Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model
Abstract
:1. Introduction
2. Study Area and Data Sources
3. Methodology
3.1. DPSIR Framework
3.2. Analysis of Ecological Mechanisms of Water Environment in Huizhou under DPSIR Framework
3.3. Entropy Weight TOPSIS Model
3.3.1. Standardized Evaluation Matrix and Indicator Data Matrix
3.3.2. Information Entropy and Weight Values
3.3.3. Normalized Standard Matrix
3.3.4. Positive and Negative Ideal Solutions
3.3.5. Euclidean Distance
3.3.6. Proximity Value
3.4. Division of Thresholds for the Level of Development of the Ecological Carrying Capacity of the Water Environment
4. Analysis of the Results
4.1. Characteristics of Spatial Differentiation in the Ecological Development of the Water Environment
4.2. Ecological Carrying Capacity of the Water Environment
4.2.1. Temporal and Spatial Interpretation Features
4.2.2. Trends in the Development of Temporal and Spatial Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, P.; Wu, H.; Yang, T.; Jiang, F.; Zhang, W.; Zhu, Z.; Yue, Q.; Liu, M.; Xu, X. Evaluation of urban water ecological civilization: A case study of three urban agglomerations in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 123, 107351. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Li, Q.; Wang, J. Ecological security pattern construction in Beijing-Tianjin-Hebei region based on hotspots of multiple ecosystem services. Sustainability 2022, 14, 699. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X.; Ma, C.; Zhang, H.; Han, R.; Lu, X. Ecological security assessment based on remote sensing and landscape ecology model. J. Sens. 2021, 2021, 6684435. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Lu, H.; Qiao, Y.; Peng, H.; He, P.; Zhao, Y. Cloud model driven assessment of interregional water ecological carrying capacity and analysis of its spatial-temporal collaborative relation. J. Clean. Prod. 2023, 384, 135562. [Google Scholar] [CrossRef]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef]
- Ma, Q.; Pang, Y.; Mu, R. Water environmental capacity calculation based on control of contamination zone for water environment functional zones in Jiangsu section of Yangtze River, China. Water 2021, 13, 587. [Google Scholar] [CrossRef]
- Hou, X.; Lv, T.; Xu, J.; Deng, X.; Liu, F.; Lam, J.S.L.; Zhang, Z.; Han, X. Evaluation of urban public transport sustainability in China based on the Driving Force-Pressure-State-Impact-Response (DPSIR) framework—A case study of 36 major cities. Environ. Impact Assess. Rev. 2023, 103, 107263. [Google Scholar] [CrossRef]
- Xu, M.; Hu, W.-Q. A research on coordination between economy, society and environment in China: A case study of Jiangsu. J. Clean. Prod. 2020, 258, 120641. [Google Scholar] [CrossRef]
- Liu, H.; Niu, G.; Zhang, Q.; Yang, Y.; Yao, H. Town-level aquatic environmental sensitivity assessment based on an improved ecological footprint model. Water Resour. Manag. 2022, 36, 763–777. [Google Scholar] [CrossRef]
- Yang, Q.; Zhan, H.; Huang, J. Urban green service equity in Xiamen based on network analysis and concentration degree of resources. Open Geosci. 2022, 14, 304–315. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. PeerJ 2019, 7, e7665. [Google Scholar] [CrossRef] [PubMed]
- Xin, X. Construction of ecological compensation system for water environment resource in public places using grey correlation. Math. Probl. Eng. 2022, 2022, 3026588. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Wang, M. Construction of ecological security pattern of national ecological barriers for ecosystem health maintenance. Ecol. Indic. 2023, 146, 109801. [Google Scholar] [CrossRef]
- Luo, J.; Fu, H. Construct the future wetland ecological security pattern with multi-scenario simulation. Ecol. Indic. 2023, 153, 110473. [Google Scholar] [CrossRef]
- Ren, B.; Sun, B.; Shi, X.; Zhao, S.; Wang, X. Analysis of the cooperative carrying capacity of Ulan Suhai Lake based on the coupled water resources–water environment–water ecology system. Water 2022, 14, 3102. [Google Scholar] [CrossRef]
- Choudhury, M.; Alomgir, M.; Rahman, M.A.; Monir, M.U.; Biswas, B.K.; Khan, A.S. Appraisal of groundwater quality and human health risk for water security and health safety assurance in southwest coastal zone of Bangladesh. Groundw. Sustain. Dev. 2023, 21, 100919. [Google Scholar] [CrossRef]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Z.; Li, S.; Gao, Z. Integrating the ecological security pattern and the PLUS model to assess the effects of regional ecological restoration: A case study of Hefei City, Anhui province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef]
- Cai, W.; Liu, X.; Zhang, D.; Akter, F. Impact of land cover changes on the wetland ecosystem water environment using soft computing methods. Math. Probl. Eng. 2022, 2022, 3673758. [Google Scholar] [CrossRef]
- Wang, W.; Tian, H.; Yang, G.; Liu, B.; Pan, Y.; Ding, G.; Xu, X.; Dan, Y.; Cui, M.; Gao, Y. Dynamic variation of groundwater level and its influencing factors in typical oasis irrigated areas in Northwest China. Open Geosci. 2023, 15, 20220493. [Google Scholar] [CrossRef]
- Du, Y.; He, X.; Li, X.; Li, X.; Gu, X.; Yang, G.; Li, W.; Wu, Y.; Qiu, J. Changes in landscape pattern and ecological service value as land use evolves in the Manas River Basin. Open Geosci. 2022, 14, 1092–1112. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Xu, R.; Gao, Y.; Ding, H.; Sun, P.; Liu, W. The coupling coordination measurement, spatio-temporal differentiation and driving mechanism of urban and rural water poverty in northwest China. Int. J. Environ. Res. Public Health 2023, 20, 2043. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yang, J.; Wang, P. Study on coupling coordination relationship between urban development intensity and water environment carrying capacity of Chengdu–Chongqing Economic Circle. Sustainability 2023, 15, 7111. [Google Scholar] [CrossRef]
- Lei, Y.; Guoping, C.; Jiasheng, W.; Junsan, Z.; Kun, Y. A quantitative analysis method for the degree of coupling coordination between drinking water carrying capacity and population spatial aggregation. Environ. Dev. Sustain. 2022, 24, 11392–11423. [Google Scholar] [CrossRef]
- Aalirezaei, A.; Khan, M.S.A.; Kabir, G.; Ali, S.M. Prediction of water security level for achieving sustainable development objectives in Saskatchewan, Canada: Implications for resource conservation in developed economies. J. Clean. Prod. 2021, 311, 127521. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Long, J.; Chen, M.; Nie, J.; Liu, P. Regional water resources security assessment and optimization path analysis in karst areas based on emergy ecological footprint. Appl. Water Sci. 2023, 13, 142. [Google Scholar] [CrossRef]
- Alsaleh, M.; Chen, T.; Abdul-Rahim, A.S. A revisit to the relationship between geothermal energy growth and underground water quality in EU economies. Environ. Technol. 2022, 45, 1271–1289. [Google Scholar] [CrossRef]
- Jiang, H.; He, G. Analysis of spatial and temporal evolution of regional water resources carrying capacity and influencing factors—Anhui Province as an example. Sustainability 2023, 15, 11255. [Google Scholar] [CrossRef]
- Sulaiman, S.O.; Kamel, A.H.; Sayl, K.N.; Alfadhel, M.Y. Water resources management and sustainability over the Western desert of Iraq. Environ. Earth Sci. 2019, 78, 495. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, L.; Jin, J.; Ning, S.; Zhang, Z.; Bai, L. Regional water resource carrying capacity evaluation based on multi-dimensional precondition cloud and risk matrix coupling model. Sci. Total Environ. 2020, 710, 136324. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wang, J.; Liu, F.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. The establishment of an eco-environmental evaluation model for southwest China and eastern South Africa based on the DPSIR framework. Ecol. Indic. 2022, 145, 109687. [Google Scholar] [CrossRef]
- Gong, X.; Chen, L.; Tan, S. Evolution of water environment construction and urban landscape ecological risk based on land cover change analysis. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2022, 85, 2097–2113. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Huang, C.; Fang, L.; Wang, S.; Wang, L. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Guo, W.; Yang, H.; Ma, Y.; Hong, F.; Wang, H. Comprehensive evaluation of the hydrological health evolution and its driving forces in the river-lake system. Ecol. Inform. 2023, 75, 102117. [Google Scholar] [CrossRef]
- Malmir, M.; Javadi, S.; Moridi, A.; Neshat, A.; Razdar, B. A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geosci. Front. 2021, 12, 101169. [Google Scholar] [CrossRef]
- Alexakis, D.E. Linking DPSIR model and water quality indices to achieve Sustainable Development Goals in groundwater resources. Hydrology 2021, 8, 90. [Google Scholar] [CrossRef]
- Apostolaki, S.; Koundouri, P.; Pittis, N. Using a systemic approach to address the requirement for Integrated Water Resource Management within the Water Framework Directive. Sci. Total Environ. 2019, 679, 70–79. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal differentiation of the coupling coordinated development of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar] [CrossRef]
- Cai, B.; Shao, Z.; Fang, S.; Huang, X.; Huq, M.E.; Tang, Y.; Li, Y.; Zhuang, Q. Finer-scale spatiotemporal coupling coordination model between socioeconomic activity and eco-environment: A case study of Beijing, China. Ecol. Indic. 2021, 131, 108165. [Google Scholar] [CrossRef]
- Niu, K.; He, W.; Qiu, L. Symbiosis coordination between industrial development and ecological environment for sustainable development: Theory and evidence. Sustain. Dev. 2023, 31, 3052–3069. [Google Scholar] [CrossRef]
- Li, X.; Zhan, J.; Lv, T.; Wang, S.; Pan, F. Comprehensive evaluation model of the urban low-carbon passenger transportation structure based on DPSIR. Ecol. Indic. 2023, 146, 109849. [Google Scholar] [CrossRef]
- Hou, J.; Wang, J.; Qin, T.; Liu, S.; Zhang, X.; Yan, S.; Li, C.; Feng, J. Attribution identification of terrestrial ecosystem evolution in the Yellow River Basin. Open Geosci. 2022, 14, 615–628. [Google Scholar] [CrossRef]
- Ke, X.; Wang, X.; Guo, H.; Yang, C.; Zhou, Q.; Mougharbel, A. Urban ecological security evaluation and spatial correlation research-based on data analysis of 16 cities in Hubei Province of China. J. Clean. Prod. 2021, 311, 127613. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Zhao, K.; Li, Z. Evaluation of provincial carbon-neutral capacities in the Yellow River basin using DPSIR. Sci. Rep. 2022, 12, 18180. [Google Scholar] [CrossRef]
- Peng, C.; Li, B.; Nan, B. An analysis framework for the ecological security of urban agglomeration: A case study of the Beijing-Tianjin-Hebei urban agglomeration. J. Clean. Prod. 2021, 315, 128111. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Todaro, F.; Wang, L.; Tsang, D.C.W.; Notarnicola, M. A holistic DPSIR-based approach to the remediation of heavily contaminated coastal areas. Environ. Pollut. 2021, 284, 117129. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Todaro, F.; Notarnicola, M. DPSIR model applied to the remediation of contaminated sites. A case study: Mar Piccolo of Taranto. Appl. Sci. 2020, 10, 5080. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Guo, Q. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 2018, 89, 348–355. [Google Scholar] [CrossRef]
- Adrianto, L.; Kurniawan, F.; Romadhon, A.; Bengen, D.G.; Sjafrie, N.D.M.; Damar, A.; Kleinertz, S. Assessing social-ecological system carrying capacity for urban small island tourism: The case of Tidung Islands, Jakarta Capital Province, Indonesia. Ocean Coast. Manag. 2021, 212, 105844. [Google Scholar] [CrossRef]
- Wang, P.; Deng, H.; Peng, T.; Pan, Z. Measurement and analysis of water ecological carrying capacity in the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 95507–95524. [Google Scholar] [CrossRef]
- Wang, D.; Kong, X. Evaluation of carrying capacity on resource and environment based on improved TOPSIS method. IOP Conf. Series. Earth Environ. Sci. 2021, 811, 012004. [Google Scholar] [CrossRef]
- Hasan, M.S.U.; Rai, A.K. Suitability of the Lower Ganga basin groundwater for irrigation, using hydrogeochemical parameters and land-use dynamics. Environ. Sci. Pollut. Res. Int. 2023, 30, 116831–116847. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, Y.; Fang, Z. High-quality development evaluation and spatial evolution analysis of urban agglomerations in the middle reaches of the Yangtze River. Sustainability 2022, 14, 14757. [Google Scholar] [CrossRef]
- De Wit, R.; Leruste, A.; Le Fur, I.; Sy, M.M.; Bec, B.; Ouisse, V.; Derolez, V.; Rey-Valette, H. A multidisciplinary approach for restoration ecology of shallow coastal lagoons, a case study in south France. Front. Ecol. Evol. 2020, 8, 108. [Google Scholar] [CrossRef]
- Hüesker, F.; Moss, T. The politics of multi-scalar action in river basin management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 2015, 42, 38–47. [Google Scholar] [CrossRef]
- Ruan, W.; Li, Y.; Zhang, S.; Liu, C.-H. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tour. Manag. 2019, 75, 609–625. [Google Scholar] [CrossRef]
- Federigi, I.; Balestri, E.; Castelli, A.; De Battisti, D.; Maltagliati, F.; Menicagli, V.; Verani, M.; Lardicci, C.; Carducci, A. Beach pollution from marine litter: Analysis with the DPSIR framework (driver, pressure, state, impact, response) in Tuscany, Italy. Ecol. Indic. 2022, 143, 109395. [Google Scholar] [CrossRef]
- Expósito, A.; Berbel, J. Sustainability implications of deficit irrigation in a mature water economy: A case study in Southern Spain. Sustainability 2017, 9, 1144. [Google Scholar] [CrossRef]
- Esfandiary Abdolmaleki, D.; Faraji Abdolmaleki, S.; Bello Bugallo, P.M. Evaluating renewable energy and ranking 17 autonomous communities in Spain: A TOPSIS method. Sustainability 2023, 15, 12259. [Google Scholar] [CrossRef]
- Hazarika, N.; Nitivattananon, V. Strategic assessment of groundwater resource exploitation using DPSIR framework in Guwahati city, India. Habitat. Int. 2016, 51, 79–89. [Google Scholar] [CrossRef]
- Roy, K.; Gain, A.K.; Mallick, B.; Vogt, J. Social, hydro-ecological and climatic change in the southwest coastal region of Bangladesh. Reg. Environ. Chang. 2017, 17, 1895–1906. [Google Scholar] [CrossRef]
- Rane, N.L.; Achari, A.; Choudhary, S.P.; Mallick, S.K.; Pande, C.B.; Srivastava, A.; Moharir, K.N. A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. J. Clean. Prod. 2023, 423, 138890. [Google Scholar] [CrossRef]
- Kosamu, I.B.M.; Makwinja, R.; Kaonga, C.C.; Mengistou, S.; Kaunda, E.; Alamirew, T.; Njaya, F. Application of DPSIR and Tobit models in assessing freshwater ecosystems: The case of Lake Malombe, Malawi. Water 2022, 14, 619. [Google Scholar] [CrossRef]
- Song, W.; Pang, Y. Research on narrow and generalized water environment carrying capacity, economic benefit of Lake Okeechobee, USA. Ecol. Eng. 2021, 173, 106420. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Shi, W.; Fu, Y. Quantitative evaluation and optimized utilization of water resources-water environment carrying capacity based on nature-based solutions. J. Hydrol. 2019, 568, 96–107. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Zheng, B.; Khu, S.-T. Validation of the hypothesis on carrying capacity limits using the water environment carrying capacity. Sci. Total Environ. 2019, 665, 774–784. [Google Scholar] [CrossRef]
- Świąder, M.; Lin, D.; Szewrański, S.; Kazak, J.K.; Iha, K.; van Hoof, J.; Belčáková, I.; Altiok, S. The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environ. Sci. Policy 2020, 105, 56–74. [Google Scholar] [CrossRef]
Target Layers | Standardized Layers | Programmatic Layers | Unit | Attributes | Literature Sources |
---|---|---|---|---|---|
Ecological evaluation index system of water environment in Huizhou area | P1 Drive Force | Q1 Population density | People/km2 | + | [38,39] |
Q2 GDP per capita | RMB/year | + | |||
Q3 Natural population growth rate | % | − | |||
Q4 Birthrate | % | + | |||
P2 Pressure | Q5 Per capita daily domestic water consumption | tons | + | [40,41] | |
Q6 Total sewage discharges | tons | − | |||
Q7 Water consumption in residential households | tons | − | |||
Q8 Industrial water consumption | Billions of cubic meters | − | |||
Q9 Ecosystem water consumption | Billions of cubic meters | − | |||
P3 State | Q10 Total water resources | Billions of cubic meters | + | [42,43] | |
Q11 Average annual precipitation | millimeters | + | |||
Q12 Green space and plaza land | square kilometer | + | |||
Q13 Area covered by green space | hectares | + | |||
Q14 Green area of parks | hectares | + | |||
P4 Impact | Q15 Proportion of days with good air quality | % | + | [44,45] | |
Q16 Proportion of surface water sections with good water quality (I–III) | % | + | |||
Q17 Greening coverage in built-up areas | % | + | |||
Q18 Rate of compliance with water quality standards for quoted water sources | % | + | |||
Q19 Annual average concentration of fine particulate matter (PM2.5) | micrograms per cubic meter | − | |||
P5 Response | Q20 Centralized sewage treatment rate | % | + | [46,47] | |
Q21 Total industrial wastewater treatment | + | ||||
Q22 Pollution-free treatment rate of domestic waste | % | + | |||
Q23 Number of wastewater treatment facilities | interleave | + | |||
Q24 Percentage of forest cover | % | + |
Posting Progress | [0–0.30) | [0.30–0.40) | [0.40–0.50) | [0.50–0.60) | [0.60–1) |
---|---|---|---|---|---|
Ecological carrying capacity of the water environment | rudimentary | cordon | intermediate | favorable | talented |
Standardized Layer | Guideline Layer Weights | Programmatic Layer | Programmatic Layer Weights | ||||
---|---|---|---|---|---|---|---|
Information Entropy | Information Utility Value | Weighting Factor | Information Entropy | Information Utility Value | Weighting Factor | ||
P1 | 0.8449 | 0.1551 | 0.1858 | Q1 | 0.8817 | 0.1183 | 0.0248 |
Q2 | 0.8446 | 0.1554 | 0.0326 | ||||
Q3 | 0.8280 | 0.1720 | 0.0361 | ||||
Q4 | 0.8945 | 0.1055 | 0.0222 | ||||
P2 | 0.8352 | 0.1648 | 0.1975 | Q5 | 0.8059 | 0.1941 | 0.0408 |
Q6 | 0.7543 | 0.2457 | 0.0516 | ||||
Q7 | 0.8921 | 0.1079 | 0.0226 | ||||
Q8 | 0.7761 | 0.2239 | 0.0470 | ||||
Q9 | 0.6709 | 0.3291 | 0.0691 | ||||
P3 | 0.8233 | 0.1767 | 0.2116 | Q10 | 0.7686 | 0.2314 | 0.0486 |
Q11 | 0.6413 | 0.3587 | 0.0753 | ||||
Q12 | 0.6530 | 0.3470 | 0.0728 | ||||
Q13 | 0.8415 | 0.1585 | 0.0333 | ||||
Q14 | 0.7846 | 0.2154 | 0.0452 | ||||
P4 | 0.8881 | 0.1119 | 0.1340 | Q15 | 0.8734 | 0.1266 | 0.0266 |
Q16 | 0.9044 | 0.0956 | 0.0201 | ||||
Q17 | 0.8190 | 0.1810 | 0.0380 | ||||
Q18 | 1.0000 | 0.0000 | 0.0000 | ||||
Q19 | 0.7708 | 0.2292 | 0.0481 | ||||
P5 | 0.7737 | 0.2263 | 0.2711 | Q20 | 0.8585 | 0.1415 | 0.0297 |
Q21 | 0.7752 | 0.2248 | 0.0472 | ||||
Q22 | 0.9044 | 0.0956 | 0.0201 | ||||
Q23 | 0.6845 | 0.3155 | 0.0662 | ||||
Q24 | 0.6097 | 0.3903 | 0.0820 |
Vintages | Ideal Solution D+ | Ideal Solution D− | Closeness Ti | Sequence |
---|---|---|---|---|
2016 | 0.187 | 0.106 | 0.361 | 4 |
2017 | 0.193 | 0.077 | 0.285 | 6 |
2018 | 0.181 | 0.089 | 0.329 | 5 |
2019 | 0.152 | 0.099 | 0.394 | 3 |
2020 | 0.104 | 0.170 | 0.622 | 1 |
2021 | 0.128 | 0.184 | 0.590 | 2 |
averages | 0.158 | 0.121 | 0.430 | / |
Area/Year | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | Averages |
---|---|---|---|---|---|---|---|
Tunxi district | 0.174 | 0.195 | 0.140 | 0.146 | 0.205 | 0.175 | 0.173 |
Huangshan district | 0.264 | 0.219 | 0.155 | 0.234 | 0.176 | 0.200 | 0.208 |
Huizhou district | 0.201 | 0.138 | 0.130 | 0.147 | 0.171 | 0.190 | 0.163 |
Shexian county | 0.798 | 0.597 | 0.521 | 0.594 | 0.624 | 0.563 | 0.616 |
Xiuning district | 0.510 | 0.382 | 0.509 | 0.406 | 0.372 | 0.391 | 0.428 |
Yixian county | 0.111 | 0.089 | 0.101 | 0.115 | 0.106 | 0.112 | 0.106 |
Qimen county | 0.298 | 0.237 | 0.193 | 0.221 | 0.211 | 0.236 | 0.233 |
Jixi county | 0.306 | 0.497 | 0.442 | 0.523 | 0.514 | 0.554 | 0.473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Li, X.; Guo, Y.; Huang, J.; Zhang, L. Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model. Water 2024, 16, 2579. https://doi.org/10.3390/w16182579
Deng W, Li X, Guo Y, Huang J, Zhang L. Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model. Water. 2024; 16(18):2579. https://doi.org/10.3390/w16182579
Chicago/Turabian StyleDeng, Weihua, Xuan Li, Yanlong Guo, Jie Huang, and Linfu Zhang. 2024. "Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model" Water 16, no. 18: 2579. https://doi.org/10.3390/w16182579
APA StyleDeng, W., Li, X., Guo, Y., Huang, J., & Zhang, L. (2024). Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model. Water, 16(18), 2579. https://doi.org/10.3390/w16182579