Water Resources Management for Multi-Source Ecological Restoration Goals in an Oasis: A Case Study of Bohu County Irrigation Area in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Ecological Water Level
2.2.2. Hydrological Simulation
2.2.3. Regulation Based on Single Well Groundwater
2.2.4. Calculation of Water Balance in Hydrological Interaction Areas
2.3. Data Availability
3. Results
3.1. Ecological Water Level Calculation and Diagnosis of Groundwater Issues in Irrigation Districts
3.2. Water Resource Regulation in Irrigation Districts Based on Ecological Water Levels
3.3. Water Resources Regulation Based on Ecological Water Demand of Small Lake
3.3.1. Regional Water Cycle Process Mechanism
3.3.2. Regional Water Resources Regulation Plan under the Ecological Water Demand Requirements of Small Lake
4. Discussion
4.1. Discussion on the Calculation of Ecological Water Levels
4.2. Discussion on the Problems Facing Regional Groundwater and Regulatory Solutions
4.3. Discussion on the Regional Water Resource Circulation Mechanism and Overall Regional Water Resource Regulatory Solutions
5. Conclusions
- (1)
- The sustainable water level of groundwater in the Bohu irrigation area is 1.69–4 m. On the time scale, the regional average time above the ecological water level is 161 days, accounting for 44.1% of the total time, and is mainly concentrated during the irrigation period. On a spatial scale, the monthly average area of the region that exceeds the ecological water level accounts for 74% of the region’s total area.
- (2)
- Groundwater regulation based on the extraction rate of individual wells can effectively improve regional groundwater problems. After regulation, on a time scale, the average duration of surpassing the ecological water level in the region for 132 days returns to the range of the ecological water level, with a regulation completion rate of 89.1%. In terms of spatial scale, the average area above the ecological water level increases by 65.31% compared to before regulation, reaching a total area of 91.25%.
- (3)
- The recharge amount of surface water to the Small Lake is much greater than that of groundwater, and it is the decisive factor in the total recharge of the Small Lake. For the regulation of regional water resources, the amount of water coming from the west branch of the BLSM water diversion hub must be guaranteed. Under different planting scenarios, the average minimum allocated water volume of the west branch of the BLSM water diversion hub needs to meet 824.632 to meet the ecological water demand requirements of the Small Lake. The minimum allocated water volume of the west branch of the BLSM water diversion hub, which simultaneously meets the requirements of groundwater regulation and Small Lake ecological water demand, is 831.902 .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Wang, S.; Liu, Y.X.; Wang, Y.J.; Wang, Y.P.; Zhang, T.G.; Zhang, H.Y.; Yao, Y.; Song, J.X. Water Availability in China’s Oases Decreased between 1987 and 2017. Earth’s Future 2023, 11, e2022EF003340. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Gu, X.C.; Deng, M.J.; Lai, X.Y.; Long, A.H.; Deng, X.Y. Analysis of Spatio-Temporal Pattern Changes and Driving Forces of Xinjiang Plain Oases Based on Geodetector. Land 2023, 12, 1508. [Google Scholar] [CrossRef]
- Tang, X.; Li, S. Suitable Scale of Oases in Arid Regions: A Case Study of the Middle Reaches of the Heihe River Basin, China. Polish J. Environ. Stud. 2023, 32, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Lu, Q.; Li, Y.H.; Wang, Z.J.; Yao, B.; Yang, Q.K.; Wang, J. Ecological Vulnerability Assessment of Natural Oasis in Arid Areas: Application to Dunhuang, China. Ecol. Indic. 2023, 149, 110139. [Google Scholar] [CrossRef]
- Eziz, M.; Yimit, H.; Zhang, Y. The Drivers and Ecological Effects of Spacio-Temporal Dynamics Farmland in Yanqi Basin. Agric. Res. Arid Areas 2014, 32, 192–197. [Google Scholar]
- Wang, S.X.; Dong, X.G.; Wu, B. Modelling and Controlling of Groundwater and Salt Movement in Yanqi Basin, Northwestern China. In Proceedings of the 7th International Groundwater Quality Conference, Lanzhou, China, 13–18 June 2010; Volume 342, pp. 491–495. [Google Scholar]
- Wang, X.; Yu, Z.; Wang, J.; Zhang, J.; Wang, X.; Yu, Z.; Wang, J.; Zhang, J. (Eds.) Carbon Cycle in the Changing Arid Land of China: Yanqi Basin and Bosten Lake; Springer: Singapore, 2018; ISBN 2197-9596. [Google Scholar]
- Yan, Y.J.; Li, J.G.; Li, J.L.; Jiang, T. Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in the Kaidu-Kongque River Basin, China. Sustainability 2023, 15, 8949. [Google Scholar] [CrossRef]
- Maierhaba, M.; Yusufujiang, R.; Anniwaer, A.; Tashigen, J. Dynamic Variation of Phragmites Australis Wetland in the Bosten Lake Basin and Its Driving Factors in Recent 26 Years. Arid Zo. Res. 2016, 33, 797–804. [Google Scholar]
- Zhang, H.; Li, X.; Yan, K.; Liu, B. Landscape Dynamic Changes of Small lake in Bosten Lake. Trans. Oceanol. Limnol. 2017, 8, 23–30. [Google Scholar]
- Liu, Y.; Zhong, R.; Duan, Y.; Cheng, Y.; Jiang, L.; Li, J.; Liu, T. Threshold of Ecological Water Demands for the Small Lake Wetland of Bosten Lake. Arid L. Geogr. 2021, 44, 1525–1533. [Google Scholar]
- Zhao, J.; Zhou, J.; Liang, C.; Ying, Z.; Bao, Z.; Qian, L. Hydrogeochemical Process of Evolution of Groundwater in Plain Area of Yanqi, Xinjiang. Huanjing Huaxue-Environ. Chem. 2017, 36, 1397–1406. [Google Scholar] [CrossRef]
- Xia, J.; Wu, X.; Zhan, C.; Qiao, Y.; Hong, S.; Yang, P.; Zou, L. Evaluating the Dynamics of Groundwater Depletion for an Arid Land in the Tarim Basin, China. Water 2019, 11, 186. [Google Scholar] [CrossRef]
- Yuan, L.; Yuan, T.; Fengqing, J.; Yajun, W.; Hu, R. Study on Hydrological Features of the Kaidu River and the Bosten Lake in the Second Half of 20th Century. J. Glaciol. Geocryol. 2003, 25, 215–218. [Google Scholar]
- Rusuli, Y.; Li, L.H.; Li, F.D.; Eziz, M. Water-Level Regulation for Freshwater Management of Bosten Lake in Xinjiang, China. Water Sci. Technol. Supply 2016, 16, 828–836. [Google Scholar] [CrossRef]
- Bian, D.H.; Yang, X.H.; Lu, Y.; Chen, H.; Sun, B.Y.; Wu, F.F.; Chen, Y.J.; Xiang, W.Q. Analysis of the Spatiotemporal Patterns and Decoupling Effects of China’s Water Resource Spatial Equilibrium. Environ. Res. 2023, 216, 114719. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Liu, T.; Huang, Y.; De Maeyer, P.; Guo, C.; Ling, Y.; Akmalov, S. Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water 2020, 12, 2869. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Liu, T.; Bao, A.; Chen, X.; Akmalov, S.; De Maeyer, P.; Van de Voorde, T. Modeling the Effects of Improved Irrigation Methods in a Groundwater System: A Case Study from the Amu Darya Delta, Uzbekistan. J. Hydrol. 2023, 625, 129987. [Google Scholar] [CrossRef]
- Narany, T.S.; Ramli, M.F.; Fakharian, K.; Aris, A.Z. A GIS-Index Integration Approach to Groundwater Suitability Zoning for Irrigation Purposes. Arab. J. Geosci. 2016, 9, 502. [Google Scholar] [CrossRef]
- Li, M.Y.; Xie, Y.Q.; Dong, Y.H.; Wang, L.H.; Zhang, Z.Y. Review: Recent Progress on Groundwater Recharge Research in Arid and Semiarid Areas of China. Hydrogeol. J. 2023, 32, 9–30. [Google Scholar] [CrossRef]
- Guo, C.; Liu, T.; Niu, Y.; Liu, Z.; Pan, X.; De Maeyer, P. Quantitative Analysis of the Driving Factors for Groundwater Resource Changes in Arid Irrigated Areas. Hydrol. Process. 2021, 35, e13967. [Google Scholar] [CrossRef]
- Zhai, J.; Dong, Y.; Qi, S.; Zhao, Y.; Liu, K.; Zhu, Y. Advances in Ecological Groundwater Level Threshold in Arid Oasis Regions. J. China Hydrol. 2021, 41, 7–14. [Google Scholar]
- Ali, R.; Elliott, R.L.; Ayars, J.E.; Stevens, E.W. Soil Salinity Modeling over Shallow Water Tables. I: Validation of LEACHC. J. Irrig. Drain. Eng. 2000, 126, 223–233. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Yan, L.; Yang, G.; Ma, J.; Deng, W. Quantifying Threshold Water Tables for Ecological Restoration in Arid Northwestern China. Groundwater 2020, 58, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, Y.D.; Zhang, D.R.; Chen, X. Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Liu, Y.; Peng, J.; Zhong, R.; Huang, Y.; Tie, L.; Cheng, Y.; Zhang, Y.; Jiang, L.; Yu, M. Analysis of Minimum Ecological Water Level and Water Surplus in Xiaohu Lake District in Bosten Lake. Environ. Eng. 2020, 38, 26–32, 60. [Google Scholar]
- Peng, J.; Huang, Y.; Liu, T.; Zhang, Y.; Cheng, Y.; Jiang, L. Ecological Water Requirement Accounting of Small Lake Wetland of Bosten Lake Based on Ecosystem Services Value. J. Hydroecol. 2020, 41, 21–30. [Google Scholar]
- Zhu, Z.; Zhou, J. The Formation of Two-Sides Oblique Compression and Substrate Contraction of Mesozoic Yanqi Basin. Pet. Explor. Dev. 2003, 30, 123–126. [Google Scholar]
- Liu, X.; Lin, S.; He, M.; He, Y.; Yan, Y. Identification of Characteristics of Yanqi Mesozoic Proatotype Basin. Xinjiang Pet. Geol. 2002, 23, 392–393. [Google Scholar]
- Jia, H.X.; Wang, X.; Xiao, J.J.; Jang, S.L.; Li, J.; Zhao, Y.F.; Ye, W.L. Simulated Soil Organic Carbon Stocks in Northern China’s Cropland under Different Climate Change Scenarios. Soil Tillage Res. 2021, 213, 105088. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Bao, A.; Liu, T.; Feng, X. Daily Flow Modeling in Arid Ungauged Basin. Adv. Water Sci. 2009, 20, 332–336. [Google Scholar]
- Lukjan, A.; Swasdi, S.; Chalermyanont, T. Importance of Alternative Conceptual Model for Sustainable Groundwater Management of the Hat Yai Basin, Thailand. Procedia Eng. 2016, 154, 308–316. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zhang, F.; Shi, J.C.; Johnson, V.C.; Ahmed, Z.; Wang, J.G.; Wang, W.W. Enhancing SWAT Model with Modified Method to Improve Eco-Hydrological Simulation in Arid Region. J. Clean. Prod. 2023, 403, 136891. [Google Scholar] [CrossRef]
- Xiao, H.; Cheng, G.; Li, C.; Ren, J.; Wang, S. Eco-Hydrological Observational Experiments of the Heihe River Basin and Integrated Eco-Water Management Research at Watershed Scale. Adv. Earth Sci. 2008, 23, 666–670. [Google Scholar]
- DHI MIKE. SHE USER MANUAL; 2017. [Google Scholar]
- Golian, S.; Saghafian, B.; Sheshangosht, S.; Ghalkhani, H. Comparison of Classification and Clustering Methods in Spatial Rainfall Pattern Recognition at Northern Iran. Theor. Appl. Climatol. 2010, 102, 319–329. [Google Scholar] [CrossRef]
- Guo, C.; Liu, T.; Huang, Y.; Niu, Y.; Zhang, Y.; Cheng, Y.; Jiang, L. Impact of Oasis Agriculture on the Ecological Water Requirement of the Small Lakes near Bosten Lake. J. Hydroecol. 2020, 41, 31–38. [Google Scholar]
- Wang, S.; Wu, B.; Yang, P.; Li, X.; Dong, X. Determination of the Ecological Groundwater Depth Considering Ecological Integrity over Oasis Irrigation Areas in the Yanqi Basin. Resour. Sci. 2011, 33, 422–430. [Google Scholar]
- Zhong, R. Research and Application Practice of Distributed Three-Dimensional Water and Salt Transport Model in Arid Oasis Area. Ph.D. Thesis, Xinjiang Agricultural University, Urumqi, China, 2008. [Google Scholar]
- Ma, J.; Zhu, Z.; Li, J. The Role of Groundwater in the Fragile Ecological Environment at the Southern Edge of the Taklimakan Desert. J. Lanzhou Univ. 2000, 36, 88. [Google Scholar]
- Xu, H.; Chen, Y.; Yang, G. Effect of Translating Water on Vegetation at the Lower Reaches of Tarim River. Huanjing Kexue 2003, 24, 18–22. [Google Scholar]
- Hao, X.; Li, W.; Chen, Y. Water Table and the Desert Riparian Forest Community in the Lower Reaches of Tarim River, China. Acta Phytoecol. Sin. 2008, 32, 838–847. [Google Scholar]
- Wang, R.; Song, Y.; Fan, Z.; Ma, Y. Estimation of Ecological Water Demand in the Tarim Basin’s “Four Sources and One Main Stream. J. Soil Water Conserv. 2001, 15, 19. [Google Scholar]
- Fan, Z.; Ma, Y.; Zhang, H. Determination of the Ecological Groundwater Level and Its Reasonable Depth in the Tarim River Basin. Arid L. Geogr. 2004, 01, 8–13. [Google Scholar]
- Yang, P.; Wu, B.; Wang, S.; Dong, X.; Liu, L. Research on Irrigation Schedule of Cotton Drip Irrigation under Plastic Film Based on the Different Ground Water Table in Arid Areas. Agric. Res. Arid Areas 2014, 32, 76–82. [Google Scholar]
- Wang, W.R.; Chen, Y.N.; Chen, Y.P.; Wang, W.H.; Zhang, T.J.; Qin, J.X. Groundwater Dynamic Influenced by Intense Anthropogenic Activities in a Dried-up River Oasis of Central Asia. Hydrol. Res. 2022, 53, 532–546. [Google Scholar] [CrossRef]
- Das, J.; Rahman, A.; Mandal, T.; Saha, P. Challenges of Sustainable Groundwater Management for Large Scale Irrigation under Changing Climate in Lower Ganga River Basin in India. Groundw. Sustain. Dev. 2020, 11, 100449. [Google Scholar] [CrossRef]
- Hao, A.B.; Zhang, Y.L.; Zhang, E.Y.; Li, Z.H.; Yu, J.; Wang, H.; Yang, J.F.; Wang, Y. Review: Groundwater Resources and Related Environmental Issues in China. Hydrogeol. J. 2018, 26, 1325–1337. [Google Scholar] [CrossRef]
- Yan, L.; Chen, M.J.; Hu, P.; Li, D.L.; Wang, Y. An Analysis on the Influence of Precipitation Infiltration on Groundwater under Different Irrigation Conditions in the Semi-Arid Area. Water Supply 2021, 21, 1111–1118. [Google Scholar] [CrossRef]
- Bennett, G. Assessment of Temporal and Spatial Variability of Irrigation Groundwater Quality on the Flanks of Mount Meru, Northern Tanzania. Groundw. Sustain. Dev. 2023, 20, 100880. [Google Scholar] [CrossRef]
- Meredith, E.; Blais, N. Quantifying Irrigation Recharge Sources Using Groundwater Modeling. Agric. Water Manag. 2019, 214, 9–16. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Chen, J.; Qian, H.; Wang, H.K.; Ren, W.H.; Qu, W.G. Hydrogeochemical Characteristics and Processes of Groundwater in an over 2260 Year Irrigation District: A Comparison between Irrigated and Nonirrigated Areas. J. Hydrol. 2022, 606, 127437. [Google Scholar] [CrossRef]
- Song, Y.Y.; Zhang, Q.; Melack, J.M.; Li, Y.L. Groundwater Dynamics of a Lake-Floodplain System: Role of Groundwater Flux in Lake Water Storage Subject to Seasonal Inundation. Sci. Total Environ. 2023, 857, 159414. [Google Scholar] [CrossRef]
- Xu, S.; Frey, S.K.; Erler, A.R.; Khader, O.; Berg, S.J.; Hwang, H.T.; Callaghan, M.V.; Davison, J.H.; Sudicky, E.A. Investigating Groundwater-Lake Interactions in the Laurentian Great Lakes with a Fully-Integrated Surface Water-Groundwater Model. J. Hydrol. 2021, 594, 125911. [Google Scholar] [CrossRef]
- Qian, Y.B.; Wu, Z.N.; Zhang, L.Y.; Zhou, H.R.; Wu, S.X.; Yang, Q. Eco-Environmental Evolution, Control, and Adjustment for Aibi Lake Catchment. Environ. Manag. 2005, 36, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.H.; Li, W.H.; Chen, Y.N.; Liu, Y.T. Suitable Oasis Scales under a Government Plan in the Kaidu-Konqi River Basin of Northwest Arid Region, China. PeerJ 2018, 6, e4943. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.G.; Zhao, H.L.; Jiang, Y.Z.; You, J.J.; Kang, J. River Basin Water Resources Multi- Objective Regulation Theory and Method Research. Appl. Mech. Mater. 2011, 71–78, 4721–4727. [Google Scholar] [CrossRef]
- Pan, B.Z.; Yuan, J.P.; Zhang, X.H.; Wang, Z.Y.; Chen, J.; Lu, J.Y.; Yang, W.J.; Li, Z.W.; Zhao, N.; Xu, M.Z. A Review of Ecological Restoration Techniques in Fluvial Rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Pander, J.; Geist, J. Ecological Indicators for Stream Restoration Success. Ecol. Indic. 2013, 30, 106–118. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.H. A Multi-Objective Optimization Prediction Approach for Water Resources Based on Swarm Intelligence. Earth Sci. Inform. 2021, 14, 457–468. [Google Scholar] [CrossRef]
- Dong, Z.C.A.; Ni, X.K.; Chen, M.F.; Yao, H.Y.; Jia, W.H.; Zhong, J.X.; Ren, L. Time-Varying Decision-Making Method for Multi-Objective Regulation of Water Resources. Water Resour. Manag. 2021, 35, 3411–3430. [Google Scholar] [CrossRef]
- Candido, L.A.; Coêlho, G.A.G.; de Moraes, M.; Florêncio, L. Review of Decision Support Systems and Allocation Models for Integrated Water Resources Management Focusing on Joint Water Quantity-Quality. J. Water Resour. Plan. Manag. 2022, 148, 03121001. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, B.J.; Liu, Y.X.; Wang, Y.J.; Song, S. The Contribution of Ecosystem Restoration to Sustainable Development Goals in Asian Drylands: A Literature Review. Land Degrad. Dev. 2021, 32, 4472–4483. [Google Scholar] [CrossRef]
No. | Type of Crops | Irrigation Start Month | Irrigation End Month | Number of Irrigations | Amount of Each Irrigation (m3∙hm−2) | Conventional Irrigation 75% Guaranteed Rate Irrigation Quota (m3∙hm−2) |
---|---|---|---|---|---|---|
1 | Spring wheat | Mid-April | Early July | 5–8 | 450~675 | 4800 |
2 | Spring corn | Early June | Early September | 6–8 | 600~750 | 5325 |
3 | Rice | Early May | Late August | 1 | 14,700 | 14,700 |
4 | Cotton | Late May | Mid-August | 8–10 | 450~600 | 6600 |
5 | Beets | Early June | Late August | 7–9 | 525~600 | 5775 |
6 | Vegetables | Mid-May | Early October | 6–8 | 450~600 | 6225 |
7 | Fruit trees | Mid-April | Early October | 5–7 | 450~600 | 3750 |
8 | Rape | Late May | Mid-August | 4–6 | 450~525 | 3600 |
9 | Beans | Late May | Late August | 6–8 | 300~450 | 4875 |
R | |||||
---|---|---|---|---|---|
2.31 m | N/m | 996 | 8.6 mm | 1.69 m | 4 m |
Level | Water Depth Range (m) | Average Water Level to be Raised (m) | Jan. (m3/d) | Feb. (m3/d) | Mar. (m3/d) | Apr. (m3/d) | May (m3/d) | Jun. (m3/d) |
---|---|---|---|---|---|---|---|---|
1 | 15–9 | 8 | 0 | 0 | −1705 | −1705 | −1705 | −1705 |
2 | 9–5 | 3 | 0 | 0 | −389 | −389 | −389 | −389 |
3 | 5–4 | 1 | 0 | 0 | −62.4 | −62.4 | −62.4 | −62.4 |
4 | 4–1.69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Level | Water Depth Range (m) | Average Water Level to be Raised (m) | Jul. (m3/d) | Aug. (m3/d) | Sep. (m3/d) | Oct. (m3/d) | Nov. (m3/d) | Dec. (m3/d) |
1 | 15–9 | 8 | −1705 | −1705 | −1705 | −1705 | 0 | 0 |
2 | 9–5 | 3 | −389 | −389 | −389 | −389 | 0 | 0 |
3 | 5–4 | 1 | −62.4 | −62.4 | −62.4 | −62.4 | 0 | 0 |
4 | 4–1.69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Month | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|
Percentage decrease in area for Level 1 | 100 | 100 | 100 | ||||||
Percentage decrease in area for Level 2 | 100 | 93.29 | 85.78 | 100 | 100 | 100 | |||
Percentage decrease in area for Level 3 | 86.58 | 90.31 | 44.22 | 62.98 | 64.09 | 30.86 | 91.55 | 92.52 | 89.43 |
Percentage increase in area of ecological water level | 52 | 59.19 | 68.71 | 87.21 | 86.58 | 60.13 | 68.1 | 63.32 | 42.56 |
Current percentage of ecological water level area | 91.95 | 96.18 | 87.05 | 87.21 | 86.58 | 87.23 | 95.17 | 94.88 | 94.97 |
Crop Type | Irrigation Quota () | Surface Water Supply to Small Lake () | Groundwater Recharge to Small Lake () | Total () |
---|---|---|---|---|
Spring wheat | 4800 | 534.090 | 7.068 | 541.158 |
Spring corn | 5325 | 532.648 | 6.880 | 539.527 |
Rice | 14,700 | 485.901 | 10.628 | 496.529 |
Cotton | 6600 | 527.956 | 6.910 | 534.866 |
Beet | 5775 | 530.689 | 6.913 | 537.602 |
Vegetable | 6225 | 531.743 | 6.880 | 538.622 |
Fruit trees | 3750 | 528.497 | 6.448 | 534.945 |
Rape | 3600 | 538.023 | 6.916 | 544.939 |
Beans | 4875 | 534.178 | 6.944 | 541.122 |
Crop Type | Difference between Total Recharge and Water Inflow from BSLM West Branch | The Minimum Allocated Water Volume of the West Branch of BLSM Water Diversion Hub under the Ecological Water Demand Requirements of Small Lake |
---|---|---|
Spring wheat | 17.842 | 817.842 |
Spring corn | 19.473 | 819.473 |
Rice | 62.471 | 862.471 |
Cotton | 24.134 | 824.134 |
Beets | 21.398 | 821.398 |
Vegetables | 20.378 | 820.378 |
Fruit trees | 24.055 | 824.055 |
Rape | 14.061 | 814.061 |
Beans | 17.878 | 817.878 |
Groundwater regulation | 31.902 | 831.902 |
Average | 24.632 | 824.632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Liu, T.; Niu, Y.; Pan, X. Water Resources Management for Multi-Source Ecological Restoration Goals in an Oasis: A Case Study of Bohu County Irrigation Area in Xinjiang, China. Water 2024, 16, 2708. https://doi.org/10.3390/w16192708
Guo C, Liu T, Niu Y, Pan X. Water Resources Management for Multi-Source Ecological Restoration Goals in an Oasis: A Case Study of Bohu County Irrigation Area in Xinjiang, China. Water. 2024; 16(19):2708. https://doi.org/10.3390/w16192708
Chicago/Turabian StyleGuo, Chenyu, Tie Liu, Yaxuan Niu, and Xiaohui Pan. 2024. "Water Resources Management for Multi-Source Ecological Restoration Goals in an Oasis: A Case Study of Bohu County Irrigation Area in Xinjiang, China" Water 16, no. 19: 2708. https://doi.org/10.3390/w16192708
APA StyleGuo, C., Liu, T., Niu, Y., & Pan, X. (2024). Water Resources Management for Multi-Source Ecological Restoration Goals in an Oasis: A Case Study of Bohu County Irrigation Area in Xinjiang, China. Water, 16(19), 2708. https://doi.org/10.3390/w16192708