Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.2.1. Purification of Moringa Oleifera Gum (MGm)
2.2.2. Synthesis of ZnO NPs
2.2.3. Preparation of ZM-G-Pani Bionanocomposites
2.3. Characterizations
2.4. Adsorption Experiments
3. Results and Discussions
3.1. Characterization
3.1.1. FT-IR Study
3.1.2. FE-SEM/EDS
3.1.3. TEM
3.1.4. XRD Investigation
3.2. Adsorption Studies
3.2.1. Removal Efficiency of Pristine ZnO, Pristine MGm, and ZM-G-Pani Nanocomposites towards Cd2+, Pb2+, and Hg2+ Adsorption
3.2.2. Point of Zero Charge and Effect of pH
3.2.3. Effect of Contact Time and Kinetic Studies
3.2.4. Effect of Initial Metal Ion Concentration and Isotherm Studies
3.2.5. Adsorption Thermodynamics
3.2.6. Regeneration and the Effect of Competitive Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rostami, M.; Jahed-khaniki, G.; Aghaee, E.M.-; Shariatifar, N.; Sani, M.A.; Azami, M.; Rezvantalab, S.; Ramezani, S.; Ghorbani, M. Polycaprolactone/Polyacrylic Acid/Graphene Oxide Composite Nanofibers as a Highly Efficient Sorbent to Remove Lead Toxic Metal from Drinking Water and Apple Juice. Sci. Rep. 2024, 14, 4372. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tanweer, M.S.; Alam, M. Kinetic, Isothermal, Thermodynamic and Adsorption Studies on Mentha Piperita Using ICP-OES. Surf. Interfaces 2020, 19, 100516. [Google Scholar] [CrossRef]
- Rind, I.K.; Memon, N.; Khuhawar, M.Y.; Soomro, W.A.; Lanjwani, M.F. Modeling of Cadmium(II) Removal in a Fixed Bed Column Utilizing Hydrochar-Derived Activated Carbon Obtained from Discarded Mango Peels. Sci. Rep. 2022, 12, 8001. [Google Scholar] [CrossRef] [PubMed]
- Ranote, S.; Ram, B.; Kumar, D.; Chauhan, G.S.; Joshi, V. Functionalization of Moringa Oleifera Gum for Use as Hg2+ Ions Adsorbent. J. Environ. Chem. Eng. 2018, 6, 1805–1813. [Google Scholar] [CrossRef]
- Rabiee Abyaneh, M.; Nabi Bidhendi, G.; Daryabeigi Zand, A. Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) Adsorption onto Pruning-Derived Biochar: Physicochemical Characterization, Modeling and Application in Real Landfill Leachate. Sci. Rep. 2024, 14, 3426. [Google Scholar] [CrossRef]
- Pandey, L.M.; Hasan, A. Nanoscale Engineering of Biomaterials: Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–704. [Google Scholar] [CrossRef]
- Ahmad, S.; Tanweer, M.S.; Mir, T.A.; Alam, M.; Ikram, S.; Sheikh, J.N. Antimicrobial Gum Based Hydrogels as Adsorbents for the Removal of Organic and Inorganic Pollutants. J. Water Process Eng. 2023, 51, 103377. [Google Scholar] [CrossRef]
- Iqbal, Z.; Tanweer, M.S.; Alam, M. Recent Advances in Adsorptive Removal of Wastewater Pollutants by Chemically Modified Metal Oxides: A Review. J. Water Process Eng. 2022, 46, 102641. [Google Scholar] [CrossRef]
- Tanweer, M.S.; Chauhan, H.; Alam, M. Advanced 2D Nanomaterial Composites: Applications in Adsorption of Water Pollutants and Toxic Gases. In 2D Nanomaterials for Energy and Environmental; Springer Nature: Singapore, 2022; pp. 97–124. [Google Scholar] [CrossRef]
- Tanweer, M.S.; Alam, M. Novel 2D Nanomaterial Composites Photocatalysts: Application in Degradation of Water Contaminants. In 2D Nanomaterials for Energy and Environmental Sustainability; Springer Nature: Singapore, 2022; pp. 75–96. [Google Scholar] [CrossRef]
- Rajendran, H.K.; Deen, M.A.; Ray, J.P.; Singh, A.; Narayanasamy, S. Harnessing the Chemical Functionality of Metal–Organic Frameworks Toward Removal of Aqueous Pollutants. Langmuir 2024, 40, 3963–3983. [Google Scholar] [CrossRef]
- Ahmad, R.; Ansari, K. Comparative Study for Adsorption of Congo Red and Methylene Blue Dye on Chitosan Modified Hybrid Nanocomposite. Process Biochem. 2021, 108, 90–102. [Google Scholar] [CrossRef]
- Ahmad, R.; Ansari, K. Novel In-Situ Fabrication of L-Methionine Functionalized Bionanocomposite for Adsorption of Amido Black 10B Dye. Process Biochem. 2022, 119, 48–57. [Google Scholar] [CrossRef]
- Duan, F.; Zhu, Y.; Liu, Y.; Mu, B.; Wang, A. Green Fabrication of Porous Adsorbent with Structural Evolution of Mixed-Dimension Attapulgite Clay for Efficient Removal of Methylene Blue and Sustainable Utilization. ACS Sustain. Resour. Manag. 2024, 1, 670–680. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Ivanov, N.P.; Balanov, M.I.; Dran’kov, A.N.; Shkuratov, A.L.; Zarubina, N.V.; Fedorets, A.N.; Mayorov, V.Y.; Lembikov, A.O.; et al. Study of Adsorption and Immobilization of Cs+, Sr2+, Co2+, Pb2+, La3+ Ions on Na-Faujasite Zeolite Transformed in Solid State Matrices. Sep. Purif. Technol. 2024, 332, 125662. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, S.; Bu, R.; Cai, X.; Sun, X. Purification of Runoff Pollution Using Porous Asphalt Concrete Incorporating Zeolite Powder. Constr. Build. Mater. 2024, 411, 134740. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, Y.; Chen, M.; Wang, Y.; Ding, J.; Ma, B.; Wang, Q.; Lu, S. One-Step High Efficiency Synthesis of Zeolite from Fly Ash by Mechanochemical Method as a Low-Cost Adsorbent for Cadmium Removal. J. Environ. Chem. Eng. 2024, 12, 111877. [Google Scholar] [CrossRef]
- Iqbal, Z.; Tanweer, M.S.; Alam, M. Reduced Graphene Oxide-Modified Spinel Cobalt Ferrite Nanocomposite: Synthesis, Characterization, and Its Superior Adsorption Performance for Dyes and Heavy Metals. ACS Omega 2023, 8, 6376–6390. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Tanweer, M.S.; Alam, M. Simple One-POT Hydrothermal Synthesis of CTAB-Assisted Spinel Manganese Ferrite Nanoparticles for Dye Removal: Kinetic and Isotherm Studies. In Recent Advances in Nanomaterials; Springer: Singapore, 2024; Volume 27, pp. 319–324. [Google Scholar] [CrossRef]
- Akl, M.A.; Mostafa, A.G.; Abdelaal, M.Y.; Nour, M.A.K. Surfactant Supported Chitosan for Efficient Removal of Cr(VI) and Anionic Food Stuff Dyes from Aquatic Solutions. Sci. Rep. 2023, 13, 15786. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Q.; Sun, L.; Zhang, J.; Han, Z.; Xu, S.; Cheng, Z. Adsorption of Heavy Metals and Antibacterial Activity of Silicon-Doped Chitosan Composite Microspheres Loaded with ZIF-8. Sep. Purif. Technol. 2024, 328, 124969. [Google Scholar] [CrossRef]
- Gomez-Suarez, M.; Chen, Y.; Zhang, J. Porous Organic Polymers as a Promising Platform for Efficient Capture of Heavy Metal Pollutants in Wastewater. Polym. Chem. 2023, 14, 4000–4032. [Google Scholar] [CrossRef]
- Kumarage, S.; Munaweera, I.; Sandaruwan, C.; Weerasinghe, L.; Kottegoda, N. Electrospun Amine-Functionalized Silica Nanoparticles–Cellulose Acetate Nanofiber Membranes for Effective Removal of Hardness and Heavy Metals (As(V), Cd(II),Pb(II)) in Drinking Water Sources. Environ. Sci. Water Res. Technol. 2023, 9, 2664–2679. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhou, Z.; Feng, J.; Li, M.; Chen, J.; Yan, W. Selective Adsorption Behavior of Sulfuric Acid Oxidized and Doped Conjugated Microporous Poly(Aniline)s toward Lead Ions in an Aqueous Environment. Langmuir 2024, 40, 3628–3639. [Google Scholar] [CrossRef] [PubMed]
- Dewa, L.; Tichapondwa, S.M.; Mhike, W. Adsorption of Hexavalent Chromium from Wastewater Using Polyaniline-Coated Microcrystalline Cellulose Nanocomposites. RSC Adv. 2024, 14, 6603–6616. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, M.S.; Iqbal, Z.; Alam, M. Fabrication of Electrospun PVA-Aloe Vera Hybrid Nanofibers: Dye Removal Ability from Wastewater. In Recent Advances in Nanomaterials; Springer: Singapore, 2024; Volume 27, pp. 457–464. [Google Scholar] [CrossRef]
- Hsini, A.; Naciri, Y.; Laabd, M.; El Ouardi, M.; Ajmal, Z.; Lakhmiri, R.; Boukherroub, R.; Albourine, A. Synthesis and Characterization of Arginine-Doped Polyaniline/Walnut Shell Hybrid Composite with Superior Clean-up Ability for Chromium (VI) from Aqueous Media: Equilibrium, Reusability and Process Optimization. J. Mol. Liq. 2020, 316, 113832. [Google Scholar] [CrossRef]
- Ahmar Rauf, M.; Oves, M.; Ur Rehman, F.; Rauf Khan, A.; Husain, N. Bougainvillea Flower Extract Mediated Zinc Oxide’s Nanomaterials for Antimicrobial and Anticancer Activity. Biomed. Pharmacother. 2019, 116, 108983. [Google Scholar] [CrossRef]
- Rauf, M.A.; Owais, M.; Rajpoot, R.; Ahmad, F.; Khan, N.; Zubair, S. Biomimetically Synthesized ZnO Nanoparticles Attain Potent Antibacterial Activity against Less Susceptible S. Aureus Skin Infection in Experimental Animals. RSC Adv. 2017, 7, 36361–36373. [Google Scholar] [CrossRef]
- Saruchi; Sharma, M.; Hatshan, M.R.; Kumar, V.; Rana, A. Sequestration of Eosin Dye by Magnesium (II)-Doped Zinc Oxide Nanoparticles: Its Kinetic, Isotherm, and Thermodynamic Studies. J. Chem. Eng. Data 2021, 66, 646–657. [Google Scholar] [CrossRef]
- Bir, R.; Tanweer, M.S.; Singh, M.; Alam, M. Multifunctional Ternary NLP/ZnO@ l -Cysteine- Grafted-PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples. ACS Omega 2022, 7, 44850. [Google Scholar] [CrossRef]
- Mittal, H.; Maity, A.; Sinha Ray, S. The Adsorption of Pb2+ and Cu2+ onto Gum Ghatti-Grafted Poly(Acrylamide- Co -Acrylonitrile) Biodegradable Hydrogel: Isotherms and Kinetic Models. J. Phys. Chem. A 2015, 119, 2026–2039. [Google Scholar] [CrossRef]
- Tanweer, M.S.; Iqbal, Z.; Alam, M. Experimental Insights into Mesoporous Polyaniline-Based Nanocomposites for Anionic and Cationic Dye Removal. Langmuir 2022, 38, 8837–8853. [Google Scholar] [CrossRef]
- Ayad, M.; El-Hefnawy, G.; Zaghlol, S. Facile Synthesis of Polyaniline Nanoparticles; Its Adsorption Behavior. Chem. Eng. J. 2013, 217, 460–465. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, W.; Xie, Z.; Song, Y.; Zheng, Q. L-Cysteine-Reduced Graphene Oxide/Poly(Vinyl Alcohol) Ultralight Aerogel as a Broad-Spectrum Adsorbent for Anionic and Cationic Dyes. J. Mater. Sci. 2017, 52, 5807–5821. [Google Scholar] [CrossRef]
- Chu, Y.; Zhu, S.; Xia, M.; Wang, F.; Lei, W. Methionine-Montmorillonite Composite—A Novel Material for Efficient Adsorption of Lead Ions. Adv. Powder Technol. 2020, 31, 708–717. [Google Scholar] [CrossRef]
- Gupta, S.; Kachhwaha, S.; Kothari, S.L.; Bohra, M.K.; Jain, R. Surface Morphology and Physicochemical Characterization of Thermostable Moringa Gum: A Potential Pharmaceutical Excipient. ACS Omega 2020, 5, 29189–29198. [Google Scholar] [CrossRef]
- Velu, M.; Balasubramanian, B.; Velmurugan, P.; Kamyab, H.; Ravi, A.V.; Chelliapan, S.; Lee, C.T.; Palaniyappan, J. Fabrication of Nanocomposites Mediated from Aluminium Nanoparticles/Moringa Oleifera Gum Activated Carbon for Effective Photocatalytic Removal of Nitrate and Phosphate in Aqueous Solution. J. Clean. Prod. 2021, 281, 124553. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and Functional Characteristics of Purified Gum from Australian Chia Seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Largani, S.H.; Mohammad, P.A. The Effect of Concentration Ratio and Type of Functional Group on Synthesis of CNT–ZnO Hybrid Nanomaterial by an in Situ Sol–Gel Process. Int. Nano Lett. 2016, 7, 25–33. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Wang, X.J.; Li, J.; Xu, G. Bin Synthesis and Performance of ZnO Quantum Dots Water-Based Fluorescent Ink for Anti-Counterfeiting Applications. Sci. Rep. 2021, 11, 5841. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Mallakpour, S.; Borandeh, S. Preparation, Characterization and Surface Morphology of Novel Optically Active Poly(Ester-Amide)/Functionalized ZnO Bionanocomposites via Ultrasonication Assisted Process. Appl. Surf. Sci. 2011, 257, 6725–6733. [Google Scholar] [CrossRef]
- Shahabuddin, S.; Sarih, N.M.; Mohamad, S.; Atika Baharin, S.N. Synthesis and Characterization of Co3O4 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Methyl Orange Adsorption from Aqueous Solution. RSC Adv. 2016, 6, 43388–43400. [Google Scholar] [CrossRef]
- Yadav, S.; Asthana, A.; Singh, A.K.; Chakraborty, R.; Sree Vidya, S.; Singh, A.; Carabineiro, S.A.C. Methionine-Functionalized Graphene Oxide/Sodium Alginate Bio-Polymer Nanocomposite Hydrogel Beads: Synthesis, Isotherm and Kinetic Studies for an Adsorptive Removal of Fluoroquinolone Antibiotics. Nanomaterials 2021, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Rani, N.; Saxena, P.; Bhandari, H.; Dhawan, S.K. Development of Polyaniline/Zinc Oxide Nanocomposite Impregnated Fabric as an Electrostatic Charge Dissipative Material. Polym. Int. 2015, 64, 1096–1103. [Google Scholar] [CrossRef]
- Ahmad, S.; Manzoor, K.; Purwar, R.; Ikram, S. Morphological and Swelling Potential Evaluation of Moringa Oleifera Gum/Poly(Vinyl Alcohol) Hydrogels as a Superabsorbent. ACS Omega 2020, 5, 17955–17961. [Google Scholar] [CrossRef] [PubMed]
- Majhi, D.; Patra, B.N. Polyaniline and Sodium Alginate Nanocomposite: A PH-Responsive Adsorbent for the Removal of Organic Dyes from Water. RSC Adv. 2020, 10, 43904–43914. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qin, Z.; Liang, B.; Tian, F.; Zhao, J.; Liu, N.; Zhu, M. Morphology-Dependent Capacitive Properties of Three Nanostructured Polyanilines through Interfacial Polymerization in Various Acidic Media. Electrochim. Acta 2015, 177, 343–351. [Google Scholar] [CrossRef]
- Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K.L.; Saha, B. Ultrasonic Assisted Enhanced Adsorption of Methyl Orange Dye onto Polyaniline Impregnated Zinc Oxide Nanoparticles: Kinetic, Isotherm and Optimization of Process Parameters. Ultrason. Sonochem. 2019, 54, 290–301. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Lv, G.; Zhu, R.; Tian, L.; Liu, M.; Li, Y.; Rao, W.; Liu, T.; Liao, L. Study on the Adsorption Properties of Methyl Orange by Natural One-Dimensional Nano-Mineral Materials with Different Structures. Sci. Rep. 2021, 11, 10640. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, L.W.; Zhao, X.; Liu, S.; Li, D. Removal of Pb(II), Cd(II) and Hg(II) from Aqueous Solution by Mercapto-Modified Coal Gangue. J. Environ. Manag. 2019, 231, 391–396. [Google Scholar] [CrossRef]
- Masoumi, A.; Hemmati, K.; Ghaemy, M. Structural Modification of Acrylonitrile–Butadiene–Styrene Waste as an Efficient Nanoadsorbent for Removal of Metal Ions from Water: Isotherm, Kinetic and Thermodynamic Study. RSC Adv. 2014, 5, 1735–1744. [Google Scholar] [CrossRef]
- Ahmad, R.; Ansari, K. Polyacrylamide-Grafted Actinidia Deliciosa Peels Powder (PGADP) for the Sequestration of Crystal Violet Dye: Isotherms, Kinetics and Thermodynamic Studies. Appl. Water Sci. 2020, 10, 195. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Ahmad, M.N.; Walker, G.; Leahy, J.J.; Kwapinski, W. Batch and Continuous Systems for Zn, Cu, and Pb Metal Ions Adsorption on Spent Mushroom Compost Biochar. Ind. Eng. Chem. Res. 2019, 58, 7296–7307. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Hou, B.; Hao, C.; Li, X.; Wu, J. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef] [PubMed]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef]
- Mansour, R.A.E.G.; Simeda, M.G.; Zaatout, A.A. Removal of Brilliant Green Dye from Synthetic Wastewater under Batch Mode Using Chemically Activated Date Pit Carbon. RSC Adv. 2021, 11, 7851–7861. [Google Scholar] [CrossRef]
- Kong, W.; Li, Q.; Liu, J.; Li, X.; Zhao, L.; Su, Y.; Yue, Q.; Gao, B. Adsorption Behavior and Mechanism of Heavy Metal Ions by Chicken Feather Protein-Based Semi-Interpenetrating Polymer Networks Super Absorbent Resin. RSC Adv. 2016, 6, 83234–83243. [Google Scholar] [CrossRef]
- Nematidil, N.; Sadeghi, M.; Nezami, S.; Sadeghi, H. Synthesis and Characterization of Schiff-Base Based Chitosan-g-Glutaraldehyde/NaMMTNPs-APTES for Removal Pb2+ and Hg2+ Ions. Carbohydr. Polym. 2019, 222, 114971. [Google Scholar] [CrossRef]
- Ukani, H.; Mehra, S.; Parmar, B.; Kumar, A.; Khan, I.; El Seoud, O.A.; Malek, N. Metal-Organic Framework-Based Aerogel: A Novel Adsorbent for the Efficient Removal of Heavy Metal Ions and Selective Removal of a Cationic Dye from Aqueous Solution. Ind. Eng. Chem. Res. 2022, 62, 5002–5014. [Google Scholar] [CrossRef]
- Ahmad, R.; Ansari, K. Chemically Treated Lawsonia Inermis Seeds Powder (CTLISP): An Eco-Friendly Adsorbent for the Removal of Brilliant Green Dye from Aqueous Solution. Groundw. Sustain. Dev. 2020, 11, 100417. [Google Scholar] [CrossRef]
- Awual, M.R.; Khraisheh, M.; Alharthi, N.H.; Luqman, M.; Islam, A.; Rezaul Karim, M.; Rahman, M.M.; Khaleque, M.A. Efficient Detection and Adsorption of Cadmium(II) Ions Using Innovative Nano-Composite Materials. Chem. Eng. J. 2018, 343, 118–127. [Google Scholar] [CrossRef]
- Abdelmonem, H.A.; Hassanein, T.F.; Sharafeldin, H.E.; Gomaa, H.; Ahmed, A.S.A.; Abdel-lateef, A.M.; Allam, E.M.; Cheira, M.F.; Eissa, M.E.; Tilp, A.H. Cellulose-Embedded Polyacrylonitrile/Amidoxime for the Removal of Cadmium (II) from Wastewater: Adsorption Performance and Proposed Mechanism. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 684, 133081. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Al Harby, N.; El Batouti, M.; Abd El-Monaem, E.M. Engineering a Sustainable Cadmium Sulfide/Polyethyleneimine-Functionalized Biochar/Chitosan Composite for Effective Chromium Adsorption: Optimization, Co-Interfering Anions, and Mechanisms. RSC Adv. 2024, 14, 22266–22279. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, I.; Soltanolkottabi, F.; Hosseini, F.; Jafari, H. Investigation of Cadmium Adsorption Factors from Water by Synthesis of Chitosan/Polyvinyl Alcohol/Modified FDU-12 Nanocomposite. J. Chin. Chem. Soc. 2024, 71, 197–208. [Google Scholar] [CrossRef]
- Wang, Y.; Nakano, T.; Chen, X.; Xu, Y.L.; He, Y.J.; Wu, Y.X.; Zhang, J.Q.; Tian, W.; Zhou, M.H.; Wang, S.X. Studies on Adsorption Properties of Magnetic Composite Prepared by One-Pot Method for Cd(II), Pb(II), Hg(II), and As(III): Mechanism and Practical Application in Food. J. Hazard. Mater. 2024, 466, 133437. [Google Scholar] [CrossRef]
- Mondal, H.; Karmakar, M.; Dutta, A.; Mahapatra, M.; Deb, M.; Mitra, M.; Roy, J.S.D.; Roy, C.; Chattopadhyay, P.K.; Singha, N.R. Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N-H/C-H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions. ACS Omega 2018, 3, 10692–10708. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazmi, G.A.A.M.; Alayyafi, A.A.A.; El-Desouky, M.G.; El-Bindary, A.A. Chitosan-Nano CuO Composite for Removal of Mercury (II): Box-Behnken Design Optimization and Adsorption Mechanism. Int. J. Biol. Macromol. 2024, 261, 129769. [Google Scholar] [CrossRef]
- Ghumman, A.S.M.; Shamsuddin, R.; Alothman, Z.A.; Waheed, A.; Aljuwayid, A.M.; Sabir, R.; Abbasi, A.; Sami, A. Amine-Decorated Methacrylic Acid-Based Inverse Vulcanized Polysulfide for Effective Mercury Removal from Wastewater. ACS Omega 2024, 9, 4831–4840. [Google Scholar] [CrossRef]
- Jemli, S.; Lütke, S.F.; Chamtouri, F.; Ben Amara, F.; Bejar, S.; Oliveira, M.L.S.; Knani, S.; Silva, L.F.O.; Dotto, G.L. A Novel Cartoon Crosslinked β-Cyclodextrin (C-β-CD) Polymer for Effective Uptake of Hg from Aqueous Solutions: Kinetics, Equilibrium, Thermodynamics, and Statistical Physics Approach. Sep. Purif. Technol. 2024, 330, 125578. [Google Scholar] [CrossRef]
- Ibrahim, B.M.; Fakhre, N.A.; Jalhoom, M.G.; Qader, I.N.; Shareef, H.Y.; Jalal, A.F. Removal of Lead Ions from Aqueous Solutions by Modified Cellulose. Environ. Technol. 2024, 45, 2335–2347. [Google Scholar] [CrossRef]
- Du, J.; Sun, J.; Zhang, D. Preparation of Modified Zeolite/Chitosan Composites and Study on the Adsorption Performance of Pb2+. Polym. Eng. Sci. 2024, 64, 196–206. [Google Scholar] [CrossRef]
Parameters | Cd2+ | Hg2+ | Pb2+ | ||
---|---|---|---|---|---|
Kinetic | Pseudo-first order | qecal (mg/g) | 19.10 | 10.82 | 17.11 |
qeexp (mg/g) | 100 | 98.7 | 98.9 | ||
K1 (min−1) | −0.00028 | −0.00040 | −0.00020 | ||
R2 | 0.891 | 0.867 | 0.883 | ||
Pseudo-second order | qecal (mg/g) | 101.21 | 99.30 | 100.1 | |
qeexp (mg/g) | 100 | 98.7 | 98.9 | ||
K2 (g/mg/min) | 0.00604 | 0.01219 | 0.00495 | ||
R2 | 0.999 | 0.999 | 0.999 | ||
Intraparticle diffusion | Kid (g/mg·min0.5) | 1.923 | 1.12 | 1.73 | |
C | 78.433 | 86.145 | 78.833 | ||
R2 | 0.769 | 0.727 | 0.836 |
Parameters | Cd2+ | Hg2+ | Pb2+ | ||
---|---|---|---|---|---|
Isotherm | Langmuir | KL (L/mg) | 0.0020 | 0.0011 | 0.0011 |
RL | 0.71 | 0.77 | 0.84 | ||
qmax (mg/g) | 840.33 | 497.51 | 497.51 | ||
R2 | 0.999 | 0.999 | 0.999 | ||
Freundlich | Kf (mg/g) (L/mg)1/n | 0.796 | 0.871 | 0.755 | |
1/n | 1.20 | 1.16 | 1.18 | ||
R2 | 0.952 | 0.963 | 0.95 | ||
Temkin | AT (L/g) | 0.07 | 0.069 | 0.071 | |
BT | 195.88 | 194.27 | 194.1 | ||
R2 | 0.71 | 0.69 | 0.72 |
Temperature (K) | Cd2+ | Hg2+ | Pb2+ | |
---|---|---|---|---|
ΔG⁰ (kJ/mol/K) | 298.15 K | −5.19 | −5.03 | −4.65 |
308.15 K | −6.28 | −6.0 | −5.65 | |
318.15 K | −9.06 | −8.46 | −7.15 | |
328.15 K | −11.71 | −10.93 | −10.35 | |
ΔS⁰ (J/mol/K) | 0.161 | 0.10 | 0.09 | |
ΔH⁰ (kJ/mol) | 43.04 | 25.01 | 23.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanweer, M.S.; Iqbal, Z.; Rather, A.M.; Alam, M. Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification. Water 2024, 16, 2576. https://doi.org/10.3390/w16182576
Tanweer MS, Iqbal Z, Rather AM, Alam M. Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification. Water. 2024; 16(18):2576. https://doi.org/10.3390/w16182576
Chicago/Turabian StyleTanweer, Mohd Saquib, Zafar Iqbal, Adil Majeed Rather, and Masood Alam. 2024. "Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification" Water 16, no. 18: 2576. https://doi.org/10.3390/w16182576
APA StyleTanweer, M. S., Iqbal, Z., Rather, A. M., & Alam, M. (2024). Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification. Water, 16(18), 2576. https://doi.org/10.3390/w16182576