A Review on the Optimization of Irrigation Schedules for Farmlands Based on a Simulation–Optimization Model
Abstract
:1. Introduction
2. Optimization of Irrigation Schedules Based on Crop Models
2.1. Irrigation Scenarios
2.2. Optimization Objectives
2.3. Crop Models
3. Optimization of Irrigation Schedules Based on Simulation–Optimization Models
3.1. Optimization of Irrigation Schedules Based on Water Balance–Water Production Function–Optimization Algorithm
3.2. Optimization of Irrigation Schedules Based on Crop Model-Optimization Algorithm
4. Improvement of Irrigation Schedule Optimization Methods
4.1. Optimization Solution Method
4.2. Spatiotemporal Scale of Irrigation Schedule Optimization
5. Conclusions and Future Perspectives
- (1)
- Further Development of Crop Models.
- (2)
- Uncertain Analysis in Irrigation Schedule Optimization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Jiao, X.Y.; Jiang, H.Z.; Song, J.; Chen, L.N. Optimization of irrigation scheduling for maize in an arid oasis based on simulation–optimization model. Agronomy 2020, 10, 935. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Abbaspour, K.; Zehnder, A. Virtual water and the need for greater attention to rain-fed agriculture. Water 2006, 4, 14–15. [Google Scholar]
- Zheng, H.X.; Hou, H.F.; Wu, J.B.; Tian, D.L.; Miao, P. Irrigation schedule optimization for wheat and sunflower intercropping under water supply restrictions in Inner Mongolia, China. Atmosphere 2024, 15, 566. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.M.; Shukla, K.M.; Li, S.E.; Xu, Z.Q.; Bo, L.Y.; Huang, X.; Bai, Y.T.; Qi, X.C. Modelling water/heat transfer and crop growth under film mulching condition in a seed–maize field. Agric. For. Meteorol. 2023, 340, 109616. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Cui, J.; Wang, X.; Keabetswe, L. Yield, fruit quality and water use efficiency of tomato for processing underregulated deficit irrigation: A meta-analysis. Agricultural. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.J.; Girón, I.F.; Rodríguez, P.; Cruz, Z.N.; Memmi, H. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- Huo, J.J.; Shang, S.H. Optimization method for crop irrigation scheduling based on simulation technique and genetic algorithms. Trans. Chin. Soc. Agric. Eng. 2007, 23, 23–28. [Google Scholar]
- Singh, A. An overview of the optimization modelling applications. J. Hydrol. 2012, 466, 167–182. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 1984, 34, 975–986. [Google Scholar] [CrossRef]
- Chiang, I.; Hsu, J.Y. Incremental learning for robot control. In Proceedings of the IEEE International Conference On Systems, Man and Cybernetics, Vancouver, BC, Canada, 22–25 October 1995; pp. 4331–4336. [Google Scholar]
- Wang, Y.l.; Mao, X.M.; Chen, S.; Bo, L.Y. Experiments and simulation of soil moisture, temperature and salinity dynamics and oil sunflower growth in saline border irrigated farmland. Trans. Chin. Soc. Agric. Eng. 2021, 37, 76–86. [Google Scholar] [CrossRef]
- Solgi, S.; Ahmadi, S.H.; Sepaskhah, A.R.; Edalat, M. Wheat yield modeling under water-saving irrigation and climatic scenarios in transition from surface to sprinkler irrigation systems. J. Hydrol. 2022, 612, 128053. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Yang, Q.H.; Mao, X.M.; Yang, J.; Wang, K. Multi-objective optimization and its application on irrigation scheduling based on AquaCrop and NSGA-II. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1284–1295. [Google Scholar] [CrossRef]
- Wabela, K.; Hammani, A.; Abdelilah, T.; Tekleab, S.; El-Ayachi, M. Optimization of irrigation scheduling for improved irrigation water management in Bilate Watershed, Rift Valley, Ethiopia. Water 2022, 14, 3960. [Google Scholar] [CrossRef]
- Linker, R.; Kisekka, I. Model-based simulation-optimization of irrigation scheduling—A field evaluation with processing tomatoes. Smart Agric. Technol. 2023, 4, 100234. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Hu, M.; Chen, Z.J.; Tan, J.W.; Liu, L.; Xiong, Y.W.; Huang, Q.Z.; Huang, G.H. Modeling water-salt-nitrogen dynamics and crop growth of saline maize farmland in Northwest China: Searching for appropriate irrigation and N fertilization strategies. Agric. Water Manag. 2023, 282, 108271. [Google Scholar] [CrossRef]
- Song, X.S.; Cao, H.X.; He, Z.J.; Ding, B.X.; Yao, N. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 111–122. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, C.X.; Ma, J.J.; Wang, H.X.; Wang, J.X. Dynamic simulation of Korla Fragrant pear growth and optimization of drip irrigation system based on AquaCrop model. J. Soil Water Conserv. 2023, 37, 328–336+344. [Google Scholar] [CrossRef]
- Zhou, S.W.; Hu, X.T.; Wang, W.E.; Allan, A.; Zhang, Y.J. Optimization of irrigation schedule based on RZWQM model for spring wheat in Shiyang River Basin. Trans. Chin. Soc. Agric. Eng. 2016, 32, 121–129. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Ma, L.; Gui, D.W.; Xu, J.Z. Development of an irrigation scheduling software based on model predicted crop water stress. Comput. Electron. Agric. 2017, 143, 208–221. [Google Scholar] [CrossRef]
- Zhang, H.H.; Ma, L.W.; Douglas, M.; Kyle, R.; Han, M.; Trout, T.J. Modeling maize production under growth stage-based deficit irrigation management with RZWQM2. Agric. Water Manag. 2021, 248, 106767. [Google Scholar] [CrossRef]
- Painagan, M.S.; Ella, V.B. Modeling the impact of deficit irrigation on corn production. Sustainability 2022, 14, 10401. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.Y.; Ma, J.J.; Huo, Z.L.; Zhang, C.B. Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Res. 2016, 196, 85–97. [Google Scholar] [CrossRef]
- Yu, Q.H.; Kang, S.Z.; Hu, S.J.; Zhang, L.; Zhang, X.T. Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation. Agric. Water Manag. 2021, 256, 107100. [Google Scholar] [CrossRef]
- Chen, S.; Song, C.N.; Mao, X.M.; Shang, S.H. Modeling response of spring wheat yield to soil water and salt contents and its application in scheduling brackish water irrigation. Comput. Electron. Agric. 2022, 200, 107216. [Google Scholar] [CrossRef]
- Lin, D.; Wang, F.; Xu, Z.Q.; Mao, X.M. Appropriate winter and spring irrigations for salt leaching in typical cotton field of Southern Xinjiang based on SHAW model. Trans. Chin. Soc. Agric. Mach. 2023, 54, 326–338+350. [Google Scholar] [CrossRef]
- Rakha, A.M.; Eisa, R.A.; Abourayya, M.S.; Kaseem Nabila, E.; Mahmoud, T.S.M. Effects of different sources of nitrogen fertilizer on the yield and fruit quality of persian lime under nubaria conditions. Appl. Fruit Sci. 2024, 1–7. [Google Scholar] [CrossRef]
- Liava, V.; Karkanis, A.; Danalatos, N.; Tsiropoulos, N. Effects of two varieties and fertilization regimes on growth, fruit, and silymarin yield of milk thistle crop. Agronomy 2022, 12, 105. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L. Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies. Agric. Water Manag. 2022, 274, 107949. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Li, Z.H.; Dai, D.Q.; Li, Y.P. Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model. Agric. Water Manag. 2022, 264, 107498. [Google Scholar] [CrossRef]
- Wang, L.; Lin, M.W.; Han, Z.X.; Sun, W.H. Simulating the effects of drought stress timing and the amount irrigation on cotton yield using the CSM-CROPGRO-Cotton Model. Agronomy 2024, 14, 14. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.M.; Wang, K.; Yang, W.C. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Eeswaran, R.; Yang, Z.; Ma, Z.; Sun, F. Irrigation scheduling for potatoes (Solanum tuberosum L.) under drip irrigation in an arid region using AquaCrop model. Front. Plant Sci. 2023, 14, 1242074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xie, Z.; Wang, Q.J.; Tang, M.; Feng, S.Y.; Cai, H.J. AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity. Agric. Water Manag. 2022, 266, 107580. [Google Scholar] [CrossRef]
- Wang, C.; Gu, F.; Chen, J.; Yang, H.; Jiang, J.; Du, T.; Zhang, J. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- Guizani, M.; Dabbou, S.; Maatallah, S.; Montevecchi, G.; Hajlaoui, H.; Rezig, M.; Helal, A.N.; Kilani-Jaziri, S. Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia. Agric. Water Manag. 2019, 217, 81–97. [Google Scholar] [CrossRef]
- Shao, D.G.; Le, Z.H.; Xu, B.L.; Hu, N.J.; Tian, Y.N. Optimization of irrigation scheduling for organic rice based on AquaCrop. Trans. Chin. Soc. Agric. Eng. 2018, 34, 114–122. [Google Scholar] [CrossRef]
- Che, Z.; Wang, J.; Li, J.S. Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions. Agric. Water Manag. 2022, 274, 107943. [Google Scholar] [CrossRef]
- Zeng, W.Z.; Chi, X.U.; Wu, J.W.; Huang, J.S. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J. Arid. Land 2014, 6, 44–58. [Google Scholar] [CrossRef]
- Wei, K.; Deng, M.J.; Wang, Q.J.; Guo, Y.; Lin, S.D.; Mu, W.Y. Nitrogen application rates from dilution curve model for cotton under film mulched drip irrigation with brackish water. Trans. Chin. Soc. Agric. Eng. 2024, 40, 124–132. [Google Scholar] [CrossRef]
- Zhou, H.P.; Chen, J.L.; Wang, F.; Li, X.J.; Génarde, M.; Kang, S.Z. An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China. Agric. Water Manag. 2020, 241, 106331. [Google Scholar] [CrossRef]
- Allard, W.; Hendrik, B.; Davide, F.; Sander, J.; Rob, K.; Daniel, K.; Iwan, S.; Raymond, W.; Kees, D. 25 years of the WOFOST cropping systems model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Doro, L.; Wang, X.; Ammann, C.; Migliorati, M.; Norfleet, M.L. Improving the simulation of soil temperature within the EPIC model. Environ. Model. Softw. 2021, 144, 105140. [Google Scholar] [CrossRef]
- Guo, L.L.; Wang, Z.M.; Simůnek, J.; He, Y.J.; Muhamma, R. Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D. Agric. Water Manag. 2022, 274, 107943. [Google Scholar] [CrossRef]
- Shah, S.H.; Wang, J.; Hao, X.; Hao, X.Y.; Thomas, B.W. Modelling soil salinity effects on salt water uptake and crop growth using a modified denitrification-decomposition model: A phytoremediation approach. J. Environ. Manag. 2022, 301, 113820. [Google Scholar] [CrossRef]
- Linker, R.; Kisekka, I. Concurrent data assimilation and model-based optimization of irrigation scheduling. Agric. Water Manag. 2022, 274, 107924. [Google Scholar] [CrossRef]
- Lescourret, F.; Génard, M. A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiol. 2005, 25, 1303–1315. [Google Scholar] [CrossRef]
- Lescourret, F.; Moitrier, N.; Valsesia, P.; Génard, M. QualiTree, a virtual fruit tree to study the management of fruit quality. I. Model development. Trees 2011, 25, 519–530. [Google Scholar] [CrossRef]
- Génard, M.; Lescourret, F.; Gomez, L.; Habib, R. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: A modeling approach applied to peach fruit (Prunus persica). Tree Physiol. 2003, 23, 373–385. [Google Scholar] [CrossRef]
- Chen, J.L.; Vercambre, G.; Kang, S.Z.; Bertin, N.; Gautier, H.; Génard, M. Fruit water content as an indication of sugar metabolism improves simulation of carbohydrate accumulation in tomato fruit. J. Exp. Bot. 2020, 76, 5010–5026. [Google Scholar] [CrossRef]
- Dai, Z.W.; Génard, M.; Li, S.; Vivin, P. Analyzing the functional association among seed traits, berry growth and chemical composition in Cabernet-Sauvignon berry (Vitis vinifera L.) using a mathematical growth function. Oeno One 2009, 43, 35–44. [Google Scholar] [CrossRef]
- Jorquera-Fontena, E.; Génard, M.; Franck, N. Analysis of blueberry (Vaccinium corymbosum L.) fruit water dynamics during growth using an ecophysiological model. J. Hortic. Sci. Biotechnol. 2017, 92, 646–659. [Google Scholar] [CrossRef]
- Liu, H.F.; Génard, M.; Guichard, S.; Bertin, N. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. J. Exp. Bot. 2007, 58, 3567–3580. [Google Scholar] [CrossRef]
- Prudent, M.; Lecomte, A.; Bouchet, J. Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J. Exp. Bot. 2011, 62, 907–919. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Génard, M.; Poni, S.; Gambetta, G.A.; Vivin, P.; Vercambre, G.; Trought, M.C.T.; Ollat, N.; Delrot, S.; Dai, Z.W. Modelling grape growth in relation to whole plant carbon and water fluxes. J. Exp. Bot. 2019, 70, 2505–2521. [Google Scholar] [CrossRef]
- Foster, T.; Brozovic, N.; Hsiao, T.C. AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, W.; Zhang, F.W. Simulation of AquaCrop model and management practice optimization for dryland maize production under whole plastic-film mulching on double ridges. Chin. J. Appl. Ecol. 2017, 28, 918–926. [Google Scholar]
- Deb, P.; Shrestha, S.; Babel, M. Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theor. Appl. Climatol. 2014, 121, 649–667. [Google Scholar] [CrossRef]
- Kumar, P.; Sarangi, A.; Sahoo, R.N. Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agric. Water Manag. 2015, 148, 72–83. [Google Scholar] [CrossRef]
- Verma, A.K.; Gupta, S.K.; Isaac, R.K. Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP. Agric. Water Manag. 2012, 115, 186–193. [Google Scholar] [CrossRef]
- Feng, S.Y.; Jiang, J.; Huo, Z.L.; Zhang, C.B. Optimization of irrigation scheduling under deficit irrigation with saline water for spring wheat based on SWAP model. Trans. CSAE 2014, 30, 66–75. [Google Scholar] [CrossRef]
- Zhou, J.; Li, W.F.; Chang, X.X. Calibration and validation of APSIM for maize grown in different seasons in southwest tropic of China. Chil. J. Agric. Res. 2022, 82, 586–594. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agric. Water Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Vogeler, I.; Cichota, R.; Werner, A. Simulating water and nitrogen runoff with APSIM. Soil Tillage Res. 2023, 227, 105593. [Google Scholar] [CrossRef]
- Tirfessa, A.; Getachew, F.; Hammer, G. Modeling adaptation of sorghum in Ethiopia with APSIM—Opportunities with GxExM. Agron. Sustain. Dev. 2023, 43, 15. [Google Scholar] [CrossRef]
- Liu, W.R.; Chen, G.Q.; Liu, E.K. The variations in winter wheat potential yields in the middle and lower reaches of the Yangtze River under the RCP scenarios. Acta Ecol. Sin. 2018, 38, 3219–3229. [Google Scholar]
- Shen, H.; Xu, F.; Zhao, R. Optimization of sowing date, irrigation, and nitrogen management of summer maize using the DSSAT–CERES–Maize model in the Guanzhong Plain, China. Trans. ASABE 2020, 63, 789–797. [Google Scholar] [CrossRef]
- Dettori, M.; Cesaraccio, C.; Duce, P. Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. Field Crops Res. 2017, 206, 43–53. [Google Scholar] [CrossRef]
- Ma, L.; Malone, R.W.; Heilman, P.; Karlen, D.L.; Kanwar, R.S.; Cambardella, C.A.; Saseendran, S.A.; Ahuja, L.R. RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa. Geoderma 2007, 140, 247–259. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Sun, B.; He, J.; Feng, H. Suitability analysis of nitrogen fertilizer management on dryland of Loess Plateau based on root zone water quality model. Trans. CSAE 2015, 31, 111–121. [Google Scholar] [CrossRef]
- Wauchope, R.D.; Rojas, K.W.; Ma, L.W. Documenting the pesticide processes module of the ARS RZWQM agroecosystem model. Pest Manag. Sci. 2010, 60, 222–239. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.Y.; Huo, Z.L.; Zhao, Z.C.; Jia, B. Application of the SWAP model to simulate water–salt transport under deficit irrigation with saline water. Math. Comput. Model. 2011, 54, 902–911. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.L.; Li, B.G. Parameter optimization and sensitivity analysis of soil-crop system model using PEST. Trans. Chin. Soc. Agric. Eng. 2016, 32, 78–85. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Shukla, M. A modified SWAP model for soil water and heat dynamics and seed-maize growth under film mulching. Agric. For. Meteorol. 2020, 108127, 292–293. [Google Scholar] [CrossRef]
- Hou, J.L.; Wang, Y.M.; Zhan, Z.G.; Zhang, J.; Xu, Y. Application of nonlinear least squares method to crop growth structure-function simulation model. Trans. Chin. Soc. Agric. Mach. 2005, 36, 75–79. [Google Scholar]
- He, J.; Jones, J.W.; Graham, W.D.; Dukes, M.D. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric. Syst. 2010, 103, 256–264. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSNVI; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Wu, Y.T.; Xu, W.B.; Huang, J.X. Bayesian posterior-based winter wheat yield estimation at the field scale through assimilation of sentinel-2 data into WOFOST Model. Remote Sens. 2022, 14, 3727. [Google Scholar] [CrossRef]
- Bhattarai, A.; Steinbeck, G.; Khanal, S. Development of a calibration approach using DNDC and PEST for improving estimates of management impacts on water and nutrient dynamics in an agricultural system. Environ. Model. Softw. 2022, 157, 105494. [Google Scholar] [CrossRef]
- Guo, D.X. Growth Simulation and Regional Irrigation Schedule Optimization for Winter Wheat and Summer Maize Based on AquaCrop Model in the Fenwei Plain. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Malve, S.H.; Rao, P.; Dhake, A. Evaluation of water production function and optimization of water for winter wheat (Triticum aestivum L.) under drip Irrigation. Am.-Eurasian J. Agric. Environ. Sci. 2016, 16, 1389–1398. [Google Scholar]
- Li, Z.K.; Liu, H.; Zhao, W.Z. Revisiting crop water production functions in terms of cross-regional applications. Chin. J. Eco-Agric. 2018, 26, 1781–1794. [Google Scholar] [CrossRef]
- Kang, S.Z.; Cai, H.J. Agricultural Water Management; China Agriculture Press: Beijing, China, 1996. [Google Scholar]
- Stewart, J.I.; Hagan, R.M.; Pruitt, W.O.; Danielson, R.E.; Franklin, W.T.; Hanks, R.J.; Riley, J.P.; Jackson, E.B. Optimizing Crop Production through Control of Water and Salinity Levels in the Soil; Reports; Paper 67; Utah State University: Logan, UT, USA, 1977. [Google Scholar]
- Rajputg, S.; Singh, J. Water production functions for wheat under different environmental conditions. Agric. Water Manag. 1986, 11, 319–332. [Google Scholar] [CrossRef]
- Jensen, M.E. Water Consumption by Agricultural Plants; Academic Press: New York, NY, USA, 1968; pp. 1–22. [Google Scholar]
- Minhas, B.S.; Parikh, K.S.; Srinivasan, T.N. Toward the structure of a production function for wheat yields with dated inputs of irrigation water. Water Resour. Res. 1974, 10, 383–393. [Google Scholar] [CrossRef]
- Rao, N.H.; Sarma, P.B.; Chander, S. A simple dated water-production function for use in irrigated agriculture. Agric. Water Manag. 1988, 13, 25–32. [Google Scholar] [CrossRef]
- Mao, X.M.; Shang, S.H. Application of 0-1 Programming model on optimization of crop deficit irrigation schedule. Trans. Chin. Soc. Agric. Mach. 2014, 45, 123+153–158. [Google Scholar] [CrossRef]
- Shang, S.H. Simulation optimization method for inadequate irrigation regime of crops. J. Tsinghua Univ. (Sci. Tecnol.) 2005, 45, 1179–1183. [Google Scholar] [CrossRef]
- Qie, Z.H.; Han, L.M.; Wu, X.M. Optimization of crop irrigation quantity and irrigation date based on the improved NSGA-II. Trans. Chin. Soc. Agric. Mach. 2011, 42, 106–110. [Google Scholar] [CrossRef]
- Tang, X.Y.; He, Y.; Peng, L.; Wang, J. Research on multi-objective optimization of Xinjiang cotton irrigation system based on CNSGA-II Algorithm. Water Sav. Irrig. 2020, 11, 59–63+67. [Google Scholar]
- Yu, Z.J.; Shang, S.H. Multi-objective optimization method for irrigation scheduling of crop rotation system and its application in North China. J. Hydraul. Eng. 2016, 47, 1188–1196. [Google Scholar] [CrossRef]
- Jie, Z. Irrigation Water Optimization Allocation Based on Intelligent Calculation. In Proceedings of the 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 10–11 January 2014. [Google Scholar] [CrossRef]
- Wu, X.M.; Wang, J.; Qie, Z.H. Multi-objective optimization of crop irrigation schedule based on years of rainfall data. Trans. Chin. Soc. Agric. Mach. 2013, 44, 108–112. [Google Scholar] [CrossRef]
- Li, X. Response of Pumpkin to Water Deficit and Optimization of Irrigation Schedule with Drip Irrigation under Mulch in the Hexi Oasis. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2023. [Google Scholar]
- Li, F.; Zhang, H.; Li, X.; Deng, H.; Chen, X.; Liu, L. Modelling and evaluation of potato water production functions in a cold and arid environment. Water 2022, 14, 2044. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, Y.; Lei, J.; Liu, J. Multi-objective lower irrigation limit simulation and optimization model for Lycium Barbarum based on NSGA-III and ANN. Water 2023, 15, 783. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Guo, P.; Qiu, R.; Chen, R.; Gu, F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agric. Water Manag. 2014, 146, 131–148. [Google Scholar] [CrossRef]
- Chen, F.; Cui, N.B.; Jiang, S.Z.; Wang, Z.H.; Li, H.P.; Lv, M.; Wang, Y.S.; Gong, D.Z.; Zhao, L. Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China. Agric. Water Manag. 2023, 287, 108440. [Google Scholar] [CrossRef]
- Shan, B.; Guo, P.; Guo, S.; Li, Z. A Price-Forecast-Based irrigation scheduling optimization model under the response of fruit quality and price to water. Sustainability 2019, 11, 2124. [Google Scholar] [CrossRef]
- Lyu, J.Y.; Jiang, Y.A.; Xu, C.; Liu, Y.J.; Su, Z.H.; Liu, J.C.; He, J.Q. Multi-objective winter wheat irrigation strategies optimization based on coupling AquaCrop-OSPy and NSGA-III: A case study in Yangling, China. Sci. Total Environ. 2022, 843, 157104. [Google Scholar] [CrossRef]
- Wang, K.H. Multi-Objective Optimization of Irrigation Scheduling Based on AquaCrop-FloPy-NSGA-III Coupling Model. Master’s Thesis, Northwest A&F University, Xianyang, China, 2023. [Google Scholar]
- Bai, Y.; Yue, W.; Ding, C. Optimize the irrigation and fertilizer schedules by combining DSSAT and GA. Environ. Sci. Pollut. Res. 2022, 29, 52473–52482. [Google Scholar] [CrossRef]
- Wu, H.; Yue, Q.; Guo, P.; Xu, X.Y.; Huang, X. Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules. Agric. Water Manag. 2022, 266, 107599. [Google Scholar] [CrossRef]
- Ma, C.; Wu, T.A.; Zhang, W.Z.; Li, J.; Jiao, X.Y. Optimization of multi-objective irrigation schedule for rice based on AquaCrop model. J. Irrig. Drain. 2024, 43, 9–16. [Google Scholar] [CrossRef]
- Shafa, N.S.; Babazadeh, H.; Saremi, A. Multi-objective planning for optimal exploitation of surface and groundwater resources through development of an optimized cropping pattern and artificial recharge system. Ain Shams Eng. J. 2023, 14, 101847. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Chen, X.Q.; Hou, Z.X.; Guo, L.M.; Luo, W.C. Improved multi-objective genetic algorithm based on NSGA-II. Comput. Appl. 2006, 26, 2453–2456. [Google Scholar]
- Zheng, J.H.; Huang, G.H.; Huang, Q.Z.; Wang, J.; Jia, D.D.; Zhang, K.Z. Water production function and optimal irrigation schedules for onion with drip irrigation and mulch of plastic film in arid region. Trans. CSAE 2011, 27, 25–30. [Google Scholar] [CrossRef]
- Zheng, H.; Shi, H.; Chai, J.; Fu, W. Optimal irrigation schedule model of forage crop by RAGA-DP under deficit irrigation. Trans. CSAE 2007, 23, 65–70. [Google Scholar]
- Zhang, G.; Xie, C.; Pi, X.; Wang, B. Optimization model for discharge distribution of irrigation channels based on free search algorithm. Trans. CSAE 2012, 28, 86–90. [Google Scholar] [CrossRef]
- Wang, Q.; Yue, C.; Li, Y.; Liu, X. Optimal allocation of water resources with two-level channel based on improved particle swarm optimization algorithm. Agric. Res. Arid. Areas 2019, 37, 26–33. [Google Scholar] [CrossRef]
- Li, W.; Deng, H.; Tian, M.; Chen, H. Division algorithm of the rotation irrigation group for automated drip irrigation based on hybrid variable neighborhood. Trans. CSAE 2022, 38, 155–162. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.; Assuncao, E. Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal. Agric. Water Manag. 2022, 263, 107480. [Google Scholar] [CrossRef]
- Shi, R.; Guo, W. Research progress on the optimal allocation of agricultural irrigation water resources. Trans. CSAE 2024, 40, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Shao, D.; Yin, X.; Chen, S.; Xu, B. Evaluation method for irrigation-water use efficiency based on principle component analysis and Copula function. Trans. CSAE 2015, 31, 96–102. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, J.F.; Li, T. Principal component analysis of influencing factors of winter wheat irrigation water productivity in Xi’an. J. Xi’an Univ. Technol. 2021, 37, 9–15. [Google Scholar] [CrossRef]
- Zhang, J.W.; Xiang, L.X.; Zhu, C.X.; Li, W.Q.; Jing, D.; Zhang, L.L.; Liu, Y.; Li, T.L.; Li, J.M. Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation. Agric. Water Manag. 2023, 283, 108323. [Google Scholar] [CrossRef]
- Yang, X.Q.; Du, R.S.; He, D.W.; Li, D.Y.; Chen, J.R.; Han, X.L.; Wang, Z.Q.; Zhang, Z. Optimal combination of potassium coupled with water and nitrogen for strawberry quality based on consumer-orientation. Agric. Water Manag. 2023, 287, 108461. [Google Scholar] [CrossRef]
- Xu, C.; Ke, Y.; Li, Y.; Chu, H.; Wu, Y. Data-driven configuration optimization of an offgrid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS. Energy Convers. Manag. 2020, 215, 112892. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Jiang, Z.X.; Zhang, C.H.; Zhang, Z.; Hu, X.H. Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model. Agric. Water Manag. 2022, 273, 107876. [Google Scholar] [CrossRef]
- Zhang, J.W.; Xiang, L.X.; Liu, Y.X.; Dan, J.; Zhang, L.L.; Liu, Y.; Li, W.Q.; Wang, X.Y.; Li, T.L.; Li, J.M. Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model. Agric. Water Manag. 2024, 295, 108741. [Google Scholar] [CrossRef]
- Li, J.; Shang, S.H.; Jiang, H.Z.; Song, J.; Rahman, K.U. Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region. Agric. Water Manag. 2021, 254, 106952. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Guo, S.S.; Guo, P. Crop-growth-based spatially-distributed optimization model for irrigation water resource management under uncertainties and future climate change. J. Clean. Prod. 2022, 345, 131182. [Google Scholar] [CrossRef]
- Fontanet, M.; Daniel, F.G.; Rodrigo, G.; Ferrer, F.; Villar, J.M. Combined simulation and optimization framework for irrigation scheduling in agriculture fields. Irrig. Sci. 2022, 40, 115–130. [Google Scholar] [CrossRef]
- Rodriguez, A.V.C.; Ober, E.S. AquaCropR: Crop growth model for R. Agronomy 2019, 9, 378. [Google Scholar] [CrossRef]
- Kelly, T.D.; Foster, T.; Schultz, D.M.; Mieno, T. The effect of soil-moisture uncertainty on irrigation water use and farm profits. Adv. Water Resour. 2021, 154, 103982. [Google Scholar] [CrossRef]
- Kelly, T.D.; Foster, T. AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling. Agric. Water Manag. 2021, 254, 106976. [Google Scholar] [CrossRef]
Model Name | Driving Factors | Modules | Crop Types | Application Aspects |
---|---|---|---|---|
AquaCrop | Soil water | Meteorological module, Crop module, Soil module (water), Management module | Maize, wheat, barley, cotton, sunflower, potato, rice and other herbaceous crops, fruit trees, vines | Biomass and yield simulation [56]; Optimization of sowing dates [57]; Optimization of irrigation measures [57]; Climate change assessment [58] |
SWAP | Soil water | Meteorological module, Crop module, Soil module (water, solute, heat), Management module | Annual crops such as summer maize, winter wheat, spring barley, rice, soybean, sunflower | Yield and biomass prediction [59]; Water and salt transport [59]; Remote-sensing assimilation [60]; irrigation optimization [61] |
APSIM | Soil salt | Meteorological module, Crop module, Soil module (water balance, nitrogen cycle, surface organic matter, soil phosphorus), Management module, Animal module (cattle, sheep) | Beans, maize, barley, wheat, rapeseed, cotton, rice, peanut | Biomass and yield simulation [62]; Crop management; Climate change assessment [63]; Soil water and nitrogen processes [64,65]; The interaction between genes, management, and environment [66] |
DSSAT | Photosynthesis | Meteorological module, Crop module, Soil module (water, organic matter, nitrogen cycle, inorganic nitrogen, phosphorus, potassium), Soil–crop–atmosphere module, Management module | Wheat, rice, maize, legumes, perennial plants | Biomass and yield prediction [67]; Irrigation, fertilization, and pesticide management [68]; Dynamic changes of carbon and nitrogen [68]; Climate risk assessment [69] |
RZWQM2 | Soil water and salt | Meteorological module, Crop module, Soil water module, Soil chemical processes, Nitrogen cycling module, Carbon cycling module, Insecticide module, Cultivation module | Maize, wheat, soybean, potato, alfalfa, grass, trees | Crop productivity assessment [70]; Optimization of irrigation and fertilization [19]; Dynamic monitoring of soil water and nitrogen [71]; Chemical simulation of insecticides [72] |
Optimization Method | Classification | Features |
---|---|---|
Traditional mathematical programming | Linear programming [90], nonlinear programming [91], and dynamic programming [111] | Simple calculation but has limitations when dealing with complex problems |
Artificial intelligence search | Genetic algorithms [112], simulated annealing [113], particle swarm optimization [114], free search algorithm [115], and neural network [116] | Fast computing speed, strong stability, adaptability, and robustness |
Research Objects | Problems | Future Prospects |
---|---|---|
Simulation–optimization models |
| Other mechanism crop models should be combined with optimization algorithms. |
| ||
| The promotion of drip irrigation technology underneath film has demonstrated the importance of quantifying the 2D/3D water movement process. | |
Optimization of irrigation schedules |
| Based on intelligent optimization algorithms to calibrate model parameters, explore highly applicable calibration tools for intelligent optimization algorithm to improve model efficiency. |
| Seeking ways to reduce uncertainty in optimization. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, G.; Li, S.; Luo, Y.; Bai, Y. A Review on the Optimization of Irrigation Schedules for Farmlands Based on a Simulation–Optimization Model. Water 2024, 16, 2545. https://doi.org/10.3390/w16172545
Zhao Y, Li G, Li S, Luo Y, Bai Y. A Review on the Optimization of Irrigation Schedules for Farmlands Based on a Simulation–Optimization Model. Water. 2024; 16(17):2545. https://doi.org/10.3390/w16172545
Chicago/Turabian StyleZhao, Yin, Guoan Li, Sien Li, Yongkai Luo, and Yuting Bai. 2024. "A Review on the Optimization of Irrigation Schedules for Farmlands Based on a Simulation–Optimization Model" Water 16, no. 17: 2545. https://doi.org/10.3390/w16172545
APA StyleZhao, Y., Li, G., Li, S., Luo, Y., & Bai, Y. (2024). A Review on the Optimization of Irrigation Schedules for Farmlands Based on a Simulation–Optimization Model. Water, 16(17), 2545. https://doi.org/10.3390/w16172545