The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Estimation of Construction and Maintenance Costs
2.3. Flow Monitoring
2.4. Hydrograph Comparison and Statistical Analysis
3. Results
3.1. Construction and Maintenance Costs
3.2. Hydrologic Performance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and research needs of bioretention used for the treatment of urban stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Li, C.; Peng, C.; Chiang, P.-C.; Cai, Y.; Wang, X.; Yang, Z. Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol. 2019, 568, 626–637. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Zhang, D.; Sun, C.; Zhao, X.; Razi, M.A.B.M. A systematic and bibliometric review of bioretention system (BRS) for urban ecosystem regulation services. Urban Clim. 2024, 55, 101923. [Google Scholar] [CrossRef]
- Leopold, L.B. Hydrology for Urban Land Planning—A Guidebook on the Hydrologic Effects of Urban Land Use; U.S. Geological Survey Circular 554; U.S. Geological Survey: Washington, DC, USA, 1968. [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Olivera, F.; DeFee, B.B. Urbanization and its effect on runoff in the Whiteoak Bayou watershed, Texas. J. Am. Water Resour. Assoc. 2007, 43, 170–182. [Google Scholar] [CrossRef]
- Slater, L.; Coxon, G.; Brunner, M.; McMillan, H.; Yu, L.; Zheng, Y.; Khouakhi, A.; Moulds, S.; Berghuijs, W. Spatial sensitivity of river flooding to changes in climate and land cover through explainable AI. Earth’s Future 2024, 12, e2023EF004035. [Google Scholar] [CrossRef]
- House, M.A.; Ellis, J.B.; Herricks, E.E.; Hvitved-Jacobsen, T.; Seager, J.; Lijklema, L.; Aalderink, H.; Clifforde, I.T. Urban drainage—Impacts on receiving water quality. Water Sci. Technol. 1993, 27, 117–158. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P., II. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Andrés-Doménech, I.; Hernández-Crespo, C.; Martín, M.; Andrés-Valeri, V.C. Characterization of wash-off from urban impervious surfaces and SuDS design criteria for source control under semi-arid conditions. Sci. Total Environ. 2018, 612, 1320–1328. [Google Scholar] [CrossRef]
- Grabowski, Z.J.; McPhearson, T.; Matsler, A.M.; Groffman, P.; Pickett, S.T.A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 2022, 20, 152–160. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef]
- Spraakman, S.; Martel, J.-L.; Drake, J. How much water can bioretention retain, and where does it go? Blue-Green Syst. 2022, 4, 89. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P.-S. Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water Air Soil Pollut. 2021, 232, 344. [Google Scholar] [CrossRef]
- Nazarpour, S.; Gnecco, I.; Palla, A. Evaluating the effectiveness of bioretention cells for urban stormwater management: A systematic review. Water 2023, 15, 913. [Google Scholar] [CrossRef]
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, W.B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Baggio, T.; Bettella, F.; Bortolini, L.; D’Agostino, V. Hydrologic performance assessment of nature-based solutions: A case study in North-eastern Italy. J. Agric. Eng. 2023, LIV, 1485. [Google Scholar] [CrossRef]
- Hoss, F.; Fischbach, J.; Molina-Perez, E. Effectiveness of best management practices for stormwater treatment as a function of runoff volume. J. Water Resour. Plan. Manag. 2016, 142, 05016009. [Google Scholar] [CrossRef]
- Juan, A.; Hughes, C.; Fang, Z.; Bedient, P. Hydrologic performance of watershed-scale low-impact development in a high-intensity rainfall region. J. Irrigation Drainage Eng. 2016, 143, 04016083. [Google Scholar] [CrossRef]
- Sun, Y.-w.; Pomeroy, C.; Li, Q.-y.; Xu, C.-d. Impacts of rainfall and catchment characteristics on bioretention cell performance. Water Sci. Eng. 2019, 12, 98–107. [Google Scholar] [CrossRef]
- Lammers, R.W.; Miller, L.; Bledsoe, B. Effects of design and climate on bioretention effectiveness for watershed-scale hydrologic benefits. J. Sustain. Water Built Environ. 2022, 8, 04022011. [Google Scholar] [CrossRef]
- Thompson, R.; Tjaden, S.; Tilley, D. Stormwater retention of an in-series system composed of a green roof, constructed wetland, and bioretention cell for a single-family home. J. Sustain. Water Built Environ. 2022, 8, 04021023. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Winston, R.; Smith, J.; Yang, Y.; Tao, S.; Liu, H. A holistic analysis of Chinese sponge city cases by region: Using PLS-SEM models to understand key factors impacting LID performance. J. Hydrol. 2024, 637, 131405. [Google Scholar] [CrossRef]
- Li, H.; Davis, A.P. Water quality improvement through reductions of pollutant loads using bioretention. J. Environ. Eng. 2009, 135, 567–576. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Pomeroy, C.A.; Hultine, K.R. Bioretention design for xeric climates based on ecological principles. J. Am Water Resour. Assoc. 2012, 48, 1178–1190. [Google Scholar] [CrossRef]
- Tao, J.; Li, Z.; Peng, X.; Ying, G. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control. Front. Environ. Sci. Eng. 2017, 11, 11. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Cheng, Y.; Tan, S.K. Assessing performance of porous pavements and bioretention cells for stormwater management in response to probably climatic changes. J. Environ. Manag. 2019, 243, 157–167. [Google Scholar] [CrossRef]
- Guerrero, J.; Alam, T.; Mahmoud, A.; Jones, K.D.; Ernest, A. Decision-support system for LID footprint planning and urban runoff mitigation in the Lower Rio Grande Valley of South Texas. Sustainability 2020, 12, 3152. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Hou, X.; Wei, G.; Zhang, X.; Shen, Z. Detailed quantification of the reduction effect of roof runoff by low impact development practices. Water 2020, 12, 795. [Google Scholar] [CrossRef]
- Holman-Dodds, J.K.; Bradley, A.A.; Potter, K.W. Evaluation of hydrologic benefits of infiltration based urban storm water management. J. Am. Water Resour. Assoc. 2003, 39, 205–215. [Google Scholar] [CrossRef]
- Kim, M.H.; Sung, C.Y.; Li, M.-H.; Chu, K.-H. Bioretention for stormwater quality improvement in Texas: Removal effectiveness of Escherichia coli. Sep. Purif. Technol. 2012, 84, 120–124. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.M. Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. J. Hydrol. Eng. 2017, 22, D4016003. [Google Scholar] [CrossRef]
- Purvis, R.A.; Winston, R.J.; Hunt, W.F.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, M.S.; Libes, S. Evaluating the hydrologic benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water 2019, 11, 1291. [Google Scholar] [CrossRef]
- Johnson, J.P.; Hunt, W.F. Field assessment of the hydrologic mitigation performance of three aging bioretention cells. J. Sustain. Water Built Environ. 2020, 6, 04020017. [Google Scholar] [CrossRef]
- Hood, M.J.; Clausen, J.C.; Warner, G.S. Comparison of stormwater lag times for low impact and traditional residential development. J. Am. Water Resour. Assoc. 2007, 43, 1036–1046. [Google Scholar] [CrossRef]
- de Macedo, M.B.; do Lagoa, C.A.F.; Mendiondo, E.M.; Giacomoni, M.H. Bioretention performance under different rainfall regimes in subtropical conditions: A case study in Sao Carlos Brazil. J. Environ. Manag. 2019, 248, 109266. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Alam, T.; Rahman, M.Y.A.; Sanchez, A.; Guerrero, J.; Jones, K.D. Evaluation of field-scale stormwater bioretention nstructure flow and pollutant load reductions in a semi-arid coastal climate. Ecol. Eng. 2019, 142S, 100007. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J. Irrigation Drainage Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Shuster, W.; Rhea, L. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA). J. Hydrol. 2013, 485, 177–187. [Google Scholar] [CrossRef]
- Lizárraga-Mendiola, L.; Vázquez-Rodríguez, G.A.; Lucho-Constantino, C.A.; Bigurra-Alzati, C.A.; Beltrán-Hernández, R.I.; Ortiz-Hernández, J.E.; López-León, L.D. Hydrological design of two low-impact development techniques in a semi-arid climate zone of central Mexico. Water 2017, 9, 561. [Google Scholar] [CrossRef]
- Goor, J.; Cantelon, J.; Smart, C.C.; Robinson, C.E. Seasonal performance of field bioretention systems in retaining phosphorus in a cold climate: Influence of prolonged road salt application. Sci. Total Environ. 2021, 778, 146069. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Y.; Piza, H. A review of applicability and effectiveness of low impact development/green infrastructure practices in arid/semi-arid United States. Environments 2015, 2, 221–249. [Google Scholar] [CrossRef]
- Abellán García, A.I.; Pérez, N.C.; Santamarta, J.C. Sustainable urban drainage systems in Spain: Analysis of the research on SUDS based on climatology. Sustainability 2021, 13, 7258. [Google Scholar] [CrossRef]
- Weathers, M.; Hathaway, J.M.; Tirpak, R.A.; Khojandi, A. Evaluating the impact of climate change on future bioretention performance across the contiguous United States. J. Hydrol. 2023, 616, 128771. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Bhaskar, A.S.; Hopkins, K.G.; Fanelli, R.; Avellaneda, P.M.; McMillan, S.K. Stormwater management network effectiveness and implications for urban watershed function: A critical review. Hydrol. Process. 2017, 31, 4056–4080. [Google Scholar] [CrossRef]
- Askarizadeh, A.; Rippy, M.A.; Fletcher, T.D.; Felman, D.L.; Peng, J.; Bowler, P.; Mehring, A.S.; Winfrey, B.K.; Vrugt, J.A.; AghaKouchak, A.; et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 2015, 49, 11264–11280. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.R.; Adams, S.K.; Lammers, R.W.; Stein, E.D.; Bledsoe, B.P. Targeted hydrologic model calibration to improve prediction of ecologically-relevant flow metrics. J. Hydrol. 2019, 573, 546–556. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- James, M.B.; Dymond, R.L. Bioretention hydrologic performance in an urban stormwater network. J. Hydrol. Eng. 2012, 17, 431–436. [Google Scholar] [CrossRef]
- Jarden, K.M.; Jefferson, A.J.; Grieser, J.M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Process. 2016, 30, 1536–1550. [Google Scholar] [CrossRef]
- Nissen, K.A.; Borst, M.; Fassman-Beck, E. Bioretention planter performance measured by lag and capture. Hydrol. Process. 2020, 34, 5176–5184. [Google Scholar] [CrossRef]
- Li, J.; Li, N.; Liu, F.; Li, Y. Development and optimization of bioretention systems with modified fillers of corn straw biochar. Water Air Soil Pollut. 2021, 232, 383. [Google Scholar] [CrossRef]
- Giacomoni, M.H.; Gomez, R.; Berglund, E.Z. Hydrologic impact assessment of land cover change and stormwater management using the hydrologic footprint residence. J. Am. Water Resour. Assoc. 2014, 50, 1242–1256. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Q.; Yu, F.; Ma, M.; Xu, C. Assessing hydrological performances of bioretention cells to meet the LID goals. Sustainability 2023, 15, 4204. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Y.; Chen, J.; Chen, T.; Liu, J.; Ding, L.; Zhang, N.; Gao, Q. Comparisons of retention and lag characteristics of rainfall-runoff under different rainfall scenarios in low-impact development combination: A case study in Lingang New City, Shanghai. Water 2023, 15, 3106. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Matsler, A.M. Temporal evolution of green stormwater infrastructure strategies in three US cities. Front. Built Environ. 2018, 4, 26. [Google Scholar] [CrossRef]
- McFarland, A.R.; Larsen, L.; Yeshitela, K.; Engida, A.N.; Love, N.L. Guide for using green infrastructure in urban environments for stormwater management. Environ. Sci. Water Res. 2019, 5, 643. [Google Scholar] [CrossRef]
- Zhai, J.; Ren, J.; Xi, M.; Tang, X.; Zhang, Y. Multiscale watershed landscape infrastructure: Integrated system design for sponge city development. Urban For. Urban Green. 2021, 60, 127060. [Google Scholar] [CrossRef]
- Lara-Valencia, F.; Garcia, M.; Norman, L.M.; Anides Morales, A.; Castellanos-Rubio, E.E. Integrating urban planning and water management through green infrastructure in the United States-Mexico border. Front. Water 2022, 4, 782922. [Google Scholar] [CrossRef]
- Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas. J. Hydrol. 2023, 621, 129538. [Google Scholar] [CrossRef]
- Chen, X.; Davitt-Liu, I.; Erickson, A.J.; Feng, X. Integrating the spatial configurations of green and gray infrastructure in urban stormwater networks. Water Resour. Res. 2023, 59, e2023WR034796. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Abdeljaber, A.; Adghim, M.; Abdallah, M.; Ghanima, R.; ALjassem, F. Comparative performance and cost-integrated life cycle assessment of low impact development controls for sustainable stormwater management. Environ. Impact Assess. Rev. 2022, 95, 106805. [Google Scholar] [CrossRef]
- Moore, T.L.; Gulliver, J.S.; Stack, L.; Simpson, M.H. Stormwater management and climate change: Vulnerability and capacity for adaptation in urban and suburban contexts. Clim. Change 2016, 138, 491–504. [Google Scholar] [CrossRef]
- Kristvik, E.; Johannessen, B.G.; Muthanna, T.M. Temporal downscaling of IDF curves applied to future performance of local stormwater measures. Sustainability 2019, 11, 1231. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Demissie, Y. Evaluation and optimization of low impact development designs for sustainable stormwater management in a changing climate. Water 2021, 13, 2889. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Wang, Z.; Zhou, S.; Tan, S.K. Long-term performance of bioretention systems in storm runoff management under climate change and life-cycle condition. Sustain. City Soc. 2021, 65, 102598. [Google Scholar] [CrossRef]
- Baker, V.R. Flood hazards along the Balcones Escarpment in Central Texas: Alternative approaches to their recognition, mapping, and management. In Geological Circular 75-5; Bureau of Economic Geology: Austin, TX, USA, 1975. [Google Scholar] [CrossRef]
- San Antonio river Authority (SARA). San Antonio River Basin Low Impact Development Technical Design Guidance Manual, 2nd ed.; San Antonio River Authority: San Antonio, TX, USA, 2019. [Google Scholar]
- French, R.H. Hydraulics of open channel flow. In Stormwater Collection Systems Design Handbook; Mays, L.W., Ed.; McGraw-Hill: New York, NY, USA, 2001; pp. 3.1–3.35. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Hunt, W.F.; Smith, J.T.; Jadlocki, S.J.; Hathaway, J.M.; Eubanks, P.R. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C. J. Environ. Eng. 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- DeBusk, K.M.; Wynn, T.M. Storm-water bioretention for runoff quality and quantity mitigation. J. Environ. Eng. 2011, 137, 800–808. [Google Scholar] [CrossRef]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef]
- Lee, J.; Gil, K. Evaluation bioretention hydrology and nutrient removal for restoring wetland function at artificial rainfall. Ecol. Eng. 2020, 150, 105823. [Google Scholar] [CrossRef]
- Willard, L.L.; Wynn-Thompson, T.; Krometis, L.H.; Neher, T.P.; Badgley, B.D. Does it pay to be mature? Evaluation of bioretention cell performance seven years postconstruction. J. Environ. Eng. 2017, 143, 04017041. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Guay, V.; Binesh, N.; Duchesne, S.; Pelletier, G.; Grégoire, G. Performance assessment of stormwater management infrastructures in a parking lot near Montreal, Canada. J. Sustain. Water Built Environ. 2024, 10, 04023012. [Google Scholar] [CrossRef]
- Liu, A.; Egodawatta, P.; Goonetilleke, A. Ranking three water sensitive urban design (WSUD) practices based on hydraulic and water quality treatment performance: Implications for effective stormwater treatment design. Water 2022, 14, 1296. [Google Scholar] [CrossRef]
- Shah, A.I.; Siag, M.; Kaur, S.; Thaman, S.; Sharda, R. Designing and evaluating the performance of full-scale bioretention cells in Indian conditions. Water Conserv. Sci. Eng. 2024, 9, 2. [Google Scholar] [CrossRef]
- Li, C.; Fletcher, T.D.; Duncan, H.P.; Burns, M.J. Can stormwater control measures restore altered urban flow regimes at the catchment scale? J. Hydrol. 2017, 549, 631–653. [Google Scholar] [CrossRef]
- Damodaram, C.; Giacomoni, M.H.; Khedun, C.P.; Holmes, H.; Ryna, A.; Saour, W.; Zechman, E.M. Simulation of combined best management practices and low impact development for sustainable stormwater management. J. Am. Water Resour. Assoc. 2010, 46, 907–918. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef]
- Shields, F.D., Jr.; Lizotte, R.E., Jr.; Knight, S.S.; Cooper, C.M.; Wilcox, D. The stream channel incision syndrome and water quality. Ecol. Eng. 2010, 36, 78–90. [Google Scholar] [CrossRef]
- Pauleit, S.; Fryd, O.; Backhaus, A.; Jensen, M.B. Green infrastructure to face climate change in an urbanizing world. In Sustainable Built Environments; Encyclopedia of Sustainability Science and Technology Series; Loftness, V., Ed.; Springer: New York, NY, USA, 2020; pp. 207–234. [Google Scholar] [CrossRef]
- Alamdari, N.; Hogue, T.S. Assessing the effects of climate change on urban watersheds: A review and call for future research. Environ. Rev. 2022, 30, 61–71. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Association (NOAA). Texas isopluvials of 100-year24-hour precipitation in inches. In NOAA Atlas, 2nd ed.; National Oceanic and Atmospheric Association, National Weather Service, Office of Water Prediction, Hydrometeorological Design Studies Center: Silver Spring, MD, USA, 2018; Volume 11. [Google Scholar]
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J., Jr. Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, G.; Mai, Y.; Chen, W. Optimizing the cost-effectiveness of low impact development (LID) practices using an analytical probabilistic approach. Urban Water J. 2020, 17, 136–143. [Google Scholar] [CrossRef]
- Cano, O.M.; Barkdoll, B.D. Multiobjective, socioeconomic, boundary-emanating, nearest distance algorithm for stormwater low-impact BMP selection and placement. J. Water Resour. Plan. Manag. 2017, 143, 05016013. [Google Scholar] [CrossRef]
- Wright, T.J.; Liu, Y.; Carroll, N.J.; Ahiablame, L.M.; Engel, B.A. Retrofitting LID practices into existing neighborhoods: Is it worth it? Environ. Eng. 2016, 57, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Yang, W.; Qi, X.; Jiang, S.; Xie, J.; Gu, X.; Li, H.; Zhang, J.; Krebs, P. Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. J. Clean. Prod. 2020, 242, 118515. [Google Scholar] [CrossRef]
- Montalto, F.; Behr, C.; Alfredo, K.; Wolf, M.; Arye, M.; Walsh, M. Rapid assessment of the cost-effectiveness of low impact development for CSO control. Landsc. Urban Plan. 2007, 82, 117–131. [Google Scholar] [CrossRef]
- Wright, O.M.; Istanbulluoglu, E.; Horner, R.R.; DeGasperi, C.L.; Simmonds, J. Is there a limit to bioretention effectiveness? Evaluation of stormwater bioretention treatment using a lumped urban ecohydrologic model and ecologically based design criteria. Hydrol. Process. 2018, 32, 2318–2334. [Google Scholar] [CrossRef]
- Spraakman, S.; Van Seters, T.; Drake, J.; Passeport, E. How has it change? A comparative field evaluation of bioretention infiltration and treatment performance post-construction and at maturity. Ecol. Eng. 2020, 158, 106036. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Saturation to improve pollutant retention in a rain garden. Environ. Sci. Technol. 2006, 40, 1335–1340. [Google Scholar] [CrossRef]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef]
- Alam, T.; Bezares-Cruz, J.C.; Mahmoud, A.; Jones, K.D. Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations. J. Environ. Manag. 2021, 297, 113321. [Google Scholar] [CrossRef]
- Barron, N.J.; Hatt, B.; Jung, J.; Chen, Y.; Deletic, A. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment. Sci. Total Environ. 2020, 715, 136680. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Hultine, K.R.; Johnson, N.C.; Pomeroy, C.A. Evaluation of three vegetation treatments in bioretention gardens in a semi-arid climate. Landsc. Urban Plan. 2015, 135, 62–72. [Google Scholar] [CrossRef]
- Anim, D.O.; Fletcher, T.D.; Pasternack, G.B.; Vietz, G.J.; Duncan, H.P.; Burns, M.J. Can catchment-scale urban stormwater management measures benefit the stream hydraulic environment? J. Environ. Manag. 2019, 233, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Li, S. Green infrastructure design for stormwater runoff and water quality: Empirical evidence from large watershed-scale community developments. Water 2013, 5, 2038–2057. [Google Scholar] [CrossRef]
- Morris, Z.B.; Malone, S.M.; Cohen, A.R.; Weissburg, M.J.; Bras, B. Impact of low-impact development technologies from an ecological perspective in different residential zones of the city of Atlanta, Georgia. Engineering 2018, 4, 194–199. [Google Scholar] [CrossRef]
- Trowsdale, S.A.; Simcock, R. Urban stormwater treatment using bioretention. J. Hydrol. 2009, 397, 167–174. [Google Scholar] [CrossRef]
- Johnson, J.P.; Hunt, W.F. A retrospective comparison of water quality treatment in a bioretention cell 16 years following initial analysis. Sustainability 2019, 11, 1945. [Google Scholar] [CrossRef]
- Loperfido, J.V.; Noe, G.B.; Jarnagin, S.T.; Hogan, D.M. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. J. Hydrol. 2014, 519, 2584–2595. [Google Scholar] [CrossRef]
- Alamdari, N.; Hogue, T.S. Evaluating the effects of stormwater control measures on percolation in semi-arid watersheds using a high-resolution stormwater model. J. Clean. Prod. 2022, 375, 134073. [Google Scholar] [CrossRef]
- Jokar, D.; Khakzand, M.; Faizi, M. The application nof low impact development approaches toward achieving circularity in the water sector: A case study from Soltan Abad, shiraz, Iran. J. Clean. Prod. 2021, 320, 128712. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J., Jr.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Fava, M.C.; Macedo, M.B.; Buarque, A.C.S.; Saraiva, A.M.; Delbem, A.C.B.; Mendiondo, E.M. Linking urban floods to citizen science and low impact development in poorly gauged basins under climate changes for dynamic resilience evaluation. Water 2022, 14, 1467. [Google Scholar] [CrossRef]
- Mugume, S.N.; Kibibi, H.; Sorensen, J.; Butler, D. Can blue-green infrastructure enhance resilience in urban drainage systems during failure conditions? Water Sci. Technol. 2024, 89, 915–944. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Fu, G.; Butler, D.; Yuan, Z.; Cook, L. The effect of green infrastructure on resilience in combined sewer systems under climate change. J. Environ. Manag. 2024, 353, 120229. [Google Scholar] [CrossRef] [PubMed]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Gunawardana, C.; Dupasquier, M.; McDonald, W. Green infrastructure in series reduces thermal impacts of stormwater runoff. J. Sustain. Water Built Environ. 2023, 9, 05023001. [Google Scholar] [CrossRef]
- Mai, Y.; Huang, G. Hydrology and rainfall runoff pollutant removal performance of biochar-amended bioretention facilities based on field-scale experiments in lateritic red soil regions. Sci. Total Environ. 2021, 761, 143252. [Google Scholar] [CrossRef]
- Brasil, J.; Macedo, M.; Lago, C.; Oliveira, T.; Júnior, M.; Oliveira, T.; Mendiondo, E. Nature-based solutions and real-time control: Challenges and opportunities. Water 2021, 13, 651. [Google Scholar] [CrossRef]
- Liang, R.; Thyer, M.A.; Maier, H.R.; Dandy, G.C.; Di Matteo, M. Optimising the design and real-time operation of systems of distributed stormwater storages to reduce urban flooding at the catchment scale. J. Hydrol. 2021, 602, 126787. [Google Scholar] [CrossRef]
- Técher, D. Real-time control technology for enhancing biofiltration performances and ecosystem functioning of decentralized bioretention cells. Water Sci. Technol. 2023, 87, 1582–1586. [Google Scholar] [CrossRef]
Metric with Units | Description |
---|---|
Peak flow rate (L/s) | Maximum discharge level during a storm event |
Duration (Minutes) | Length of time between start and end of a storm event |
Rise time (Minutes) | Length of time between start and first peak of a storm event |
Fall time (Minutes) | Length of time between last peak and end of a storm event |
Average rate of increase (L/s/minute) | Mean slope of periods of increasing flow during a storm event |
Average rate of decrease (L/s/minute) | Mean slope of periods of decreasing flow during a storm event |
Cost Type | Total ($Million) | Per Basin Area ($/m2) | Per Area of Treated Impervious Cover ($/m2) | Per Volume Capacity ($/m3) |
---|---|---|---|---|
Construction | 2.34 | 1175 | 62 | 1539 |
Annual Maintenance | 0.013 | 6.6 | 0.35 | 8.68 |
Pre-Construction vs. Without-Basin | Pre-Construction vs. With-Basin | Without-Basin vs. With-Basin | ||||
---|---|---|---|---|---|---|
Metric | Test Statistic | p-Value | Test Statistic | p-Value | Test Statistic | p-Value |
Peak flow | W = 560 | <0.01 | W = 1658 | <0.01 | V = 0 | <0.01 |
Duration | W = 949.5 | 0.6 | W = 100 | <0.01 | V = 325 | <0.01 |
Rise time | W = 1410 | <0.01 | W = 614 | <0.01 | V = 224 | <0.01 |
Fall time | W = 1526 | <0.01 | W = 744 | 0.04 | V = 286 | <0.01 |
Average rate of increase | W = 803 | 0.1 | W = 1889 | <0.01 | V = 0 | <0.01 |
Average rate of decrease | W = 1392 | <0.01 | W = 303 | <0.01 | V = 325 | <0.01 |
Metric | Test Statistic | p-Value |
---|---|---|
Peak flow | V = 0 | <0.01 |
Duration | V = 181 | <0.01 |
Rise time | V = 188.5 | <0.01 |
Fall time | V = 171 | <0.01 |
Average rate of increase | V = 0 | <0.01 |
Average rate of decrease | V = 190 | <0.01 |
Central Campus Basin | West Campus Basin | |||||||
---|---|---|---|---|---|---|---|---|
Precipitation Magnitude (mm) | Antecedent Condition (Number of Days since Surface Water Present) | Precipitation Magnitude (mm) | Antecedent Condition (Number of Days since Surface Water Present) | |||||
Response Variable | p | r2 | p | r2 | p | r2 | p | r2 |
Peak flow | 0.66 | 0.008 | 0.49 | 0.02 | 0.36 | 0.05 | 0.57 | 0.02 |
Duration | 0.54 | 0.02 | 0.34 | 0.04 | 0.86 | 0.002 | 0.58 | 0.02 |
Rise Time | 0.83 | 0.002 | 0.34 | 0.04 | 0.05 | 0.22 | 0.22 | 0.09 |
Fall Time | 0.96 | 0.27 | 0.42 | 0.03 | 0.26 | 0.07 | 0.68 | 0.01 |
Rate of Increase | 0.06 | 0.15 | 0.96 | 0.0001 | 0.18 | 0.10 | 0.15 | 0.12 |
Rate of Decrease | 0.04 | 0.18 | 0.31 | 0.04 | 0.57 | 0.02 | 0.64 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laub, B.G.; Von Bon, E., Jr.; May, L.; Garcia, M. The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding. Water 2024, 16, 2597. https://doi.org/10.3390/w16182597
Laub BG, Von Bon E Jr., May L, Garcia M. The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding. Water. 2024; 16(18):2597. https://doi.org/10.3390/w16182597
Chicago/Turabian StyleLaub, Brian G., Eugene Von Bon, Jr., Lani May, and Mel Garcia. 2024. "The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding" Water 16, no. 18: 2597. https://doi.org/10.3390/w16182597
APA StyleLaub, B. G., Von Bon, E., Jr., May, L., & Garcia, M. (2024). The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding. Water, 16(18), 2597. https://doi.org/10.3390/w16182597