Risk Management Associated with Surface Sources of Public Water Supply in Urban and Rural Areas in a Developing Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Study
2.2. Characterization of Polluting Sources
3. Results and Discussion
3.1. Characterization of Polluting Sources
3.2. Application of the Risk Classification Matrix
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mustapha, M.; Sridhar, M.; Coker, A.O. Assessment of water supply system from catchmente to consumers as framed in WHO water safety plans: A study from Maiduguri water treatment plant, Nort East Nigeria. Sustain. Environ. 2021, 7, 1901389. [Google Scholar] [CrossRef]
- Hespanhol, I. Emerging pollutants, public health and direct potable reuse. In Environmental Engineering: Concepts, Technology and Management, 1st ed.; Calijuri, M.C., Cunha, D.G.F., Eds.; Elsevier: Centro Rio de Janeiro, Brazil, 2013; Volume 1, pp. 501–537. [Google Scholar]
- Setty, K.; Mcconnell, R.; Raucher, R.; Bartram, J. Comparative evaluation of risk management frameworks for U.S. source Waters. AWWA Water Sci. 2019, 1, e1125. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.M.P. Water Safety Plan for water supply sources for human consumption. Gesta 2013, 1, 87–97. [Google Scholar] [CrossRef]
- Baracho, R.O.; Najberg, E.; Scalize, P.S. Factors That Impact the Implementation of Water Safety Plans—A Case Study of Brazil. Water 2023, 15, 678. [Google Scholar] [CrossRef]
- Jayaratne, A.; Steele, M.; Stevens, M.; van Lieshout, K.; Curran, L.; Higginbotham, M.; Prosser, T.; Dickson, L.; Mosse, K.; McManaman, A. Operationalising water safety plans for Melbourne—A large city case study. J. Water Health 2023, 21, 1812–1833. [Google Scholar] [CrossRef]
- Gullick, R.W. Source water protection: Perspectives of the past, present, and future. J. AWWA 2014, 106, 164–174. [Google Scholar] [CrossRef]
- IBGE. Cities; IBGE: Ouro Preto, Brazil, 2022. Available online: https://www.ibge.gov.br/cidades-e-estados/mg/mariana.html (accessed on 30 November 2021).
- Vieira, J. Water and Public Health (Água e Saúde Pública), 1st ed.; Sílabo: Lisboa, Portugal, 2018. [Google Scholar]
- Beuken, R.; Reinoso, M.; Sturm, S.; Kiefer, J.; Bondelind, M.; Aström, J.A.; Lindhe, A.; Losén, L.; Pettersson, T.; Machenbach, I.; et al. Identification and Description of Hazards for Water Supply Systems—A Catalogue of Today’s Hazards and Possible Future Hazards Updated Version; TECHNEAU: Marigny-le-Lozon, France, 2008; Deliverable no D4.1.4, Europe; 79p. [Google Scholar]
- OPAS. Desastres Naturais e Saúde no Brasil; OPAS: Brasilia, Brazil, 2015; Available online: http://www.crpsp.org.br/emergencias/pdf/desastresesaudebrasil_2edicao.pdf (accessed on 30 August 2021).
- Bezerra, N.R. Application of Bayesian Networks to Identify Hazards in Water Supply Systems for Human Consumption: Case Study in the Municipality of Viçosa—Minas Gerais. Master’s Thesis, Federal University of Viçosa, Viçosa, Brazil, 2011. [Google Scholar]
- Bastos, R.K.X.; Geller, L.; Prince, A.A.; Brandão, C.C.S.; Costa, S.S.; Bevilacqua, P.D.; Alves, R.M.S. Boas Práticas no Abastecimento de Água: Procedimentos Para a Minimização de Riscos à Saúde. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2006. Available online: https://locus.ufv.br//handle/123456789/837 (accessed on 17 January 2024).
- WHO. Protecting Surface Water for Health. Identifying, Assessing and Managing Drinking-Water Quality Risks in Surface-Water Catchments; WHO: Geneva, Switzerland, 2016; Available online: https://www.who.int/publications/i/item/9789241510554 (accessed on 20 January 2024).
- WHO. Water, Sanitation and Health Team Guidelines for Drinking-Water Quality Recommendations, 3rd ed.; WHO: Geneva, Switzerland, 2004; Available online: https://www.who.int/publications/i/item/9789241547611 (accessed on 20 January 2024).
- Reis, I.F.A. Desenvolvimento de Uma Metodologia de Gestão de Riscos em Mananciais de Abastecimento com Múltiplas Fontes: Aplicação ao Caso de Mariana, MG. Master’s Thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2021. Available online: http://www.repositorio.ufop.br/jspui/handle/123456789/14467 (accessed on 22 May 2024).
- Couto, M.L.F. Characterization of Aluminum and Phosphorus in Iron Ore. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2009. Available online: http://www.repositorio.ufop.br/jspui/handle/123456789/2387 (accessed on 24 May 2024).
- EMBRAPA. Research Shows the Harmful Effects of Fire Ash on Soil and Water; EMBRAPA: Brasilia, Brazil, 2019; Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/56780861/artigo---queimadas-e-recursos-hidricos-efeitos-das-cinzas-sobre-os-ecossistemas-aquaticos (accessed on 30 November 2021).
- Rhodes, V.P. Distribution of Mercury and Arsenic in the Sediments of the Area Affected by Gold Mining—Rio Gualaxo do Norte, Mariana. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2010. Available online: http://www.repositorio.ufop.br/jspui/handle/123456789/2274 (accessed on 24 April 2024).
- Corrêa, R.F.M.; Ventura, K.S. Instrument for implementing the Water Security Plan in rural communities: Validation in a farmers camp in the municipality of São Carlos, SP. Rev. Nac. Gerenciamento Cid. 2020, 8, 65–79. [Google Scholar] [CrossRef]
- Corrêa, R.F.M.; Ventura, K.S. Water Safety Plan: Conceptual model for monitoring of water contamination risks in rural communities. Eng. Sanit. Ambient 2021, 26, 369–379. [Google Scholar] [CrossRef]
- Carvalho, O.S.; Mendonça, C.L.F.; Marcelino, J.M.R.; Passos, L.K.J.; Fernandez, M.A.; Leal, R.S.; Caldeira, R.L.; Scholte, R.G.C.; Carmo, E.H.; Mesquita, S.G.; et al. Geographic distribution of Schistosoma mansoni intermediate hosts in the states of Paraná, Minas Gerais, Bahia, Pernambuco and Rio Grande do Norte, 2012–2014. Epidemiol. Serv. Saúde 2018, 27, 10–22. [Google Scholar] [CrossRef]
- Oliveira, H.A.R. Quality of Rural River Drainage: Taquarizinho River—MS. (Qualidade da Drenagem Pluvial Rural: Rio Taquarizinho—MS.). Master’s Thesis, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil, 2007. Available online: https://repositorio.ufms.br/bitstream/123456789/1487/1/Herlon%20Augusto%20Rodrigues%20de%20Oliveira.pdf (accessed on 20 April 2024).
- Andrade, J.B. Risk Assessment and Management in Water Supply Sources. Master’s Thesis, University of Minho, Braga, Protugal, 2013. Available online: http://hdl.handle.net/1822/30741 (accessed on 20 March 2024).
- WHO. Water Safety Plan Manual, Step-by-Step Risk Management for Drinking-Water Suppliers; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Oliveira, L.L.; Teixeira, N.R.B. Risk Assessment in the Water Distribution Network of the Municipality of Formosa-GO for the Implementation of the Water Safety Plan; ANAIS: Fortaleza, Brazil, 2018; Available online: https://bibliotecadigital.ipb.pt/bitstream/10198/18184/1/Anais_48CNSA.pdf (accessed on 15 January 2022).
- Pinto, C.M. Anti-Terrorism Security in Water Distribution Infrastructures. Master’s Thesis, University of Porto, Porto, Protugal, 2017. Available online: https://hdl.handle.net/10216/106174 (accessed on 15 January 2022).
- Vidal, L.A.; Marle, F.A. Systems thinking approach for project vulnerability management. Kybernetes 2012, 41, 206–228. [Google Scholar] [CrossRef]
- Souza, L.A. Geoenvironmental Cartography and Progressive Geotechnical Cartography at Different Scales: Application in the Ribeirão do Carmo Watershed, Municipalities of Ouro Preto and Mariana, Minas Gerais. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2015. Available online: https://repositorio.ufop.br/server/api/core/bitstreams/00557c50-6ab8-45e8-a8ae-d3240100619d/content (accessed on 12 February 2024).
- Pereira, C.A.; Fiedler, N.C.; Medeiros, M.B. Analysis of actions to prevent and combat forest fires in conservation units in the Cerrado. Floresta 2004, 34, 95–100. [Google Scholar] [CrossRef]
- INPE. Fire Program Monitoring Active Outbreaks by State; INPE: São José dos Campos, Brazil, 2021; Available online: https://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_estados/ (accessed on 30 August 2021).
- Ostanello, M.C.P. Geological Heritage of the Itacolomi State Park (Quadrilátero Ferrífero, MG): Inventory and Analysis of Geological Places of Interest and Geotouristic Trails. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Portugal, 2012. Available online: http://www.repositorio.ufop.br/jspui/handle/123456789/2874 (accessed on 10 May 2022).
- IGAM. Integrated Water Resources Plan for the Doce River Basin and Water Resources Action Plans for Water Resources Planning and Management Units within the Doce River Basin—PARH Piranga; IGAM: Minas Gerais, Brazil, 2010. [Google Scholar]
- Souza, L.A. Diagnosis of the Physical Environment as a Contribution to the Territorial Planning of the Municipality of Mariana, (MG). Master’s Thesis, University of Ouro Preto, Ouro Preto, Portugal, 2004. Available online: http://www.repositorio.ufop.br/jspui/handle/123456789/6436 (accessed on 10 June 2024).
- Croke, J.T.; Fryirs, C.K. Prioritising the placement of riparian vegetation to reduce flood risk and end-of-catchment sediment yields: Important considerations in hydrologically variable regions. J. Environ. Manag. 2017, 190, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Diário Oficial da União. Brazil. Portaria n. 888, 04 de Maio de 2021; Diario Oficial da União: Brasília, Brazil, 2021. [Google Scholar]
- Bufa-Dőrr, Z.; Sebestyén, Á.; Izsák, B.; Schmoll, O.; Pándics, T.; Vargha, M. Dual system of water safety plan auditing in Hungary: Benefits and lessons learnt. J. Water Health 2023, 21, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Naseri, I.; Yengejeh, R.J.; Verijkazemi, K.; Cheraghi, M. Study of Risks in Rural Water Supply Systems of Khorramshahr City, Iran, Based on Water Safety Plan. J. Adv. Environ. Health Res. 2022, 10, 47–58. [Google Scholar] [CrossRef]
Dangerous Event | Occurrence (Periodicity) | Danger | Risk Assessment | |||
---|---|---|---|---|---|---|
O | S | P | C | |||
1 | Leaf fall | Physical (color change) | 2 | 1 | 2 | L |
2 | Presence of animals at the capture point and its relationship with results of E. coli | Microbiological (presence of pathogens, for example, Schistosoma mansoni) | 1 | 5 | 5 | L |
5 | 5 | 25 | E | |||
3 | Protection of the water source and difficult access | Microbiological (presence of pathogens, for example, Schistosoma mansoni) | 5 | 5 | 25 | E |
1 | 5 | 5 | L | |||
3 | 5 | 15 | H | |||
4 | Breaking records and/or theft of wires in the electrical network | Physical (changes in turbidity and color) Microbiological (penetration of pathogens) | 3 | 5 | 15 | H |
1 | 5 | 5 | L | |||
5 | Drought, drought and forest fires | Chemical (contaminants present in cizas), microbiological (for example, pathogens related to diarrheal diseases, viral hepatitis, diseases caused by vectors) | 2 | 5 | 10 | M |
6 | Terrain slope, soil characteristics, and rainfall | Physical (turbidity changes) | 1 | 3 | 3 | L |
5 | 3 | 15 | M | |||
7 | Presence of cattle and anseriformes at the capture point and its relationship with results of E.coli | Microbiological (presence of pathogens, for example, Klebsiella sp., Citrobacter sp., Enterobacter sp. E. coli, Salmonella Silva et al. (2014) | 1 | 5 | 5 | L |
5 | 5 | 25 | E | |||
8 | Logging | Physical (turbidity changes) | 5 | 3 | 15 | M |
1 | 3 | 3 | L | |||
9 | Structural features (adequate level lifting dam, grating, and bottom discharge) | Physical (turbidity changes) | 5 | 3 | 15 | M |
1 | 3 | 3 | L | |||
10 | Mechanical, electrical, and structural failures and communication difficulties | Physical (turbidity changes) | 4 | 3 | 12 | M |
11 | Historical series not present for these parameters and showed a test result above the VMP | Physical, chemical, and microbiological | 1 | 5 | 5 | L |
5 | 5 | 25 | E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo Reis, I.F.; Leôncio, H.C.; de Castro, A.L.P.; da Fonseca Santiago, A. Risk Management Associated with Surface Sources of Public Water Supply in Urban and Rural Areas in a Developing Country. Water 2024, 16, 2732. https://doi.org/10.3390/w16192732
de Araújo Reis IF, Leôncio HC, de Castro ALP, da Fonseca Santiago A. Risk Management Associated with Surface Sources of Public Water Supply in Urban and Rural Areas in a Developing Country. Water. 2024; 16(19):2732. https://doi.org/10.3390/w16192732
Chicago/Turabian Stylede Araújo Reis, Isabel Francisco, Hamilton Cristiano Leôncio, Ana Letícia Pilz de Castro, and Aníbal da Fonseca Santiago. 2024. "Risk Management Associated with Surface Sources of Public Water Supply in Urban and Rural Areas in a Developing Country" Water 16, no. 19: 2732. https://doi.org/10.3390/w16192732
APA Stylede Araújo Reis, I. F., Leôncio, H. C., de Castro, A. L. P., & da Fonseca Santiago, A. (2024). Risk Management Associated with Surface Sources of Public Water Supply in Urban and Rural Areas in a Developing Country. Water, 16(19), 2732. https://doi.org/10.3390/w16192732