Multivariate Statistical Approach and Assessment of Pollution of Water and Sediments in Karstic Springs of Transboundary Aquifer Žumberak–Samoborsko Gorje Mountain (Croatia/Slovenia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landscape Structure and Climate Control of the Hydrology of the Investigated Area
2.3. Sampling and Sample Preparation
2.4. Assessment of Pollution Indices for Sediments
2.5. Statistical Analysis
3. Results and Discussion
3.1. Elemental Composition of Water and Sediments
3.2. Principal Component Analyses (PCA) and Cluster Analyses (CA) of Sediment Samples
3.3. Correlation Coefficient between the Sediment and Related Water Samples
3.4. Pollution Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology: IAH: International Contributions to Hydrogeology, 26; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Quinlan, J.F. Types of Karst, with Emphasis on Cover Beds in Their Classification and Development. Ph.D. Thesis, University of Texas Austin, Austin, TX, USA, 1978. [Google Scholar]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: Oxford, UK, 1988; p. 464. [Google Scholar]
- Williams, P.W. Arête and Pinnacle Karst of Mount Kaijende. In Karst Rock Features: Karren Sculpturing; Ginés, Á., Knez, M., Slabe, T., Dreybrodt, W., Eds.; ZRC Publishing: Postojna, Slovenia, 2009; Volume 9, pp. 433–437. [Google Scholar]
- Veress, M. Covered Karsts; Springer Geology; Springer: Dordrecht, The Netherlands, 2016; ISBN 978-94-017-7518-2. [Google Scholar]
- Veress, M. Karst Types and Their Karstification. J. Earth Sci. 2020, 31, 621–634. [Google Scholar] [CrossRef]
- Drew, D.; Hötzl, H. Karst Hydrogeology and Human Activities: Impacts, Consequences, and Implications: IAH International Contributions to Hydrogeology 20; Taylor and Francis: London, UK, 1999. [Google Scholar]
- De Vivo, B.; Ander, E.L.; Bidovec, M.; Lima, A.; Pirc, S.; Reeder, S.; Siewers, U.; Smith, B. Distribution of elements in stream water. In Geochemical Atlas of Europe; De Vos, W., Tarvainen, T., Eds.; Part 2; Geological Survey of Finland: Espoo, Finland, 2005; pp. 33–35. [Google Scholar]
- De Vos, W.; Batista, M.J.; Pirc, S.; O’Connor, P.J.; Demetriades, A.; Tarvainen, T.; Salminen, R.; Reeder, S.; Salpeteur, I.; Gregorauskiene, V. Distribution of elements in stream sediment. In Geochemical Atlas of Europe; De Vos, W., Tarvainen, T., Eds.; Part 2; Geological Survey of Finland: Espoo, Finland, 2005; pp. 37–39. [Google Scholar]
- Matić, N.; Miklavčić, I.; Maldini, K.; Tomas, D.; Cuculić, V.; Cardellini, C.; Frančišković-Bilinski, S. Geochemical and isotopic characteristics of karstic springs in coastal mountains (Southern Croatia). J. Geochem. Explor. 2013, 132, 90–110. [Google Scholar] [CrossRef]
- Meybeck, M. Heavy Metal Contamination in Rivers across the Globe: An Indicator of Complex Interactions between Societies and Catchments. In Understanding Freshwater Quality Problems in a Changing World, Proceedings of the H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; IAHS Publisher: Wallingford, UK, 2013; Volume 61, pp. 3–16. [Google Scholar]
- Razak, I.S.; Tan, Z.Z.; Nor, Z.M.; Wahid, N.B.A.; Mushrifah, I.; Latif, M.T. Correlation between surfactants and heavy metals in a Natural Lake. Environ. Forensics 2012, 14, 59–68. [Google Scholar] [CrossRef]
- Maldini, K.; Cukrov, N.; Pikelj, K.; Matić, N.; Mlakar, M. Geochemistry of Metals and Organic Matter in Water and Sediments of the Karst River Cetina, Croatia. Water 2023, 15, 1429. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Gerontidis, S.; Sarris, E. Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): Total and available forms, origin and distribution. Environ. Monit. Assess. 2009, 151, 105–116. [Google Scholar] [CrossRef]
- Stavreva-Veselinovska, S.; Živanović, J.; Đokić, M. The toxic influence of excessive concentrations of some heavy metals upon anthoccians, flavonoids, and phenols in pepper (Capsicum annum) as a vegetable. Nat. Montenegrina 2008, 7, 527–534. [Google Scholar]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. Treatise Geochem. 2003, 5, 605. [Google Scholar]
- Charlton, R. Fundamentals of Fluvial Geomorphology; Routledge: London, UK, 2008. [Google Scholar]
- Besser, J.M.; Leib, K.J. Toxicity of Metals in Water and Sediment to Aquatic Biota. In Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado; Church, S.E., Ed.; U.S. Department of the Interior U.S. Geological Survey: Reston, VA, USA, 2007; Chapter E19; Volume 2, pp. 837–851. [Google Scholar]
- Dinelli, E.; Cortecci, G.; Lucchini, F.; Zantedeschi, E. Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy). Geochem. J. 2005, 39, 531–545. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLoS ONE 2012, 7, e39690. [Google Scholar] [CrossRef]
- Shafie, N.A.; Aris, A.Z.; Zakaria, M.P.; Haris, H.; Lim, W.Y.; Isa, N.M. Application of geo-accumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. J. Environ. Sci. Health Part A 2013, 48, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Shantaa, T.B.; Ahmeda, A.S.S.; Hossainb, M.K.; Semme, S.A. Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Mar. Pollut. Bull. 2019, 140, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Walker Davis, E.; Ma, G. Ecological risk assessment of metals in small craft harbor sediments in Nova Scotia, Canada. Mar. Pollut. Bull. 2019, 146, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Huang, C.; Chuang, Y.H.; Chen, H.W.; Chan, Y.; Teah, H.Y.; Chen, T.; Chang, C.; Liu, Y.; Tzou, Y. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Nat. Portf. 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Kumari, D.V. Seasonal Variation and Assessment of Heavy Metal Contamination in the Sediments of Selected Perennial Ponds in Kanyakumari District, Tamil Nadu, India; International Research Publication House: Delhi, India, 2020; Volume 8, p. 12. [Google Scholar]
- Zhang, S.; Chen, B.; Du, J.; Wang, T.; Shi, H.; Wang, R. Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China. Multidiscip. Digit. Publ. Inst. 2022, 19, 9140. [Google Scholar] [CrossRef] [PubMed]
- Zaini, N.M.; Lee, H.; Mohamed, K.N.; Sabuti, A.A.; Suratman, S.; Ong, M.C. Datasets on Spatial and Temporal Distribution of Heavy Metals Concentration in Recent Sediment at Merang River System, Terengganu, Malaysia; Elsevier BV: Amsterdam, The Netherlands, 2020; Volume 31, p. 105900. [Google Scholar]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy metal distribution, sources and ecological risk assessment in Huixian wetland South China. Water 2020, 12, 431. [Google Scholar] [CrossRef]
- Harikrishnan, N.; Ravishankar, R.; Chandrasekaran, A.; Gandhi, M.S.; Kanagasabapathy, K.V.; Prasad, M.V.R.; Satapathy, K.K. Assessment of heavy metal contamination in marine sediments of the east coast of Tamil Nadu affected by different pollution sources. Mar. Pollut. Bull. 2017, 121, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.N. PIG: A numerical index for dissemination of groundwater contamination zones. Hydrol. Process. 2012, 26, 3344–3350. [Google Scholar]
- Omwene, P.I.; Oncel, M.S.; Celen, M.; Kobya, M. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpasa stream located in the world’s largest borate basin (Turkey). Chemosphere 2018, 208, 782–792. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Sarkar, S.; Ghosh, P.B.; Sil, A.K.; Saha, T. Heavy metal pollution assessment through comparison of different indices in sewage fed fishery pond sediments at East Kolkata Wetland India. Environ. Earth Sci. 2010, 63, 915–924. [Google Scholar] [CrossRef]
- Jena, V.; Ghosh, S.; Pande, A.; Maldini, K.; Matic, N. Geo-Accumulation Index of Heavy Metals in Pond Water Sediment of Raipur. Environmental Communication. Biosci. Biotechnol. Res. Commun. 2019, 12, 585–588. [Google Scholar] [CrossRef]
- Goldscheider, N. A holistic approach to groundwater protection and ecosystem services in karst terrains. Carbonates Evaporites 2019, 34, 1241–1249. [Google Scholar] [CrossRef]
- Gasparatos, D. Soil Contamination by Heavy Metals and Metalloids. Environments 2022, 9, 32. [Google Scholar] [CrossRef]
- Shahbazbegian, M.; Noori, R. Hydropolitical System Archetypes: Feedback Structures, Physical Environments, Unintended Behaviors, and a Diagnostic Checklist. Hydrology 2022, 9, 207. [Google Scholar] [CrossRef]
- UNESCO-IHP. Protection and Sustainable Use of the Dinaric Karst Transboundary Aquifer System, Transboundary Diagnostic Analysis; UNESCO-IHP: Paris, France, 2013. [Google Scholar]
- Polemio, M.; Dragone, V.; Limoni, P. Monitoring and methods to analyze the groundwater quality degradation risk in coastal karstic aquifers (Apulia, Southern Italy). Environ. Geol. 2009, 58, 299–312. [Google Scholar] [CrossRef]
- EUR-Lex. Water Framework Directive (WFD 2000/60/EC) of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–73. [Google Scholar]
- Popović, A.; Radeljak, P. Razvojni problemi pograničnog pojasa Žumberka (Development Problems of the Žumberak Border Region). Hrvat. Geogr. Glas. 2011, 73, 179–199. [Google Scholar] [CrossRef]
- Turk, I.; Šimunić, N.; Živić, D. Prometna dostupnost kao čimbenik depopulacije i razvojnog zaostajanja: Primjer Žumberka (Transport Accessibility As a Factor of Depopulation and Developmental Delay: Case Study Žumberak). Društvena Istraživanja 2016, 25, 241–266. [Google Scholar] [CrossRef]
- Buzjak, N. Speleološke pojave u Parku prirode “Žumberak-Samoborsko gorje” (Speleological Features of Žumberak–Samoborsko gorje Nature Park). Geoadria 2002, 7, 31–49. [Google Scholar]
- Bognar, A.; Faivre, S.; Buzjak, N.; Pahernik, M.; Bočić, N. Recent Landform Evolution in the Dinaric and Pannonian Regions of Croatia. Recent Landform Evolution; Lóczy, D., Stankoviansky, M., Kotarba, A., Eds.; Springer: New York, NY, USA, 2012; pp. 313–334. [Google Scholar]
- Vujnović, T. Springs in the Žumberak—Samoborsko gorje Nature park. Nat. Croat. 2011, 20, 19–34. [Google Scholar]
- Brkić, Ž.; Kuhta, M.; Singer, D. Geološka i hidrogeološka Osnova Parka prirode “Žumberak—Samoborsko Gorje” (Geological and Hydrogeological Base of the “Žumberak—Samoborsko Gorje Nature Park”); JU PP Žumberak—Samoborsko gorje: Samobor, Croatia, 2002. [Google Scholar]
- Peh, Z.; Miko, S. Geochemical comparison of stream and overbank sediments: A case study from the Žumberak region, Croatia. Geol. Croat. 2001, 54, 119–130. [Google Scholar] [CrossRef]
- Peh, Z.; Miko, S. Impact of geomorphological variables in weighting the lithoogical influence on geochemical composition of stream and overbank sediments: A regression model for the Žumberak area (NW Croatia). Geol. Croat. 2003, 56, 199–214. [Google Scholar] [CrossRef]
- Čović, M. Geochemical and Mineralogical Characteristics of Overbank Sediments of Žumberak—Samobor Mt. Master’s Thesis, Mining Geological Petroleum Faculty, University of Zagreb, Zagreb, Croatia, 2003. [Google Scholar]
- Buzjak, N.; Trpčić, M. Mjerenje tvrdoće vode u odabranim krškim pojavama Žumberačke gore (Water hardness in selected karst features of Žumberačka Gora Mt.). Geoadria 2005, 10, 157–169. [Google Scholar] [CrossRef]
- Malinar, H. Trasiranje novootvorenog ponora u Otruševcu i rekonstrukcija hidrogeološke povijesti otruševečke doline (Tracing of new ponor in Otruševec and reconstruction oh hydrogeological history of Otruševec valley). Speleolog 2010, 57, 65–72. [Google Scholar]
- Frangen, T. Određivanje Značajki Krškoga Vodonosnika na Području Jugozapadnoga Žumberka Kvantitativnim Trasiranjem u Različitim Hidrološkim Uvjetima. Ph.D. Thesis, Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu, Zagreb, Croatia, 2013. [Google Scholar]
- Nippgen, F.; McGlynn, B.L.; Marshall, L.A.; Emanuel, R.E. Landscape structure and climate influences on hydrologic response. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef]
- Herak, M. Tectonic Interrelation of the Dinarides and the Southern Alps. Geol. Croat. 1999, 52, 83–98. [Google Scholar]
- Pamić, J.; Tomljenović, B. Basic geologic data from the Croatian part of Zagorje-Mid-Transdanubian Zone. Acta Geol. Hung. 1998, 41, 389–400. [Google Scholar]
- Buzjak, N.; Buzjak, S.; Orešić, D. Florističke, mikroklimatske i geomorfološke značajke ponikve Japage na Žumberku (Hrvatska) (Floristic, microclimatic and geomorphological features of collapsed doline Japage on the Žumberak; Croatia). Šumarski List 2011, 3–4, 127–137. [Google Scholar]
- Buzjak, N. Cave Database of Žumberak Samoborsko Gorje Mt; Caving Club Samobor: Samobor, Croatia, 2019. [Google Scholar]
- Šikić, K.; Basch, O.; Šimunić, A. Osnovna Geološka Karta SFRJ, 1:100.000, List Zagreb L38-80 (Basic Geological Map SFRJ, Scale 1:100.000, Sheet Zagreb L38-80); Institut za Geološka Istraživanja: Zagreb, Croatia, 1977. [Google Scholar]
- Pleničar, M.; Premru, U.; Herak, M. Osnovna Geološka Karta SFRJ M 1:100.000, List Novo Mesto L 33-79 (Basic Geological Map SFRJ, Scale 1:100.000, Sheet Novo Mesto L 33-79); Savezni Geološki Zavod: Beograd, Serbia, 1975. [Google Scholar]
- Premru, U.; Ogorelec, B.; Šribar, L.J. O geološkoj zgradbi Dolenjske (On the geological structure of the Lower Carniola). Geologija 1977, 20, 167–192. [Google Scholar]
- Herak, M.; Bukovac, J. Tektonsko okno Duralije u Žumberku (Tectonic window Duralije in Žumberak). Geološki Vjesn. 1988, 41, 231–236. [Google Scholar]
- Tomljenović, B.; Csontos, L. Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia). Int. J. Earth Sci. (Geol. Rundsch.) 2001, 90, 560–578. [Google Scholar] [CrossRef]
- Velić, J. Acceleration of vertical tectonic movements during the neogene and quaternary in the western part of the Sava river depression). Geološki Vjesn. 1983, 36, 225–265. [Google Scholar]
- Šegota, T.; Filipčić, A. Köppenova podjela klima i hrvatsko nazivlje (Köppen’s Classification of Climates and the Problem of Corresponding Croatian Terminology). Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M. Klimatski Atlas Hrvatske (Climate Atlas of Croatia 1961–1990, 1971–2000); Državni Hidrometeorološki Zavod: Zagreb, Croatia, 2008. [Google Scholar]
- Penzar, B.; Penzar, I. Prikaz godišnjeg hoda oborine u Hrvatskoj pomoću Köppenove sheme (Analysis of annual rainfall in Croatia using the Köppen scheme). Acta Geogr. Croat. 1983, 17–18, 3–9. [Google Scholar]
- Dujmović, I. Fizičko-Geografske Značajke Samoborskog Gorja i Plješivičkog Prigorja (Physical Geographical Features of Samoborsko Gorje Mt. and Plješivica); Meridijani: Samobor, Croatia, 2007. [Google Scholar]
- Vrbek, B. Tloznanstvo; Veleučilište u Karlovcu: Karlovac, Croatia, 2013. [Google Scholar]
- Jelaska, S.; Grgurić, Z.; Kušan, V.; Major, Z.; Mihulja, A.; Peternel, H. Vegetacijska Karta Parka Prirode “Žumberak—Samoborsko Gorje” (Vegetation Map of Žumberak-Samoborsko Gorje); Oikon d.o.o.: Zagreb, Croatia, 2003. [Google Scholar]
- Velić, I.; Vlahović, I. Tumač Geološke karte Republike Hrvatske 1:300.000 (Interpreter of the Geological Map of Republic of Croatia); Croatian Geological Institute: Zagreb, Croatia, 2009. [Google Scholar]
- CGI. Geološka Karta Republike Hrvatske 1:300.000 (Geological Map of Republic of Croatia 1:300.000—In Croatian); Croatian Geological Institute: Zagreb, Croatia, 2009. [Google Scholar]
- HRN EN ISO 10523:2012; Kvaliteta Vode—Određivanje pH Vrijednosti (ISO 10523:2008; EN ISO 10523:2012); HZN Glasilo 1/2012. Croatian Standards Institute: Zagreb, Croatian, 2012.
- HRN EN 27888:2008; Kakvoća Vode—Određivanje Električne Vodljivosti (ISO7888:1985; EN 27888:1993); Glasilo 5/2008. Croatian Standards Institute: Zagreb, Croatian, 2008.
- SM: 2130—B Turbidity, 22nd ed.; Standard Methods for the Examination of Water and Wastewater. American Public Health Association: Washington, DC, USA, 2012.
- HRN EN ISO 10304-1:2009 en; Kakvoća Vode—Određivanje Otopljenih Aniona Ionskom Tekućinskom Kromatografijom—1. Dio (ISO 10304-1:2007, EN ISO10304-1:2009); HZN Glasilo 6/2009. Croatian Standards Institute: Zagreb, Croatian, 2009.
- HRN EN ISO 14911:2001 en; Kakvoća Vode—Određivanje Otopljenih Kationa Ionskom Kromatografijom—Metoda za Vode i Otpadne Vode. Narodne novine: Zagreb, Croatian, 2001.
- ISO/TR 11905-2:1997; Water Quality—Determination of Nitrogen. Part 2: Determination of Bound Nitrogen, after Combustion and Oxidation to Nitrogen Dioxide, Chemiluminescence Detection. ISO—International Organization for Standardization: Geneva, Switzerland, 1997.
- HRN EN 1484:2002; Ispitivanje Vode—Smjernice za Određivanje Ukupnog Organskog Ugljika i Otopljenog Organskog Ugljika; Glasilo DZNM 1-2/2002. Croatian Standards Institute: Zagreb, Croatian, 2002.
- HRN ISO 17294-2:2003; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes (ISO 17294-2:2023, Corrected version 2024-02; EN ISO 17294-2:2023); HZN e-Glasilo 11/2023. Croatian Standards Institute: Zagreb, Croatian, 2023.
- ISO 11466; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. ISO—International Organization for Standardization: Geneva, Switzerland, 1995.
- HRN EN ISO 6878:2008; Water Quality—Determination of Phosphorus-Ammonium Molybdate Spectrometric Method ISO 6878:2004; EN ISO 6878:2004; HZN Glasilo 5/2008. Croatian Standards Institute: Zagreb, Croatian, 2008.
- HRN ISO 7150-1:1998; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method ISO 7150-1:1984; Glasilo DZNM 1-2/1998. Croatian Standards Institute: Zagreb, Croatian, 1998.
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar]
- Salah, E.A.M.; Zaidan, T.A.; Al-Rawi, A.S. Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq. J. Water Resour. Prot. 2012, 4, 1009. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Müller, G. Schwermetalle in den Sedimenten des Rheins-Veränderun Gen Seit 1971; Deu, Umschau Wissensch. Tech., Univ., inst. sedimentforsch.: Heidelber, Germany, 1979; pp. 778–783. [Google Scholar]
- Official Gazette No. 64 (2023). Regulation on compliance parameters, methods of analysis and monitoring of water intended for human consumption 22 June 2023, Official Gazette of the Republic of Croatia 64/2023. (OG 64/2023). Available online: https://leap.unep.org/en/countries/hr/national-legislation/regulation-compliance-parameters-methods-analysis-and-monitoring (accessed on 15 September 2024).
- Matić, N.; Maldini, K.; Tomas, D.; Ćuk, R.; Milvić, S.; Miklavčić, I.; Širac, S. Geochemical characteristics of the Gacka River karstic springs (Dinaric karst, Croatia) with macroinvertebrate assemblages overview. Environ. Earth Sci. 2016, 75, 1308. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe; Part 1—Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Frančišković-Bilinski, S. An assessment of multielemental composition in stream sediments of Kupa river drainage basin, Croatia for evaluating sediment quality guidelines. Fresenius Environ. Bull. 2007, 16, 5. [Google Scholar]
- Batts, D.; Cubbage, J. Summary of Guidelines for Contaminated Freshwater Sediments; Publication No. 95-308; Washington State Department of Ecology: Olympia, WA, USA, 1995. [Google Scholar]
- Hao, Q.; Yang, S.; Song, Z.; Wang, Z.; Yu, C.; Wang, H. Vegetation Determines Lake Sediment Carbon Accumulation during Holocene in the Forest–Steppe Ecotone in Northern China. Forests 2021, 12, 696. [Google Scholar] [CrossRef]
- Sučić, H.; Damjanović, I.; Kralj, M.; Bezik, D.; Kolarić, D.; Habuda-Stanić, M.; Turić, N.; Benkotić, S.; Šveiger, B.; Ruškan, I. Seasonal Variations of the Total Organic Carbon (TOC) Concentrations in the surface waters of Kopački rit-NATURAVITA project in the period. In Proceedings of the 1st European GREEN Conference, Vodice, Croatia, 23–26 May 2023. [Google Scholar]
- Perakis, S.S.; Pett-Ridge, J.C. Nitrogen-fixing red alder trees tap rock-derived nutrients. Proc. Natl. Acad. Sci. USA 2019, 116, 5009–5014. [Google Scholar] [CrossRef] [PubMed]
- Sardar, M.F.; Younas, F.; Farooqi, Z.U.R.; Li, Y. Soil nitrogen dynamics in natural forest ecosystem: A review. Front. For. Glob. Chang. 2023, 6, 1144930. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Juračić, M.; Tibljaš, D. Rječina River sediments (Croatia): From captured spring to polluted prodelta. Environ. Earth Sci. 2011, 64, 1755–1761. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Cuculić, V.; Bilinski, H.; Häusler, H.; Stadler, P. Geochemical and stable isotopic variability within two rivers rising under the same mountain, but belonging to two distant watersheds. Geochemistry 2013, 73, 293–308. [Google Scholar] [CrossRef]
- Inobeme, A.; Adetunji, C.O.; Akram, M.; Munirat, M.; Inamuddin Laila, U.; Okonkwo, S.O.; Islam, S.; Inobeme, J. Benefits of Geochemistry and Its Impact on Human Health. In Geochemistry: Concepts and Applications; Mohd Imran Ahamed, I., Boddula, R., Altalhi, T., Eds.; Wiley: Hoboken, NJ, USA, 2021; Chapter 2. [Google Scholar]
- Mirosevic, V.; Svagusa, T.; Matic, N.; Maldini, K.; Siljeg, M.; Milicic, D.; Gasparovic, H.; Rudez, I.; Sepac, A.; Gojmerac, L.; et al. Cardiotoxicity of Iron and Zinc and Their Association with the Mitochondrial Unfolded Protein Response in Humans. MDPI Special Issue Zinc and Manganese in Human Health and Disease. Int. J. Mol. Sci. 2024, 25, 9648. [Google Scholar] [CrossRef] [PubMed]
ID | Spring | Spring Type | Water Outflow and Outflow Type | Use and Lithostratigraphy of Catchment Area | Location [Elevation a.s.l. (m)] LONG (°) LAT (°) | Estimated Discharge (Ls−1), Permeability, and Dominant Porosity |
---|---|---|---|---|---|---|
S1 | Vugrinov spring | Fissure spring, descending | Concentrated outflow, permanent | Natural limestone, dolomitic limestone, dolomite (T2) | Samoborsko Gorje Mt. [303] 45.77416 15.70115 | 0.5–5.0, moderately, fissure and conduit |
S2 | Migalić spring | Fissure spring, descending | Concentrated outflow, permanent | Natural limestone (1M31) | Samoborsko Gorje Mt. [164] 45.78103 15.71565 | 1.0–20.0, moderately, fissure |
S3 | Vrtlišće spring | Fissure spring, descending | Concentrated outflow, permanent | Natural limestone (1M31) | Samoborsko Gorje Mt. [169] 45.77895 15.71646 | 1.0–20.0, moderately, fissure |
S4 | Vapnik spring | Fissure spring, descending | Concentrated outflow, permanent | Natural limestone (2M22) | Samoborsko Gorje Mt. [348] 45.77027 15.69223 | <0.5, moderately, fissure |
S5 | Bistrac spring | Cave spring, ascending | Concentrated outflow, permanent | Natural limestone (2M22) | Samoborsko Gorje Mt. [160] 45.82286 15.68856 | 10.0–100.00, moderately, fissure and conduit |
S6 | Zdenac spring | Fissure spring, descending | Concentrated outflow, permanent | Captured dolomite (T3) | Samoborsko Gorje Mt. [164] 45.83546 15.68418 | 0.5–1, well, fissure |
S7 | Slapnica spring | Fissure spring, descending | Diffuse outflow, permanent | Natural dolomite (T3) | Žumberak Mt. [296] 45.75269 15.49008 | 50–150, well, fissure and conduit |
S8 | Drobovnik spring | Fissure spring, descending | Concentrated outflow, periodic | Natural limestone (K2) | Žumberak Mt. [547] 45.72025 15.32606 | 0.1–5.0, well, fissure and conduit |
S9 | Jaža spring | Fissure spring, descending | Diffuse outflow, permanent | Natural limestone, breccia, flysh (K2) | Žumberak Mt. [219] 45.69971 15.43234 | 5.0–150, moderately, fissure and conduit |
S10 | Močile spring | Fissure spring, descending | Concentrated outflow, permanent | Captured limestone, breccia (K2) | Žumberak Mt. [374] 45.71379 15.43489 | 0.5–1, well moderately, fissure |
S11 | Obrv spring | Fissure spring, descending | Concentrated outflow, permanent | Natural limestone, breccia (K2), dolomite (T3) | Žumberak Mt. [224] 45.70097 15.43047 | 5.0–100, well, fissure and conduit |
S12 | Rogovac spring | Cave spring, ascending | Concentrated outflow, permanent | Captured limestone, breccia (K2) | Žumberak Mt. [304] 45.67459 15.5445 | 0.5–1, well, fissure and conduit |
S13 | Špilja pod Pećinom spring | Cave spring, ascending | Concentrated outflow, permanent | Natural limestone, breccia (K2) | Žumberak Mt. [604] 45.72628 15.35017 | <0.5, well moderately, fissure and conduit |
S14 | Vrulje spring | Fissure spring, descending | Concentrated outflow, permanent | Natural Limestone (K2) | Žumberak Mt. [247] 45.68573 15.44723 | <0.5, well, fissure and conduit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzjak, N.; Matić, N.; Maldini, K.; Jena, V. Multivariate Statistical Approach and Assessment of Pollution of Water and Sediments in Karstic Springs of Transboundary Aquifer Žumberak–Samoborsko Gorje Mountain (Croatia/Slovenia). Water 2024, 16, 2718. https://doi.org/10.3390/w16192718
Buzjak N, Matić N, Maldini K, Jena V. Multivariate Statistical Approach and Assessment of Pollution of Water and Sediments in Karstic Springs of Transboundary Aquifer Žumberak–Samoborsko Gorje Mountain (Croatia/Slovenia). Water. 2024; 16(19):2718. https://doi.org/10.3390/w16192718
Chicago/Turabian StyleBuzjak, Nenad, Natalija Matić, Krešimir Maldini, and Vinod Jena. 2024. "Multivariate Statistical Approach and Assessment of Pollution of Water and Sediments in Karstic Springs of Transboundary Aquifer Žumberak–Samoborsko Gorje Mountain (Croatia/Slovenia)" Water 16, no. 19: 2718. https://doi.org/10.3390/w16192718
APA StyleBuzjak, N., Matić, N., Maldini, K., & Jena, V. (2024). Multivariate Statistical Approach and Assessment of Pollution of Water and Sediments in Karstic Springs of Transboundary Aquifer Žumberak–Samoborsko Gorje Mountain (Croatia/Slovenia). Water, 16(19), 2718. https://doi.org/10.3390/w16192718