Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistical Method
3. Results
3.1. Univariate Analysis of Phytoplankton and Water Quality
3.2. Heterogeneous Effects of Water Quality on Phytoplankton under Different Quantiles
3.3. Heterogeneous Effects of Water Quality on Phytoplankton under Different Seasons
4. Discussion
4.1. Basic Characteristics of Phytoplankton and Water Quality in Lake Taihu
4.2. Heterogeneous Effects of Water Quality on Phytoplankton in Lake Taihu
4.3. Seasonal Variations in the Impact of Water Quality on Phytoplankton in Lake Taihu
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | chemical oxygen demand |
TP | total phosphorus |
TN | total nitrogen |
WT | water temperature |
DO | dissolved oxygen |
pH | pondus hydrogenii |
References
- Lobus, N.V.; Kulikovskiy, M.S. The co-evolution aspects of the biogeochemical role of phytoplankton in aquatic ecosystems: A review. Biology 2023, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, H.; Zhang, Y.; Li, Y.; Wei, J.; Pei, H. Variation of phytoplankton communities and their driving factors along a disturbed temperate river-to-sea ecosystem. Ecol. Indic. 2020, 118, 106776. [Google Scholar] [CrossRef]
- Meng, J.; Zhao, R.; Qiu, X.; Liu, S. Nested Patterns of Phytoplankton and Zooplankton and Seasonal Characteristics of Their Mutualistic Networks: A Case Study of the Upstream Section of the Diannong River in Yinchuan City, China. Water 2023, 15, 4265. [Google Scholar] [CrossRef]
- Filstrup, C.T.; Downing, J.A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 2017, 7, 385–400. [Google Scholar] [CrossRef]
- Duan, H.; Loiselle, S.A.; Zhu, L.; Feng, L.; Zhang, Y.; Ma, R. Distribution and incidence of algal blooms in Lake Taihu. Aquat. Sci. 2015, 77, 9–16. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Rossignol, K.L.; Joyner, A.R.; Zhu, G.; Qin, B. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: Implications for controlling eutrophication and harmful algal blooms. J. Freshw. Ecol. 2015, 30, 5–24. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of lake Taihu, China. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China; Springer: Dordrecht, The Netherlands, 2007; pp. 3–14. [Google Scholar]
- Magumba, D.; Maruyama, A.; Takagaki, M.; Kato, A.; Kikuchi, M. Relationships between chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control Biol. 2014, 51, 179–185. [Google Scholar] [CrossRef]
- Zhang, J.; Zhi, M.; Zhang, Y. Combined Generalized Additive model and Random Forest to evaluate the influence of environmental factors on phytoplankton biomass in a large eutrophic lake. Ecol. Indic. 2021, 130, 108082. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Quinlan, R.; Filazzola, A.; Mahdiyan, O.; Shuvo, A.; Blagrave, K.; Ewins, C.; Moslenko, L.; Gray, D.K.; O’Reilly, C.M.; Sharma, S. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 2021, 66, 392–404. [Google Scholar] [CrossRef]
- Li, H.M.; Tang, H.J.; Shi, X.Y.; Zhang, C.S.; Wang, X.L. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae 2014, 39, 92–101. [Google Scholar] [CrossRef]
- Zhu, W.; Wan, L.; Zhao, L. Effect of nutrient level on phytoplankton community structure in different water bodies. J. Environ. Sci. 2010, 22, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, J.; Liao, J.; Sun, J.; Huang, Y. The threshold responses of phytoplankton community to nutrient gradient in a shallow eutrophic Chinese lake. Ecol. Indic. 2016, 61, 258–267. [Google Scholar] [CrossRef]
- Filstrup, C.T.; Heathcote, A.J.; Kendall, D.L.; Downing, J.A. Phytoplankton taxonomic compositional shifts across nutrient and light gradients in temperate lakes. Inland Waters 2016, 6, 234–249. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, J.; Ma, X.; Zhong, F.; Cui, N.; Cheng, S. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom. Sci. Total Environ. 2017, 579, 871–880. [Google Scholar] [CrossRef]
- Smith, J.E.; Wolny, J.L.; Hill, R.L.; Stocker, M.D.; Pachepsky, Y. Examining the relationship between phytoplankton community structure and water quality measurements in agricultural waters: A machine learning application. Environments 2022, 9, 142. [Google Scholar] [CrossRef]
- Fornaroli, R.; Cabrini, R.; Zaupa, S.; Bettinetti, R.; Ciampittiello, M.; Boggero, A. Quantile regression analysis as a predictive tool for lake macroinvertebrate biodiversity. Ecol. Indic. 2016, 61, 728–738. [Google Scholar] [CrossRef]
- Opoku, E.E.O.; Aluko, O.A. Heterogeneous effects of industrialization on the environment: Evidence from panel quantile regression. Struct. Chang. Econ. Dyn. 2021, 59, 174–184. [Google Scholar] [CrossRef]
- Qin, B. Lake Taihu, China: Dynamics and Environmental Change; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 87. [Google Scholar]
- Li, Y.; Zhou, S.; Jia, Z.; Liu, K.; Wang, G. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China. Environ. Pollut. 2021, 284, 117465. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005; Volume 38. [Google Scholar]
- Zeileis, A.; Grothendieck, G. zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 2005, 14, 1–27. [Google Scholar] [CrossRef]
- Grosjean, P.; Ibanez, F.; Etienne, M. Pastecs: Package for analysis of space-time ecological series. R Package Version 2018, 1, 21. [Google Scholar]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘Corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- Koenker, R.; Portnoy, S.; Ng, P.T.; Zeileis, A.; Grosjean, P.; Ripley, B.D. Package ‘Quantreg’. 2018. Available online: https://cloud.r-project.org/web/packages/quantreg/index.html (accessed on 8 July 2024).
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Regression, Q. Handbook of Quantile Regression; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Papacharalampous, G.; Langousis, A. Probabilistic water demand forecasting using quantile regression algorithms. Water Resour. Res. 2022, 58, e2021WR030216. [Google Scholar] [CrossRef]
- Sharafi, S.; Mohammadi Ghaleni, M. Revealing accuracy in climate dynamics: Enhancing evapotranspiration estimation using advanced quantile regression and machine learning models. Appl. Water Sci. 2024, 14, 162. [Google Scholar] [CrossRef]
- Ignatiades, L. Size scaling patterns of species richness and carbon biomass for marine phytoplankton functional groups. Mar. Ecol. 2017, 38, e12454. [Google Scholar] [CrossRef]
- Wei, Q.; Xu, Y.; Ruan, A. Spatial and temporal patterns of phytoplankton community succession and characteristics of realized niches in Lake Taihu, China. Environ. Res. 2024, 243, 117896. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Kong, M.; Zhou, J.; Zhao, H.; Wang, Y.; Zhang, M.; Wang, Z. Towards the comprehensive water quality control in Lake Taihu: Correlating chlorphyll a and water quality parameters with generalized additive model. Sci. Total Environ. 2020, 705, 135993. [Google Scholar] [CrossRef]
- Nan, J.; Li, J.; Yang, C.; Yu, H. Phytoplankton functional groups succession and their driving factors in a shallow subtropical lake. J. Freshw. Ecol. 2020, 35, 409–427. [Google Scholar] [CrossRef]
- Bouraï, L.; Logez, M.; Laplace-Treyture, C.; Argillier, C. How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes? Water 2020, 12, 779. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Su, H.; Wang, J.; Xie, P.; Chen, F. Eutrophication and predation mediate zooplankton diversity and network structure. Limnol. Oceanogr. 2022, 67, S133–S145. [Google Scholar] [CrossRef]
- Mao, Z.; Gu, X.; Cao, Y.; Zhang, M.; Zeng, Q.; Chen, H.; Shen, R.; Jeppesen, E. The role of top-down and bottom-up control for phytoplankton in a subtropical shallow eutrophic lake: Evidence based on long-term monitoring and modeling. Ecosystems 2020, 23, 1449–1463. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.; Cheng, S. Phytoplankton community structure and water quality assessment in an ecological restoration area of Baiyangdian Lake, China. Int. J. Environ. Sci. Technol. 2021, 18, 1529–1536. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Liu, X.; Zhu, G.; Qin, B.; Shi, Z.; Feng, L. Temporal and spatial variations of chemical oxygen demand in Lake Taihu, China, from 2005 to 2009. Hydrobiologia 2011, 665, 129–141. [Google Scholar] [CrossRef]
- Frenken, T.; Brandenburg, K.M.; Van de Waal, D.B. Long-term nutrient load reductions and increasing lake TN: TP stoichiometry decrease phytoplankton biomass and diversity in a large shallow lake. Limnol. Oceanogr. 2023, 68, 2389–2401. [Google Scholar] [CrossRef]
- Long, S.; Zhang, T.; Fan, J.; Li, C.; Xiong, K. Responses of phytoplankton functional groups to environmental factors in the Pearl River, South China. Environ. Sci. Pollut. Res. 2020, 27, 42242–42253. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Sand-Jensen, K.; Borum, J.; Geertz-Hansen, O. Phytoplankton, nutrients, and transparency in Danish coastal waters. Estuaries 2002, 25, 930–937. [Google Scholar] [CrossRef]
- Sharma, N.K.; Mohan, D.; Rai, A.K. Predicting phytoplankton growth and dynamics in relation to physico-chemical characteristics of water body. Water Air Soil Pollut. 2009, 202, 325–333. [Google Scholar] [CrossRef]
- Lusiana, E.D.; Arsad, S.; Buwono, N.R.; Putri, I.R. Performance of Bayesian quantile regression and its application to eutrophication modelling in Sutami Reservoir, East Java, Indonesia. Ecol. Quest. 2019, 30, 69–77. [Google Scholar] [CrossRef]
- Lopez-Archilla, A.I.; Moreira, D.; López-García, P.; Guerrero, C. Phytoplankton diversity and cyanobacterial dominance in a hypereutrophic shallow lake with biologically produced alkaline pH. Extremophiles 2004, 8, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Bharagava, R.N.; Saxena, G.; Mulla, S.I. Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management; Springer: Singapore, 2020; pp. 1–18. [Google Scholar]
- Huang, Y.; Li, Y.; Ji, D.; Nwankwegu, A.S.; Lai, Q.; Yang, Z.; Wang, K.; Wei, J.; Norgbey, E. Study on nutrient limitation of phytoplankton growth in Xiangxi Bay of the Three Gorges Reservoir, China. Sci. Total Environ. 2020, 723, 138062. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Nakano, S.i. The crucial influence of trophic status on the relative requirement of nitrogen to phosphorus for phytoplankton growth. Water Res. 2022, 222, 118868. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Niu, X. Effect of water temperature on the dynamic behavior of phytoplankton–zooplankton model. Appl. Math. Comput. 2020, 378, 125211. [Google Scholar] [CrossRef]
- Zhu, H.; Xiong, X.; Liu, B.; Liu, G. Lakes-scale pattern of eukaryotic phytoplankton diversity and assembly process shaped by electrical conductivity in central Qinghai-Tibet Plateau. FEMS Microbiol. Ecol. 2024, 100, fiad163. [Google Scholar] [CrossRef]
- Gerasimova, T.; Sadchikov, A. The Phase of High Transparency and the Chemistry of Pond Water. Russ. J. Gen. Chem. 2022, 92, 3170–3174. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. Phytoplankton, dissolved oxygen and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. J. Environ. Manag. 2020, 261, 110233. [Google Scholar] [CrossRef]
- Deng, J.; Salmaso, N.; Jeppesen, E.; Qin, B.; Zhang, Y. The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China. Aquat. Sci. 2019, 81, 48. [Google Scholar] [CrossRef]
- Deng, J.; Qin, B.; Paerl, H.W.; Zhang, Y.; Wu, P.; Ma, J.; Chen, Y. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PLoS ONE 2014, 9, e113960. [Google Scholar] [CrossRef]
- Yue, D.; Peng, Y.; Qian, X.; Xiao, L. Spatial and seasonal patterns of size-fractionated phytoplankton growth in Lake Taihu. J. Plankton Res. 2014, 36, 709–721. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Wang, J.; Wang, J.X. Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China. J. Environ. Sci. 2019, 76, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ji, X.; Hu, W. Characteristics of phytoplankton production in wet and dry seasons in hyper-eutrophic Lake Taihu, China. Sustainability 2022, 14, 11216. [Google Scholar] [CrossRef]
Variable | Min | Max | Mean | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Phytoplankton (ind./L) | 3.69 × 104 | 9.93 × 108 | 9.33 × 107 | 1.54 × 108 | 2.65 | 7.90 |
Transparency (m) | 0.03 | 2.35 | 0.39 | 0.26 | 2.49 | 8.70 |
DO (mg/L) | 2.47 | 14.27 | 8.70 | 1.98 | −0.16 | −0.14 |
pH | 7.34 | 9.60 | 8.23 | 0.25 | 1.02 | 3.50 |
COD (mg/L) | 2.38 | 24.19 | 4.54 | 1.79 | 4.02 | 29.46 |
TP (mg/L) | 0.02 | 0.96 | 0.11 | 0.09 | 3.30 | 18.94 |
TN (mg/L) | 0.33 | 11.31 | 2.09 | 1.31 | 1.85 | 5.86 |
WT (°C) | 0.40 | 34.80 | 18.24 | 9.09 | −0.15 | −1.23 |
Conductivity (μs/cm) | 120.00 | 860.00 | 414.00 | 107.13 | 0.42 | −0.13 |
Model | Outcome | (Intercept) | Transparency | DO | pH | COD | TP | TN | WT | Conductivity |
---|---|---|---|---|---|---|---|---|---|---|
Linear | estimation | 5.458 | −0.167 | 0.276 | 5.078 | 2.268 | 0.633 | −0.596 | 0.482 | −0.449 |
Std. Error | 3.327 | 0.090 | 0.220 | 1.524 | 0.239 | 0.136 | 0.097 | 0.089 | 0.192 | |
t-value | 1.640 | −1.857 | 1.252 | 3.333 | 9.500 | 4.643 | −6.166 | 5.419 | −2.335 | |
p-value | 0.101 | 0.064 | 0.211 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | |
estimation | −2.086 | −0.198 | −0.013 | 10.170 | 1.260 | 0.817 | −0.506 | 0.457 | −0.881 | |
Std. Error | 3.695 | 0.155 | 0.149 | 1.628 | 0.391 | 0.223 | 0.150 | 0.126 | 0.157 | |
t-value | −0.564 | −1.272 | −0.090 | 6.246 | 3.227 | 3.665 | −3.380 | 3.615 | −5.618 | |
p-value | 0.573 | 0.204 | 0.928 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | |
estimation | 3.451 | −0.168 | 0.135 | 6.751 | 2.036 | 0.696 | −0.682 | 0.300 | −0.686 | |
Std. Error | 4.265 | 0.124 | 0.349 | 2.103 | 0.342 | 0.177 | 0.134 | 0.138 | 0.121 | |
t-value | 0.809 | −1.356 | 0.385 | 3.211 | 5.959 | 3.938 | −5.076 | 2.179 | −5.685 | |
p-value | 0.419 | 0.175 | 0.700 | 0.001 | 0.000 | 0.000 | 0.000 | 0.030 | 0.000 | |
estimation | 5.079 | −0.067 | 0.302 | 5.328 | 2.144 | 0.913 | −0.831 | 0.380 | −0.370 | |
Std. Error | 3.977 | 0.118 | 0.293 | 1.963 | 0.339 | 0.168 | 0.121 | 0.102 | 0.156 | |
t-value | 1.277 | −0.570 | 1.032 | 2.714 | 6.325 | 5.428 | −6.868 | 3.735 | −2.366 | |
p-value | 0.202 | 0.569 | 0.302 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | |
estimation | 8.758 | −0.131 | 0.348 | 3.037 | 2.545 | 0.867 | −0.903 | 0.362 | −0.239 | |
Std. Error | 4.332 | 0.110 | 0.273 | 1.951 | 0.318 | 0.172 | 0.131 | 0.104 | 0.253 | |
t-value | 2.022 | −1.185 | 1.273 | 1.557 | 8.013 | 5.043 | −6.917 | 3.472 | −0.946 | |
p-value | 0.043 | 0.236 | 0.203 | 0.120 | 0.000 | 0.000 | 0.000 | 0.001 | 0.344 | |
estimation | 11.455 | −0.104 | 0.400 | 1.708 | 2.629 | 0.758 | −0.760 | 0.512 | −0.319 | |
Std. Error | 4.299 | 0.109 | 0.273 | 1.942 | 0.303 | 0.178 | 0.121 | 0.107 | 0.259 | |
t-value | 2.665 | −0.952 | 1.467 | 0.880 | 8.685 | 4.263 | −6.262 | 4.797 | −1.230 | |
p-value | 0.008 | 0.341 | 0.143 | 0.379 | 0.000 | 0.000 | 0.000 | 0.000 | 0.219 | |
estimation | 4.321 | −0.081 | 0.596 | 4.585 | 2.602 | 0.704 | −0.715 | 0.607 | −0.200 | |
Std. Error | 4.579 | 0.113 | 0.289 | 2.103 | 0.316 | 0.177 | 0.127 | 0.109 | 0.252 | |
t-value | 0.944 | −0.715 | 2.061 | 2.180 | 8.227 | 3.972 | −5.613 | 5.543 | −0.794 | |
p-value | 0.346 | 0.475 | 0.040 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.427 | |
estimation | 7.244 | −0.134 | 0.397 | 3.131 | 3.030 | 0.493 | −0.652 | 0.603 | −0.241 | |
Std. Error | 4.032 | 0.103 | 0.263 | 1.801 | 0.268 | 0.141 | 0.110 | 0.116 | 0.224 | |
t-value | 1.797 | −1.308 | 1.507 | 1.738 | 11.306 | 3.504 | −5.937 | 5.215 | −1.080 | |
p-value | 0.073 | 0.191 | 0.132 | 0.082 | 0.000 | 0.000 | 0.000 | 0.000 | 0.280 | |
estimation | 5.043 | −0.247 | 0.276 | 4.724 | 3.084 | 0.277 | −0.411 | 0.516 | −0.428 | |
Std. Error | 3.326 | 0.106 | 0.208 | 1.453 | 0.236 | 0.144 | 0.094 | 0.106 | 0.229 | |
t-value | 1.516 | −2.323 | 1.327 | 3.250 | 13.088 | 1.927 | −4.355 | 4.859 | −1.870 | |
p-value | 0.130 | 0.020 | 0.185 | 0.001 | 0.000 | 0.054 | 0.000 | 0.000 | 0.062 | |
estimation | 4.939 | −0.290 | 0.651 | 4.222 | 3.189 | 0.074 | −0.334 | 0.463 | −0.385 | |
Std. Error | 2.393 | 0.076 | 0.095 | 1.159 | 0.213 | 0.117 | 0.061 | 0.100 | 0.143 | |
t-value | 2.064 | −3.804 | 6.866 | 3.641 | 14.946 | 0.636 | −5.477 | 4.607 | −2.683 | |
p-value | 0.039 | 0.000 | 0.000 | 0.000 | 0.000 | 0.525 | 0.000 | 0.000 | 0.007 |
Variable | Spring | Summer | Autumn | Winter | F-Value | p-Value |
---|---|---|---|---|---|---|
Phytoplankton (ind./L) | 16.77 ± 1.99 | 18.01 ± 1.48 | 17.24 ± 1.85 | 16.08 ± 1.39 | 104.60 | 0.00 |
Transparency (m) | −1.14 ± 0.48 | −1.21 ± 0.57 | −1.07 ± 0.50 | −1.08 ± 0.66 | 0.11 | 0.74 |
DO (mg/L) | 2.10 ± 0.18 | 1.93 ± 0.27 | 2.13 ± 0.17 | 2.38 ± 0.13 | 223.10 | 0.00 |
pH | 2.11 ± 0.03 | 2.12 ± 0.04 | 2.11 ± 0.03 | 2.09 ± 0.02 | 37.60 | 0.00 |
COD (mg/L) | 1.44 ± 0.34 | 1.59 ± 0.33 | 1.45 ± 0.29 | 1.37 ± 0.18 | 22.68 | 0.00 |
TP (mg/L) | −2.54 ± 0.60 | −2.16 ± 0.75 | −2.41 ± 0.64 | −2.43 ± 0.50 | 6.47 | 0.01 |
TN (mg/L) | 0.72 ± 0.54 | 0.40 ± 0.57 | 0.30 ± 0.61 | 0.83 ± 0.53 | 165.20 | 0.00 |
WT (°C) | 3.12 ± 0.26 | 3.38 ± 0.08 | 2.70 ± 0.10 | 1.69 ± 0.35 | 469.20 | 0.00 |
Conductivity (μs/cm) | 6.17 ± 0.25 | 6.03 ± 0.27 | 5.93 ± 0.22 | 5.85 ± 0.20 | 2.12 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, S.; Ma, S.; Yang, Z.; Chen, Y.; Gao, W.; Liu, Q.; Zhang, Y. Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China. Water 2024, 16, 2570. https://doi.org/10.3390/w16182570
Wang L, Liu S, Ma S, Yang Z, Chen Y, Gao W, Liu Q, Zhang Y. Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China. Water. 2024; 16(18):2570. https://doi.org/10.3390/w16182570
Chicago/Turabian StyleWang, Lu, Shuo Liu, Shuqin Ma, Zhongwen Yang, Yan Chen, Wei Gao, Qingqing Liu, and Yuan Zhang. 2024. "Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China" Water 16, no. 18: 2570. https://doi.org/10.3390/w16182570
APA StyleWang, L., Liu, S., Ma, S., Yang, Z., Chen, Y., Gao, W., Liu, Q., & Zhang, Y. (2024). Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China. Water, 16(18), 2570. https://doi.org/10.3390/w16182570