Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa
Abstract
:1. Introduction
2. Study Area Description
2.1. Local Setting
2.2. Geology and Hydrogeological Setting
3. Material and Methods
3.1. Electrical Resistivity Sounding Data Acquisition
3.2. Ground Magnetoteluric Method
3.3. Lithological Cross-Section of the Existing Boreholes
4. Results and Discussion
4.1. Electrical Resistivity Results and Lithostratigraphic Cross-Section
4.2. Regional Pseudo-Cross-Section
4.3. Ground Telluric Survey Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodford, A.C.; Sci, P.N.D.; Visser, P.; Sci, N. Geohydrological Assessment of De Aar’s Groundwater Resources Emthanjeni Municipality SRK Project Number 374624 SRK Consulting. The Administrative Building Albion Spring 183 Main Road Rondebosch 7700 South Africa Postnet Suite #206 Private Bag X18 Rondebosch 7701 South Africa. 2007. Available online: https://www.dws.gov.za/ghreport/reports/2.2(1655).pdf (accessed on 20 September 2022).
- Bennett, G.; Van Camp, M.; Shemsanga, C.; Kervyn, M.; Walraevens, K. Delineation of the aquifer structure and estimation of hydraulic properties on the flanks of Mount Meru, Northern Tanzania. J. Afr. Earth Sci. 2022, 196, 104673. [Google Scholar] [CrossRef]
- Yeh, H.F.; Cheng, Y.S.; Lin, H.I.; Lee, C.H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef]
- Araffa, S.A.S. Delineation of groundwater aquifer and subsurface structures on North Cairo, Egypt, using integrated interpretation of magnetic, gravity, geoelectrical and geochemical data. Geophys. J. Int. 2013, 192, 94–112. [Google Scholar] [CrossRef]
- Awad, S.; Araffa, S.; Pek, J. Delineating Groundwater Aquifer and Subsurface Structures Using Integrated Geophysical Interpretation at the Western Part of Gulf of Aqaba, Sinai, Egypt. Int. J. Water Resour. Arid Environ. 2014, 3, 51–62. [Google Scholar]
- Abdullahi, M.G. The Application of Vertical Electrical Sounding (VES) for Groundwater Exploration in Tudun Wada Kano State, Nigeria. J. Geol. Geosci. 2015, 4, 1. [Google Scholar] [CrossRef]
- Placide, U.; Kumar, G.R.S. Electrical Resistivity Data Interpretation for Groundwater Detection in Tittagudi Taluk of Cuddalore District, Tamil Nadu, India. 13 October 2015. Available online: http://www.ijret.org (accessed on 20 September 2022).
- Oyeyemi, K.D.; Aizebeokhai, A.P.; Metwaly, M.; Omobulejo, O.; Sanuade, O.A.; Okon, E.E. Assessing the suitable electrical resistivity arrays for characterization of basement aquifers using numerical modelling. Heliyon 2022, 8, e09427. [Google Scholar] [CrossRef]
- Loke, M.H.; Rucker, D.F.; Chambers, J.E.; Wilkinson, P.B.; Kuras, O. Electrical resistivity surveys and data interpretation. In Encyclopedia of Solid Earth Geophysics, 2nd ed.; Springer: Cham, Switzerland, 2020; Available online: https://ijret.org/volumes/2015v04/i10/IJRET20150410040.pdf (accessed on 20 September 2022).
- Tamunosiki, D. Aquifer Delineation and Characterization Using Geoelectric Method at Parts of Umuahia, Nigeria. Available online: https://www.researchgate.net/publication/327644912_Aquifer_Delineation_and_Characterization_using_Geoelectric_Method_at_Parts_of_Umuahia_Nigeria (accessed on 20 September 2022).
- Rangel, R.C.; Porsani, J.L.; Bortolozo, C.A.; Hamada, L.R. Electrical Resistivity Tomography and TDEM Applied to Hydrogeological Study in Taubaté Basin, Brazil. Int. J. Geosci. 2018, 9, 119–130. [Google Scholar] [CrossRef]
- Mohamaden, M.I.I. Delineating groundwater aquifer and subsurface structures by using geoelectrical data: Case study (Dakhla Oasis, Egypt). NRIAG J. Astron. Geophys. 2016, 5, 247–253. [Google Scholar] [CrossRef]
- Banerjee, K.S.; Sharma, S.P.; Sarangi, A.K.; Sengupta, D. Delineation of subsurface structures using resistivity, VLF and radiometric measurement around a U-tailings pond and its hydrogeological implication. Phys. Chem. Earth 2011, 36, 1345–1352. [Google Scholar] [CrossRef]
- Vegter, J.R. A geohydrological investigation at Caroluspoort, De Aar for South African Railways. Dept Water—Pretoria. 1961; [GH1145]. Available online: https://www.dws.gov.za/ghreport/Home/Result.aspx?Search=%20FORMSOF%20(INFLECTIONAL,%20gh1145) (accessed on 20 September 2022).
- Bairu, A. Application of Vertical Electrical Sounding and Horizontal Profiling Methods to Decipher the Existing Subsurface Stratification in River Segen Dam Site, Tigray, Northern Ethiopia. 2013. Volume 3. 16 May 2013. Available online: www.iiste.org (accessed on 20 September 2022).
- Adagunodo, T.A.; Sunmonu, L.A.; Adeniji, A.A.; Oladejo, O.P.; Alagbe, O.A. Geoelectric Delineation of Aquifer Pattern in Crystalline Bedrock. Open Trans. Geosci. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- Riwayat, A.I.; Ahmad Nazri, M.A.; Zainal Abidin, M.H. Application of Electrical Resistivity Method (ERM) in Groundwater Exploration. J. Phys. Conf. Ser. 2018, 995, 012094. [Google Scholar] [CrossRef]
- Niaz, A.; Khan, M.R.; Hameed, F.; Asghar, A.; Bangash, A.A.; Nisar, U.B.; Niaz, J.; Farooq, M.; Khan, M.Y.; Awan, M. Application of electrical resistivity method in delineating aquifer properties along with vulnerability mapping in Gujrat District and surrounding areas of Punjab province. J. Himal. Earth Sci. 2019, 52, 106–128. [Google Scholar]
- AL-Juboury, A.A.; Thabit, J.M.; AL-Menshed, F.H. Delineation the effect of saline groundwater on the resistivity of middle part of dammam formation southwest of samawah city, southern Iraq. Iraqi J. Sci. 2019, 60, 1095–1103. [Google Scholar] [CrossRef]
- Oyegoke, S.O.; Ayeni, O.O.; Olowe, K.O.; Adebanjo, A.S.; Fayomi, O.O. Effectiveness of geophysical assessment of boreholes drilled in basement complex terrain at Afe Babalola University, using Electromagnetic (E.M.) method. Niger. J. Technol. 2020, 39, 36–41. [Google Scholar] [CrossRef]
- Gomo, M. Use of electric potential difference in audio magnetotelluric (AMT) geophysics for groundwater exploration. Groundw. Sustain. Dev. 2023, 20, 100864. [Google Scholar] [CrossRef]
- Hassan, N.A.; Gathenya, J.M.; Raude, J.M. Estimating Groundwater Recharge Rates and Identifying Groundwater Recharge Zones in Kakia and Esamburbur Sub-Catchment Narok, Kenya. J. Sustain. Res. Eng. 2020, 7, 31–45. [Google Scholar]
- Khan, A.J.; Mustafa, F.U.; Gabriel, H.F.; Khan, H.U.; Haider, W.; Abbas, H.; Shahid, M. An Integrated Geo-Physical Approach for Groundwater Investigation in Northwestern Part of Pakistan. Eur. J. Mol. Clin. Med. 2020, 7, 2020. [Google Scholar]
- Sami, K.; Hughes, D.A. A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-subsurface model. J. Hydrol. 1996, 179, 111–136. [Google Scholar] [CrossRef]
- Matome, F.; Sekiba, A. Application of geophysical techniques in the delineation of aquifer systems in the Beaufort West area, Western Karoo, South Africa. 2019. Available online: https://scholar.ufs.ac.za/bitstreams/ef01e38c-8bb7-450e-a254-8a9b7ba72c7e/download (accessed on 20 September 2022).
- Vegter, J.R. Groundwater Supply: A Digest of the Past and an Outlook for the Future. Department Water Affairs, Pretoria. GH3775. De Aar 1992. 1992. Available online: https://www.dws.gov.za/ghreport/Home/Result.aspx?Search=%20FORMSOF%20(INFLECTIONAL,%20gh3775) (accessed on 20 September 2022).
- Woodford, A.C. Development and Management of Available Groundwater Resources. Deptment of Water Affairs, Pretoria. GH3837. De Aar 1993. 1993. Available online: https://www.dws.gov.za/ghreport/Home/Result.aspx?Search=%20FORMSOF%20(INFLECTIONAL,%20gh3837) (accessed on 20 September 2022).
- Parsons, R.P. An Assessment of Hydrochemical Changes of Groundwater around De Aar. Deptment of Water Affairs, Pretoria GH3628. De Aar 1989. 1989. Available online: https://www.dws.gov.za/ghreport/Home/Result.aspx?Search=%20FORMSOF%20(INFLECTIONAL,%20gh3628) (accessed on 20 September 2022).
- Parwatiningtyas, D.; Sjamsuri, A. Application Of Resistivity Method Wenner Configuration For Determining Aquifer Position At Pasir Impun Area, Bandung, West Java. 2015. Available online: https://isomase.org/OMAse/Vol.2-2015/Section-2/2-8.pdf (accessed on 20 September 2022).
- Adeyemo, I.A.; Ojo, B.T.; Raheem, W.O. Comparison of Thickness and Depth Resolution Power of Wenner and Schlumberger Arrays: A Case Study of Temidire Quarters, Akure, Nigeria. J. Geosci. Environ. Prot. 2017, 5, 233–239. [Google Scholar] [CrossRef]
- Shevnin, V.; Delgado Rodríguez, O.; Mousatov, A.; Flores Hernández, D.; Zegarra Martínez, H.; Ryjov, A. Estimation of soil petrophysical parameters from resistivity data: Application to oil-contaminated site characterization. Geofísica Int. 2006, 45, 179–193. [Google Scholar] [CrossRef]
- Ikhane, P.R.; Omosanya, K.O.; Akinmosin, A.A.; Odugbesan, A.B. Electrical Resistivity Imaging (ERI) of Slope Deposits and Structures in Some Parts of Eastern Dahomey Basin. J. Appl. Sci. 2012, 12, 716–726. [Google Scholar] [CrossRef]
- Chikabvumbwa, S.R.; Sibale, D.; Marne, R.; Chisale, S.W.; Chisanu, L. Geophysical investigation of dambo groundwater reserves as sustainable irrigation water sources: Case of Linthipe sub-basin. Heliyon 2021, 7, e08346. [Google Scholar] [CrossRef] [PubMed]
- Omosanya, K. A Review of Stratigraphic Surfaces Generated from Multiple Electrical Sounding and Profiling. 2014. Available online: https://www.researchgate.net/publication/267269883 (accessed on 20 September 2022).
- Mosuro, G.O.; Omosanya, K.O.; Bayewu, O.O.; Oloruntola, M.O.; Laniyan, T.A.; Atobi, O.; Okubena, M.; Popoola, E. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method. Appl. Water Sci. 2017, 7, 2195–2207. [Google Scholar] [CrossRef]
- Raji, W.O.; Ayolabi, E.A.; Aluko, K.; Raji, W.; Ayolabi, E. Application of 2-D Resistivity Survey to Groundwater Aquifer Delineation in a Sedimentary Terrain: Integration of Borehole Logs and 2D Electrical Resistivity Imaging in the Investigation of Saltwater Intrusion in Lagos Island, Southwestern Nigeria. View project Application of 2-D Resistivity Survey to Groundwater Aquifer Delineation in a Sedimentary Terrain: A Case Study of South-Western Nigeria. 2017. Available online: https://www.researchgate.net/publication/325091526 (accessed on 20 September 2022).
- Saibi, H.; Khosravi, S.; Cherkose, B.A.; Smirnov, M.; Kebede, Y.; Fowler, A.R. Magnetotelluric data analysis using 2D inversion: A case study from Al-Mubazzarah Geothermal Area (AMGA), Al-Ain, United Arab Emirates. Heliyon 2021, 7, e07440. [Google Scholar] [CrossRef] [PubMed]
- Isah, A.G.; Akinbiyi, O.A.; Ugwoke, J.L.; Ayajuru, N.C.; Oyelola, R.O. Detection of groundwater level and heavy metal contamination: A case study of Olubunku dumpsite and environs, Ede North, Southwestern Nigeria. J. Afr. Earth Sci. 2023, 197, 104740. [Google Scholar] [CrossRef]
- Nazifi, H.M.; Lambon, S.B. Geophysical Mapping of Groundwater Aquifers Beneath the Central Region of Ghana. J. Int. Environ. Appl. Sci. 2021, 16, 113–122. [Google Scholar]
- Adagunodo, T.A.; Ojoawo, A.I.; Anie, N.O.; Edukugho, P.O. Application of frequency selection and geoelectrical sounding methods for mapping of leachate’s pathways in an active dumpsite. SN Appl. Sci. 2023, 5, 352. [Google Scholar] [CrossRef]
- Oluwadamilola, O.V.; Abimbola, A.A.; Hassan Tolulope, B.; Rebecca, V.O. A Heuristic Evaluation of the State of Groundwater Using Electromagnetic Method. In Proceedings of the 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria, 1–3 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Amos-Uhegbu, C.; Igboekwe, M.U.; Chukwu, G.U.; Okengwu, K.O.; Eke, T.K. Hydrogeophysical Delineation and Hydrogeochemical Characterization of the Aquifer Systems in Umuahia-South Area, Southern Nigeria. 2012. [Online]. 24 January 2023. Available online: https://doi.org/10.9734/BJAST/2012/1645 (accessed on 20 September 2022).
Study Sites | BH No | Y | X | Line | Length (m) | Interval (m) | Depth (m) | Water Level (m) | Elevation | Water Strike (m) | Lithology | Casing (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower | G27719I | −30.66 | 23.87 | 1 | 250 | 6 | 48 | 3.13 | 1227 | 4; 9; 12; 24; 42 | Sand, shale, dolerite | 6.5 |
G27704 | −30.67 | 23.87 | 2 | 300 | 3 | 45 | 5.14 | 1216 | 8; 10; 14; 30 | Sand–clay, shale | 14.6 | |
G23206 | −30.70 | 23.90 | 3 | 200 | 5 | 62 | 1233 | 10; 18 | shale | 10 | ||
G29648 | −30.55 | 23.95 | 4 | 200 | 5 | 36 | 4.77 | 1183 | 8 | Clay–sand | ||
G29648E | −30.55 | 23.93 | 5 | 300 | 3 | 28 | 4.7 | 1190 | 9 | Clay–sand | 10 | |
Middle | G028418A | 30.59 | 24.05 | 6 | 250 | 6 | 24 | 3.86 | 1231 | 33 | Shale | |
G38447 | −30.68 | 24.17 | 7 | 200 | 5 | 42 | 4.39 | 1261 | 5, 8, 17, 24 | Sand–clay, mudstone | ||
G39038 | −30.66 | 24.16 | 8 | 200 | 5 | 13 | 4.23 | 1256 | 4, 7–9 | Sand–clay, shale | ||
Upper | G28415B | −30.67 | 24.36 | 9 | 250 | 6 | 103 | 7.03 | 1404 | 46 | Kimberlite | |
G38269A | −30.74 | 24.36 | 10 | 250 | 6 | 60 | 9.89 | 1389 | 12; 22 | Sandstone | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloyi, L.; Kanyerere, T.; Muchingami, I.; Pienaar, H. Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa. Water 2024, 16, 2652. https://doi.org/10.3390/w16182652
Baloyi L, Kanyerere T, Muchingami I, Pienaar H. Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa. Water. 2024; 16(18):2652. https://doi.org/10.3390/w16182652
Chicago/Turabian StyleBaloyi, Lucky, Thokozani Kanyerere, Innocent Muchingami, and Harrison Pienaar. 2024. "Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa" Water 16, no. 18: 2652. https://doi.org/10.3390/w16182652
APA StyleBaloyi, L., Kanyerere, T., Muchingami, I., & Pienaar, H. (2024). Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa. Water, 16(18), 2652. https://doi.org/10.3390/w16182652