Green Synthesis of Iron-Based Nanoparticles Using Pomegranate Leaf Extracts: Characterization, Biomolecules and Indole Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fe NPs
2.3. Indole Degradation Experiment
2.4. Characterization of Fe NPs
2.5. GC-MS Analysis
2.6. Liquid Chromatograph-Mass Spectrometry (LC-MS) Analysis
3. Results and Discussion
3.1. Characterization of Fe NPs
3.2. Active Biomolecules in Fe NPs
3.3. Fe NPs Synthesis Mechanisms and Indole Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latif, A.; Sheng, D.; Sun, K.; Si, Y.; Azeem, M.; Abbas, A.; Bilal, M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environ. Pollut. 2020, 264, 114728. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, Y.; Nishiwaki, K.; Suzuki, S.; Shiomi, K.; Nakanishi, I. Determination of cyanide in blood by GC-MS using a new high selectivity derivatization reagent 1,2,3,3-tetramethyl-3H-indolium iodide. Forensic Toxicol. 2022, 40, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Harini, K.; Gajula, G.P.; Sarmento, B.; Neves-Petersen, M.T.; Thiagarajan, V. Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater. 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Ogbezode, J.E.; Ezealigo, U.S.; Bello, A.; Anye, V.C.; Onwualu, A.P. A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles. Discov. Nano 2023, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef]
- Singh, N.B.; Jain, P.; De, A.; Tomar, R. Green Synthesis and Applications of Nanomaterials. Curr. Pharm. Biotechnol. 2021, 22, 1705–1747. [Google Scholar] [CrossRef]
- Kumar, V.; Kaushik, N.K.; Tiwari, S.K.; Singh, D.; Singh, B. Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications. Int. J. Biol. Macromol. 2023, 127017. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Mortazavi-Derazkola, S.; Khosravi, R. Green synthesis of iron nanoparticles using Pistacia-atlantica leaf extract for enhanced removal of Cr (VI) from aqueous solution. Desalination Water Treat. 2024, 318, 100347. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Liu, Y.; Li, Y.; Zhu, Y.; Dong, Z.; Sun, D.; Lei, D. Green synthesis of iron nanoparticles using mulberry leaf extract: Characterization, identification of active biomolecules, and catalytic activity. Environ. Sci. Pollut. Res. 2024, 31, 20311–20329. [Google Scholar] [CrossRef]
- Yuan, X.; Yu, S.; Xue, N.; Li, T.; Sun, M.; Zhang, L. Activation of iron based persulfate heterogeneous nano catalyst using plant extract for removal of tetrabromobisphenol A from soil. J. Environ. Chem. Eng. 2023, 11, 109493. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Chen, Z. The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Sci. Total Environ. 2018, 627, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, Y.; Jin, X.; Chen, Z. Characterization of iron nanoparticles/reduced graphene oxide composites synthesized by one step eucalyptus leaf extract. Environ. Pollut. 2019, 250, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rasero, C.; Montes-Jimenez, V.; Alexandre-Franco, M.F.; Fernández-González, C.; Píriz-Tercero, J.; Cuerda-Correa, E.M. Use of Zero-Valent Iron Nanoparticles (nZVIs) from Environmentally Friendly Synthesis for the Removal of Dyes from Water-A Review. Water 2024, 16, 1607. [Google Scholar] [CrossRef]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef]
- Haider, F.U.; Zulfiqar, U.; Ain, N.; Hussain, S.; Maqsood, M.F.; Ejaz, M.; Yong, J.W.H.; Li, Y. Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. Ecotoxicol. Environ. Saf. 2024, 281, 116620. [Google Scholar] [CrossRef]
- Huber, N.; Sirim, M.; Qian, Z.; Ferguson, C.T.J.; Wei, W.; Zhang, K.A.I. Water-Compatible Poly (methyl methacrylate) Networks for Visible Light-Driven Photocatalytic Pollutant Remediation in Aqueous Medium. ACS Appl. Polym. Mater. 2022, 4, 5728–5736. [Google Scholar] [CrossRef]
- Lv, X.; Ma, Y.; Li, Y.; Yang, Q. Heterogeneous Fenton-Like Catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid by Nano-Scale Zero-Valent Iron Assembled on Magnetite Nanoparticles. Water 2020, 12, 2909. [Google Scholar] [CrossRef]
- Aly, S.H.; Eldahshan, O.A.; Al-Rashood, S.T.; Binjubair, F.A.; El Hassab, M.A.; Eldehna, W.M.; Dall’Acqua, S.; Zengin, G. Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves. Molecules 2022, 27, 8979. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, J.; Yuan, L.; Wu, F.; Xie, L.; Yan, X.; Li, H.; Li, Y.; Shi, L.; Hu, R.; et al. Neighboring Carboxylic Acid Boosts Peroxidase-Like Property of Metal-Phenolic Nano-Networks in Eradicating Streptococcus mutans Biofilms. Small 2023, 19, 2206657. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, S.; Pan, X.; Zhou, F.; Sun, Y.; Liu, M.; Zhang, D.; Zhang, L. Fe Nanoparticles Synthesized by Pomegranate Leaves for Treatment of Malachite Green. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2022, 37, 350–354. [Google Scholar] [CrossRef]
- Machado, S.; Pinto, S.L.; Grosso, J.P.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ. 2013, 445, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Duran-Alvarez, J.C.; Prado, B.; Zanella, R.; Rodriguez, M.; Diaz, S. Wastewater surveillance of pharmaceuticals during the COVID-19 pandemic in Mexico City and the Mezquital Valley: A comprehensive environmental risk assessment. Sci. Total Environ. 2023, 900, 165886. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yang, X.; Zhu, X.; Zhao, S.; Yu, J.; Wang, D.; Yang, M. The variation of odor characteristics of wastewater sludge treated by advanced anaerobic digestion (AAD) and the contribution pattern of key odorants. Sci. Total Environ. 2022, 840, 156722. [Google Scholar] [CrossRef] [PubMed]
- Hwang, O.; Scoggin, K.; Andersen, D.; Ro, K.; Trabue, S. Swine manure dilution with lagoon effluent impact on odor reduction and manure digestion. J. Environ. Qual. 2021, 50, 336–349. [Google Scholar] [CrossRef]
- Rtimi, S.; Robyr, M.; Pulgarin, C.; Lavanchy, J.C.; Kiwi, J. A New Perspective in the Use of FeOx-TiO2 Photocatalytic Films: Indole Degradation in the Absence of Fe-Leaching. J. Catal. 2016, 342, 184–192. [Google Scholar] [CrossRef]
- Jin, G. Determination of Metacresol and Its Related Substances by Gas Chromatography. Chem. World 2016, 57, 8–11. (In Chinese) [Google Scholar]
- Kashi, R.; Bagheri-Mohagheghi, M.M.; Khorshidi, M. Synthesis and study of structural, optical, and antibacterial properties of silver, copper, and iron metallic nanoparticles prepared by green synthesis. Appl. Nanosci. 2022, 13, 4343–4360. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Anushree, C.; George, R.P.; Philip, J. Phase identification in binary mixture of nanopowders from deconvoluted valence band spectra using X-ray photoelectron spectroscopy: Case study with iron oxide and titania polymorphs. Appl. Surf. Sci. 2018, 462, 932–943. [Google Scholar] [CrossRef]
- Pham, D.M.; Miyata, Y.; Awata, T.; Nakatake, M.; Zhang, C.F.; Kanda, K.; Ogawa, S.; Ohta, S.; Yagi, S.; Katayama, A. Development of sample preparation technique to characterize chemical structure of humin by synchrotron-radiation–based X-ray photoelectron spectroscopy. Surf. Interface Anal. 2018, 51, 226–233. [Google Scholar] [CrossRef]
- Michalak, I.; Baśladyńska, S.; Mokrzycki, J.; Rutkowski, P. Biochar from A Freshwater Macroalga as A Potential Biosorbent for Wastewater Treatment. Water 2019, 11, 1390. [Google Scholar] [CrossRef]
- Gamulin, O.; Krajacic, M.; Oroz, K.; Coric, L.; Dretar, V.; Strbe, S.; Seiwerth, S.; Sikiric, P. FTIR spectroscopy reveals molecular changes in BPC 157 treated blood vessels. FASEB J. 2022, 36, R4994. [Google Scholar] [CrossRef]
- Ezeako, E.C.; Nworah, F.N.; Osuji, D.O. Phytocompounds, antioxidant potential, and inhibitory actions of ethanolic leaf fraction of Sida linifolia Linn. (Malvaceae) on enzymes linked to inflammation, diabetes, and neurological disorders. Future J. Pharm. Sci. 2023, 9, 73. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Yang, Y.; Wei, H.; Xue, L.; Zhao, M.; Cai, J. Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Sci. Nutr. 2021, 9, 4568–4577. [Google Scholar] [CrossRef] [PubMed]
- Venditto, N.J.; Liang, Y.S.; El Mokadem, R.K.; Nicewicz, D.A. Ketone-Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. J. Am. Chem. Soc. 2022, 144, 11888–11896. [Google Scholar] [CrossRef]
- Wu, J.; Wu, P.; Weng, X.; Lin, J.; Owens, G.; Chen, Z. Mechanistic insight into the one step green synthesis of hybrid rGO/Fe NPs. Mater. Today Nano 2022, 18, 100193. [Google Scholar] [CrossRef]
- Oh, S.Y.; Seo, Y.D.; Ryu, K.S. Reductive removal of 2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent iron-included biochar. Bioresour. Technol. 2016, 216, 1014–1021. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Z.; Hong, R.; Chen, Z.; Wu, B.; Ding, S.; Zhu, W.; Lin, Y.; Gu, C. Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances. Water Res. 2022, 225, 119147. [Google Scholar] [CrossRef]
- Venkateshaiah, A.; Silvestri, D.; Wacławek, S.; Ramakrishnan, R.K.; Krawczyk, K.; Saravanan, P.; Pawlyta, M.; Padil, V.V.; Černík, M.; Dionysiou, D.D. A comparative study of the degradation efficiency of chlorinated organic compounds by bimetallic zero-valent iron nanoparticles. Environ. Sci. Water Res. Technol. 2022, 8, 162–172. [Google Scholar] [CrossRef]
- Zhu, G.; Bian, Y.; Hursthouse, A.S.; Xu, S.; Xiong, N.; Wan, P. The role of magnetic MOFs nanoparticles in enhanced iron coagulation of aquatic dissolved organic matter. Chemosphere 2020, 247, 125921. [Google Scholar] [CrossRef]
Entry | Name | RT (min) | Molecular Formula and Weight | Structure | Relative Amount (%) | |
---|---|---|---|---|---|---|
PL | PL-Fe NPs | |||||
1 | 3-Penten-2-one | 2.78 | C5H8O M1 = 84 | 1.32 | 0.38 | |
2 | 2-Buten-1-ol, 2-methyl- | 2.93 | C5H10O M2 = 86 | 0.83 | 0.25 | |
3 | 3-Buten-2-ol, 2-methyl- | 5.26 | C5H10O M3 = 86 | 8.00 | 0.10 | |
4 | trans-3-Penten-2-ol | 6.16 | C5H10O M4 = 86 | 4.98 | 0.01 | |
5 | Maltol | 15.05 | C6H6O3 M5 = 126 | 1.10 | 0.13 | |
6 | 1H-Imidazole-4-ethanamine, α methyl- | 17.55 | C6H11N3 M6 = 125 | 1.67 | 0.34 |
Entry | Name | Formula | Molecular Weight | RT (min) | Structure |
---|---|---|---|---|---|
1 | Betaine | C5H11NO2 | 117.08 | 0.96 | |
2 | Ellagic acid | C14H6O8 | 302.01 | 4.73 | |
3 | Cyanidin | C15H10O6 | 286.05 | 7.76 | |
4 | Luteolin | C15H10O6 | 286.05 | 9.25 | |
5 | Apigenin | C15H10O5 | 270.05 | 10.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Liu, Y.; Zhou, Y.; Chen, Z.; Li, J. Green Synthesis of Iron-Based Nanoparticles Using Pomegranate Leaf Extracts: Characterization, Biomolecules and Indole Removal. Water 2024, 16, 2665. https://doi.org/10.3390/w16182665
Sun H, Liu Y, Zhou Y, Chen Z, Li J. Green Synthesis of Iron-Based Nanoparticles Using Pomegranate Leaf Extracts: Characterization, Biomolecules and Indole Removal. Water. 2024; 16(18):2665. https://doi.org/10.3390/w16182665
Chicago/Turabian StyleSun, Huifang, Yanjun Liu, Yifan Zhou, Zuliang Chen, and Jianfeng Li. 2024. "Green Synthesis of Iron-Based Nanoparticles Using Pomegranate Leaf Extracts: Characterization, Biomolecules and Indole Removal" Water 16, no. 18: 2665. https://doi.org/10.3390/w16182665
APA StyleSun, H., Liu, Y., Zhou, Y., Chen, Z., & Li, J. (2024). Green Synthesis of Iron-Based Nanoparticles Using Pomegranate Leaf Extracts: Characterization, Biomolecules and Indole Removal. Water, 16(18), 2665. https://doi.org/10.3390/w16182665