Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. Precipitation in the SETP
3.2. Precipitation Gradient (PG) and Relative Precipitation Gradient (RPG)
3.3. Precipitation Days and Precipitation Day Number Gradient
3.4. Precipitation Intensity Gradient (PIG)
4. Discussion
4.1. Impact of Precipitation Level and Frequency on PGs
4.2. Comparison of the PG with PIG and RPG
4.3. The Impact of the YLZBR Water Vapor Channel on the Variation of Precipitation with Elevation
4.4. Uncertainty of the PG in the SETP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodale, C.L.; Aber, J.D.; Ollinger, S.V. Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim. Res. 1998, 10, 35–49. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Feki, H.; Slimani, M.; Cudennec, C. Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrol. Sci. J. 2012, 57, 1294–1314. [Google Scholar] [CrossRef]
- Rata, M.; Douaoui, A.; Larid, M.; Douaik, A. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theor. Appl. Climatol. 2020, 141, 1009–1024. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Petersen, L.; Ragettli, S.; Pellicciotti, F. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res. 2014, 50, 2212–2226. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, H.; Hagen, S.C.; Ming, Y.; Wang, D.; Gui, D.; Chen, Z.; Tian, L.; Liu, J. Snow cover and runoff modelling in a high mountain catchment with scarce data: Effects of temperature and precipitation parameters. Hydrol. Process. 2015, 29, 52–65. [Google Scholar]
- Wang, L.; Zhang, F.; Zhang, H.B.; Scott, C.A.; Zeng, C.; Shi, X.N. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau. J. Hydrol. 2018, 556, 500–509. [Google Scholar] [CrossRef]
- Bookhagen, B.; Strecker, M.R. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett. 2008, 35, L06403. [Google Scholar] [CrossRef]
- Midolo, G.; Wellstein, C. Plant performance and survival across transplant experiments depend upon temperature and precipitation change along elevation. J. Ecol. 2020, 108, 2107–2120. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, L.; Niu, S.; Zhou, X. Nonlinear responses of land ecosystems to variation in precipitation. New Phytol. 2017, 214, 5–7. [Google Scholar] [CrossRef]
- Waring, B.; Hawkes, C.V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 2018, 94, fiy001. [Google Scholar] [CrossRef]
- Santillan, V.; Quitian, M.; Tinoco, B.A.; Zarate, E.; Schleuning, M.; Bohning-Gaese, K.; Neuschulz, E.L. Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE 2018, 13, e0196179. [Google Scholar] [CrossRef] [PubMed]
- Munson, S.M.; Bunting, E.L.; Bradford, J.B.; Butterfield, B.J.; Gremer, J.R. Plant production responses to precipitation differ along an elevation gradient and are enhanced under extremes. Ecosystems 2019, 22, 699–708. [Google Scholar] [CrossRef]
- Sharma, S.; Khadka, N.; Nepal, B.; Ghimire, S.K.; Luintel, N.; Hamal, K. Elevation dependency of precipitation over southern slope of central Himalaya. Jalawaayu 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Garcia-Martino, A.R.; Warner, G.S.; Scatena, F.N.; Civco, D.L. Rainfall, runoff and elevation relationships in the Luquillo Mountains of Puerto Rico. Caribb. J. Sci. 1996, 32, 413–424. [Google Scholar]
- Van Beusekom, A.E.; González, G.; Rivera, M.M. Short-term precipitation and temperature trends along an elevation gradient in northeastern Puerto Rico. Earth Interact. 2015, 19, 1–33. [Google Scholar] [CrossRef]
- Torres-Delgado, E.; González, G.; Medina, E.; Rivera, M.M. A Multiyear Record of Rainfall and Ionic Composition along an Elevation Gradient in Northeastern Puerto Rico. Aerosol. Air Qual. Res. 2021, 21, 200582. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Chang. 2016, 143, 1–9. [Google Scholar] [CrossRef]
- Bell, B.A.; Hughes, P.D.; Fletcher, W.J.; Cornelissen, H.L.; Rhoujjati, A.; Hanich, L.; Braithwaite, R.J. Climate of the Marrakech High Atlas, Morocco: Temperature lapse rates and precipitation gradient from piedmont to summits. Arct. Antarct. Alp. Res. 2022, 54, 78–95. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour. Res. 2015, 51, 3459–3475. [Google Scholar] [CrossRef]
- Chavez, S.P.; Takahashi, K. Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J. Geophys. Res. Atmos. 2017, 122, 5870–5882. [Google Scholar] [CrossRef]
- Shrestha, D.; Sharma, S.; Talchabhadel, R.; Deshar, R.; Hamal, K.; Khadka, N.; Nakamura, K. Detection of Spatial Rainfall Variation over the Andean Region Demonstrated by Satellite-Based Observations. Atmosphere 2021, 12, 1204. [Google Scholar] [CrossRef]
- Collados-Lara, A.J.; Pardo-Iguzquiza, E.; Pulido-Velazquez, D.; Jimenez-Sanchez, J. Precipitation fields in an alpine Mediterranean catchment: Inversion of precipitation gradient with elevation or undercatch of snowfall? Int. J. Climatol. 2018, 38, 3565–3578. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Guo, X.; Chen, D. Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int. J. Climatol. 2017, 37, 1278–1284. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, Y. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings. Sci. Rep. 2017, 7, 5057. [Google Scholar]
- Sun, H.; Su, F.; Huang, J.; Yao, T.; Luo, Y.; Chen, D. Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the third pole. Chin. Sci. Bull. 2020, 65, 91–104. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Yang, H.; Lu, H.; Chen, Y.; Zhou, X.; Sun, J.; Yang, Y.; Wang, Y. Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset. Hydrol. Earth Syst. Sci. 2022, 26, 4587–4601. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006, 33, L08405. [Google Scholar]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atoms. 2012, 117, D22106. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Wang, L.; Chen, D. Summer precipitation characteristics on the southern Tibetan plateau. Int. J. Climatol. 2021, 41, E3160–E3177. [Google Scholar] [CrossRef]
- Wulf, H.; Bookhagen, B.; Scherler, D. Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 2010, 118, 13–21. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Tian, L. Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau. Int. J. Climatol. 2016, 36, 1901–1916. [Google Scholar] [CrossRef]
- Lu, C.; Wang, L.; Xie, G.; Leng, Y. Elevation effect of precipitation and spatial distribution of Qinghai-Tibetan plateau. J. Mt. Sci-Engl. 2007, 25, 655–663. (In Chinese) [Google Scholar]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Yu, W.; Xu, B.; Lai, C.a.; Ma, Y.; Zhu, Z. Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau. Geophys. Res. Lett. 2015, 41, 7746–7753. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, L.; Wang, Y.; Yang, W.; Dang, Z.; Zhang, H. The process of freezing and thawing and the zero curtain effect of debris-covered area of the Galongla Glacier in the southeastern Tibetan Plateau. J. Glaciol.Geocryol. 2019, 41, 751–760. (In Chinese) [Google Scholar]
- Xu, X.D.; Dong, L.L.; Zhao, Y.; Wang, Y.J. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin. Sci. Bull. 2019, 64, 2830–2841. (In Chinese) [Google Scholar]
- Wu, G.; Zhang, Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Weather Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.-D.; Yang, S.; Bian, J.C. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer. Chin. J. Geophys. 2012, 55, 406–414. [Google Scholar]
- Gao, D.; Zou, H.; Wang, W. Influence of water vapor pass along the Yarlungzangbo Rive on precipitation. Mt. Res. 1985, 3, 239–249. (In Chinese) [Google Scholar]
- Tang, H.; Zhang, F.; Zeng, C.; Wang, L.; Zhang, H.; Xiang, Y.; Yu, Z. Simulation of Runoff through Improved Precipitation: The Case of Yamzho Yumco Lake in the Tibetan Plateau. Water 2023, 15, 490. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Winiger, M.; Gumpert, M.; Yamout, H. Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources. Hydrol. Process. 2005, 19, 2329–2338. [Google Scholar] [CrossRef]
- Soto, V.; Cervantes, J. The influence of mountainous relief on the vertical gradient of precipitation and pluvial zoning in the central slope of the Gulf of Mexico. Singap. J. Trop. Geo. 2023, 44, 112–129. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X. Scientific Investigation of Water Vapor Channel in Yarlung Zangbo Grand Canyon, The Second Comprehensive Scientific Investigation and Research Series on the Tibetan Plateau; Science Press: Beijing, China, 2022. [Google Scholar]
- Yuan, X.; Yang, K.; Lu, H.; Wang, Y.; Ma, X. Impacts of moisture transport through and over the Yarlung Tsangpo Grand Canyon on precipitation in the eastern Tibetan Plateau. Atmos. Res. 2023, 282, 106533. [Google Scholar] [CrossRef]
- Luo, L.; Dan, Z.; Zhu, L.; Zhang, H. Vertical gradient changes of temperature and precipitation in the Sygera Mountains, Southeastern Qinghai-Xizang Plateau. Plat. Meteorol. 2021, 40, 37–46. (In Chinese) [Google Scholar]
- Yang, Y.; Gao, D.; Li, B. Preliminary study on water vapor channel in the lower Brahmaputra River Valley. Sci. China 1987, 8, 893–902. (In Chinese) [Google Scholar]
- Chen, X.; Xu, X.; Ma, Y.; Wang, G.; Chen, D.; Cao, D.; Xu, X.; Zhang, Q.; Li, L.; Liu, Y. Investigation of precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon. Bull. Am. Meteorol. Soc. 2024, 105, E370–E386. [Google Scholar] [CrossRef]
- Chen, X.; Cao, D.; Liu, Y.; Xu, X.; Ma, Y. An observational view of rainfall characteristics and evaluation of ERA5 diurnal cycle in the Yarlung Tsangbo Grand Canyon, China. Q. J. Roy. Meteor. Soc. 2023, 149, 1459–1472. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Ma, Y.; Xu, X.; Xu, X.; Li, L.; Cao, D.; Zhang, Q.; Wang, G.; Li, M. Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China. Atmos. Ocean. Sci. Lett. 2024, 17, 100462. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhou, J.; Yao, T.; Yang, W.; Zhong, X.; Liu, R.; Hu, Z.; Luo, L.; Ye, Q. Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo. Geophys Res Lett. 2021, 48, e2021GL094651. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Xu, C.; Ciais, P.; Liu, D.; Yang, H.; Piao, S.; Yao, T. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat. Clim. Chang. 2021, 11, 219–225. [Google Scholar] [CrossRef]
- Wang, L.; Cuo, L.; Luo, D.; Su, F.; Ye, Q.; Yao, T.; Zhou, J.; Li, X.; Li, N.; Sun, H. Observing multisphere hydrological changes in the largest river basin of the Tibetan Plateau. Bull. Am. Meteorol. Soc. 2022, 103, E1595–E1620. [Google Scholar] [CrossRef]
Catchments | Grade (mm/d) | Rain Day (d) | Amount (mm) | PG (mm/100 m) | RPG (%/100 m) | R2 | p |
---|---|---|---|---|---|---|---|
LYR | ≤9.9 | 79.8 | 244.5 | 2.1 ± 0.6 | 0.9 ± 0.2 | 0.69 | * |
10.0–24.9 | 15.9 | 255.1 | 5.1 ± 2.2 | 2.0 ± 0.9 | 0.52 | ||
≥25 | 4 | 127.4 | 4.2 ± 1.7 | 3.3 ± 1.3 | 0.54 | ||
Nongraded | 99.7 | 627.1 | 11.3 ± 2.7 | 1.8 ± 0.4 | 0.78 | ** | |
NYR | ≤9.9 | 73.3 | 210.6 | 2.9 ± 1.1 | 1.4 ± 0.5 | 0.46 | * |
10.0–24.9 | 17.3 | 269.1 | 10.6 ± 2.5 | 3.9 ± 0.9 | 0.70 | ** | |
≥25 | 2.9 | 91.6 | 3.8 ± 1.9 | 4.1 ± 2.1 | 0.32 | ||
Nongraded | 93.5 | 571.3 | 17.3 ± 3.8 | 3.0 ± 0.7 | 0.73 | ** | |
PLZB | ≤9.9 | 73.7 | 182.3 | −6.0 ± 1.5 | −3.3 ± 0.8 | 0.56 | ** |
10.0–24.9 | 8.7 | 132.6 | −10.3 ± 2.2 | −7.7 ± 1.7 | 0.68 | ** | |
≥25 | 1.6 | 53.4 | −6.1 ± 1.6 | −11.4 ± 3 | 0.55 | ** | |
Nongraded | 84 | 368.4 | −22.3 ± 4.2 | −6.1 ± 1.1 | 0.70 | ** |
Catchments | Light Precipitation | Moderate Precipitation | Heavy Precipitation | Nongraded Precipitation | Non-Precipitation | |||||
---|---|---|---|---|---|---|---|---|---|---|
d | % | d | % | d | % | d | % | d | % | |
LYR | 79.8 | 65.4 | 15.9 | 13.0 | 4 | 3.3 | 99.7 | 81.7 | 22.3 | 18.3 |
NYR | 73.3 | 60.1 | 17.3 | 14.2 | 2.9 | 2.4 | 93.5 | 76.6 | 28.6 | 23.4 |
PLZB | 73.7 | 60.4 | 8.7 | 7.1 | 1.6 | 1.3 | 84 | 68.9 | 38 | 31.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Zhao, Y.; Duan, Y.; Dan, Z.; Acharya, S.; Jimi, G.; Bai, P.; Yan, J.; Chen, L.; Yang, B.; et al. Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon. Water 2024, 16, 2700. https://doi.org/10.3390/w16182700
Luo L, Zhao Y, Duan Y, Dan Z, Acharya S, Jimi G, Bai P, Yan J, Chen L, Yang B, et al. Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon. Water. 2024; 16(18):2700. https://doi.org/10.3390/w16182700
Chicago/Turabian StyleLuo, Lun, Yanggang Zhao, Yanghai Duan, Zeng Dan, Sunil Acharya, Gesang Jimi, Pan Bai, Jie Yan, Liang Chen, Bin Yang, and et al. 2024. "Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon" Water 16, no. 18: 2700. https://doi.org/10.3390/w16182700
APA StyleLuo, L., Zhao, Y., Duan, Y., Dan, Z., Acharya, S., Jimi, G., Bai, P., Yan, J., Chen, L., Yang, B., & Xu, T. (2024). Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon. Water, 16(18), 2700. https://doi.org/10.3390/w16182700