Region, China. Atmosphere 2022, 13, 1504. [Google Scholar] [CrossRef]
- Vo, T.Q.; Kim, S.-H.; Nguyen, D.H.; Bae, D.-H. LSTM-CM: A hybrid approach for natural drought prediction based on deep learning and climate models. Stoch. Environ. Res. Risk Assess. 2023, 37, 2035–2051. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, B.; Hua, H.; Wei, J.; Qin, G.; Chen, G. Application of informer model based on SPEI for drought forecasting. Atmosphere 2023, 14, 951. [Google Scholar] [CrossRef]
- Tao, H.; Abba, S.I.; Al-Areeq, A.M.; Tangang, F.; Samantaray, S.; Sahoo, A.; Siqueira, H.V.; Maroufpoor, S.; Demir, V.; Dhanraj Bokde, N.; et al. Hybridized Artificial Intelligence Models with Nature-Inspired Algorithms for River Flow Modeling: A Comprehensive Review, Assessment, and Possible Future Research Directions. Eng. Appl. Artif. Intell. 2024, 129, 107559. [Google Scholar] [CrossRef]
- Yalçın, S.; Eşit, M.; Çoban, Ö. A new deep learning method for meteorological drought estimation based-on standard precipitation evapotranspiration index. Eng. Appl. Artif. Intell. 2023, 124, 106550. [Google Scholar] [CrossRef]
- Taylan, E.D. An Approach for Future Droughts in Northwest Türkiye: SPI and LSTM Methods. Sustainability 2024, 16, 6905. [Google Scholar] [CrossRef]
Level | Drought Type | SPEI Range |
---|---|---|
0 | Wet | |
1 | No drought | |
2 | Mild drought | |
3 | Moderate drought | |
4 | Severe drought | |
5 | Extreme drought |
Optimizer | RE | MAE | RMSE | MBE | Model Accuracy |
---|---|---|---|---|---|
Adam | −12.6786 | 0.121055 | 0.147321 | 0.102413 | 87.32139818 |
RMSprop | −9.36554 | 0.075486 | 0.102766 | −0.01992 | 90.6344634 |
SGD | −11.8219 | 0.104844 | 0.131542 | 0.082219 | 88.17809699 |
Adadelta | −44.7053 | 0.54695 | 0.605895 | 0.540967 | 55.29469714 |
Adagrad | −21.361 | 0.229913 | 0.269594 | 0.216363 | 78.63902355 |
Adamax | −9.3854 | 0.069142 | 0.09368 | 0.027793 | 90.61459933 |
Nadam | −10.8458 | 0.093485 | 0.118657 | 0.050888 | 89.15421041 |
Indicators | Mean | Median | Standard Deviation | Sample Variance | Kurtosis | Skewness |
---|---|---|---|---|---|---|
Actual | −1.3066 | −1.415 | 0.47012 | 0.22102 | −0.2253 | 0.6568 |
Adam | −1.2042 | −1.3051 | 0.44903 | 0.20162 | −0.1477 | 0.67171 |
RMSprop | −1.3265 | −1.4316 | 0.49859 | 0.2486 | −0.2281 | 0.60479 |
SGD | −1.2244 | −1.3194 | 0.46238 | 0.21379 | −0.2948 | 0.59212 |
Adadelta | −0.7656 | −0.8601 | 0.30111 | 0.09067 | −0.5387 | 0.71359 |
Adagrad | −1.0902 | −1.1868 | 0.39386 | 0.15513 | −0.3202 | 0.65514 |
Adamax | −1.2788 | −1.3708 | 0.46189 | 0.21335 | −0.2129 | 0.63049 |
Nadam | −1.2557 | −1.3701 | 0.46839 | 0.21939 | −0.2455 | 0.68273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afan, H.A.; Almawla, A.S.; Al-Hadeethi, B.; Khaleel, F.; AbdUlameer, A.H.; Khan, M.M.H.; Ma’arof, M.I.N.; Kamel, A.H. LSTM Model Integrated Remote Sensing Data for Drought Prediction: A Study on Climate Change Impacts on Water Availability in the Arid Region. Water 2024, 16, 2799. https://doi.org/10.3390/w16192799
Afan HA, Almawla AS, Al-Hadeethi B, Khaleel F, AbdUlameer AH, Khan MMH, Ma’arof MIN, Kamel AH. LSTM Model Integrated Remote Sensing Data for Drought Prediction: A Study on Climate Change Impacts on Water Availability in the Arid Region. Water. 2024; 16(19):2799. https://doi.org/10.3390/w16192799
Chicago/Turabian StyleAfan, Haitham Abdulmohsin, Atheer Saleem Almawla, Basheer Al-Hadeethi, Faidhalrahman Khaleel, Alaa H. AbdUlameer, Md Munir Hayet Khan, Muhammad Izzat Nor Ma’arof, and Ammar Hatem Kamel. 2024. "LSTM Model Integrated Remote Sensing Data for Drought Prediction: A Study on Climate Change Impacts on Water Availability in the Arid Region" Water 16, no. 19: 2799. https://doi.org/10.3390/w16192799
APA StyleAfan, H. A., Almawla, A. S., Al-Hadeethi, B., Khaleel, F., AbdUlameer, A. H., Khan, M. M. H., Ma’arof, M. I. N., & Kamel, A. H. (2024). LSTM Model Integrated Remote Sensing Data for Drought Prediction: A Study on Climate Change Impacts on Water Availability in the Arid Region. Water, 16(19), 2799. https://doi.org/10.3390/w16192799