Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFPD Method
- Standardize Dataset Lengths: Ensure the compared datasets have equal length vectors covering the same period.
- Order the Data: Sort each dataset in ascending order from the smallest to the largest values.
- Plot the Data: Plot the two periods being compared, placing the reference dataset on the horizontal x-axis.
- Determine Linear Fit: Calculate a linear best fit with a slope (a) and intercept (b).
- Inconsistent Change: An inconsistent change occurs when the curves are similar in shape but separated by a constant offset, indicating a continuous amount of leakage. The intercept (b) represents this offset. Such changes can result from new leaks, unusual water usage, leak repairs, or operational activities like network cleaning.
- Consistent Change: A consistent change occurs when one curve is a scaled version of the other, corresponding to the slope (a). This type of change can be due to variations in population, seasonal changes, holidays, etc.
2.2. Data Collection
2.3. Data Analysis
- Potential Leak I: Week 12 (16 March–22 March), with a peak consumption of 145 m3/h at 1 pm on 17 March.
- Potential Leak II: Week 33 (10 August–16 August), where increased consumption is observed.
- Potential Leak III: Weeks 38–40 (14 September–4 October), where another period of increased consumption is detected.
- Winter holidays (week 10): The highest consumption is 55.68 m3/h on 6 March at 1 p.m., while the lowest is 25.06 m3/h on 2 March at 5 a.m.
- Spring holidays (weeks 18 and 19): The lowest consumption recorded is 25.44 m3/h on 3 May at 6 a.m.
- Summer holidays (weeks 30 to 35): A potential leak is indicated on 10 August at 3 p.m., with consumption dropping to 15.79 m3/h on 24 August at 3 a.m.
- Christmas holidays (weeks 52 and 53): The maximum consumption reaches 40.65 m3/h on 22 December at 2 p.m., and the minimum is 12.61 m3/h on 31 December at 5 a.m.
3. Results
3.1. Application of the CFPD at the Macroscale
3.2. Application of the CFPD at the Microscale
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; et al. Achieving Sustainable Development Goals from a Water Perspective. Front. Environ. Sci. 2016, 4, 64. [Google Scholar] [CrossRef]
- Ait-Kadi, M. Water for Development and Development for Water: Realizing the Sustainable Development Goals (SDGs) Vision. Aquat. Procedia 2016, 6, 106–110. [Google Scholar] [CrossRef]
- Benson, D.; Gain, A.K.; Giupponi, C. Moving beyond water centricity? Conceptualizing integrated water resources management for implementing sustainable development goals. Sustain. Sci. 2020, 15, 671–681. [Google Scholar] [CrossRef]
- Singh, M.; Ahmed, S. IoT based smart water management systems: A systematic review. Mater. Today Proc. 2021, 46, 5211–5218. [Google Scholar] [CrossRef]
- Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart Water Management towards Future Water Sustainable Networks. Water 2020, 12, 58. [Google Scholar] [CrossRef]
- Bharat, V.; Shubham, S.; Jagdish, D.; Amol, P.; Renuka, K. Smart water management system in cities. In Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), Chirala, India, 23–25 March 2017; pp. 267–271. [Google Scholar]
- Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability 2022, 14, 13384. [Google Scholar] [CrossRef]
- Di Nardo, A.; Boccelli, D.L.; Herrera, M.; Creaco, E.; Cominola, A.; Sitzenfrei, R.; Taormina, R. Smart Urban Water Networks: Solutions, Trends and Challenges. Water 2021, 13, 501. [Google Scholar] [CrossRef]
- Slaný, V.; Lučanský, A.; Koudelka, P.; Mareček, J.; Krčálová, E.; Martínek, R. An Integrated IoT Architecture for Smart Metering Using Next Generation Sensor for Water Management Based on LoRaWAN Technology: A Pilot Study. Sensors 2020, 20, 4712. [Google Scholar] [CrossRef]
- Joseph, K.; Sharma, A.K.; van Staden, R. Development of an Intelligent Urban Water Network System. Water 2022, 14, 1320. [Google Scholar] [CrossRef]
- Giudicianni, C.; Herrera, M.; Nardo, A.d.; Adeyeye, K.; Ramos, H.M. Overview of Energy Management and Leakage Control Systems for Smart Water Grids and Digital Water. Modelling 2020, 1, 134–155. [Google Scholar] [CrossRef]
- Boyle, T.; Giurco, D.; Mukheibir, P.; Liu, A.; Moy, C.; White, S.; Stewart, R. Intelligent Metering for Urban Water: A Review. Water 2013, 5, 1052–1081. [Google Scholar] [CrossRef]
- Muhammetoglu, A.; Albayrak, Y.; Bolbol, M.; Enderoglu, S.; Muhammetoglu, H. Detection and Assessment of Post Meter Leakages in Public Places Using Smart Water Metering. Water Resour. Manag. 2020, 34, 2989–3002. [Google Scholar] [CrossRef]
- Boulos, P.F.; Jacobsen, L.B.; Heath, J.E.; Kamojjala, S. Real-time modeling of water distribution systems: A case study. J. AWWA 2014, 106, E391–E401. [Google Scholar] [CrossRef]
- Andrić, I.; Vrsalović, A.; Perković, T.; Aglić Čuvić, M.; Šolić, P. IoT approach towards smart water usage. J. Clean. Prod. 2022, 367, 133065. [Google Scholar] [CrossRef]
- Okoli, N.J.; Kabaso, B. Building a Smart Water City: IoT Smart Water Technologies, Applications, and Future Directions. Water 2024, 16, 557. [Google Scholar] [CrossRef]
- Monks, I.; Stewart, R.A.; Sahin, O.; Keller, R. Revealing Unreported Benefits of Digital Water Metering: Literature Review and Expert Opinions. Water 2019, 11, 838. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Liu, A.; Mukheibir, P. Digital metering feedback and changes in water consumption—A review. Resour. Conserv. Recycl. 2018, 134, 136–148. [Google Scholar] [CrossRef]
- Spang, E.S.; Miller, S.; Williams, M.; Loge, F.J. Consumption-Based Fixed Rates: Harmonizing Water Conservation and Revenue Stability. J. AWWA 2015, 107, E164–E173. [Google Scholar] [CrossRef]
- Alejandrino, R.S.; Diomampo, M.C.G.; Balbin, J.R. Smart Water Meter with Cloud Database and Water Bill Consumption Monitoring via SMS and Mobile Application. In Proceedings of the 2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 25–25 June 2022; pp. 90–95. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O.; Siriwardene, N. Re-engineering traditional urban water management practices with smart metering and informatics. Environ. Model. Softw. 2018, 101, 256–267. [Google Scholar] [CrossRef]
- Świętochowski, K.; Andraka, D.; Kalenik, M.; Gwoździej-Mazur, J. The Hourly Peak Coefficient of Single-Family and Multi-Family Buildings in Poland: Support for the Selection of Water Meters and the Construction of a Water Distribution System Model. Water 2024, 16, 1077. [Google Scholar] [CrossRef]
- Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 2013, 54, 166–176. [Google Scholar] [CrossRef]
- Gurung, T.R.; Stewart, R.A.; Beal, C.D.; Sharma, A.K. Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning. J. Clean. Prod. 2016, 135, 1023–1033. [Google Scholar] [CrossRef]
- Cominola, A.; Nguyen, K.; Giuliani, M.; Stewart, R.A.; Maier, H.R.; Castelletti, A. Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data. Water Resour. Res. 2019, 55, 9315–9333. [Google Scholar] [CrossRef]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, B.; Chen, W.; Tan, D.; Shen, D. Review of model-based and data-driven approaches for leak detection and location in water distribution systems. Water Supply 2021, 21, 3282–3306. [Google Scholar] [CrossRef]
- Nimri, W.; Wang, Y.; Zhang, Z.; Deng, C.; Sellstrom, K. Data-driven approaches and model-based methods for detecting and locating leaks in water distribution systems: A literature review. Neural Comput. Appl. 2023, 35, 11611–11623. [Google Scholar] [CrossRef]
- Liang, B.; Verma, S.; Xu, J.; Liang, S.; Li, Z.; Wang, Y.; Chen, F. A Data Driven Approach for Leak Detection with Smart Sensors. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 1311–1316. [Google Scholar]
- Soldevila, A.; Boracchi, G.; Roveri, M.; Tornil-Sin, S.; Puig, V. Leak detection and localization in water distribution networks by combining expert knowledge and data-driven models. Neural Comput. Appl. 2022, 34, 4759–4779. [Google Scholar] [CrossRef]
- Kammoun, M.; Kammoun, A.; Abid, M. Experiments based comparative evaluations of machine learning techniques for leak detection in water distribution systems. Water Supply 2021, 22, 628–642. [Google Scholar] [CrossRef]
- Sousa, D.P.; Du, R.; Mairton Barros da Silva, J., Jr.; Cavalcante, C.C.; Fischione, C. Leakage detection in water distribution networks using machine-learning strategies. Water Supply 2023, 23, 1115–1126. [Google Scholar] [CrossRef]
- Park, S.; Ha, J.-H. Development of computational algorithms for daily water leak detection in district metered areas based on the principal component analysis. Desalination Water Treat. 2021, 227, 93–103. [Google Scholar] [CrossRef]
- Mazzolani, G.; Berardi, L.; Laucelli, D.; Simone, A.; Martino, R.; Giustolisi, O. Estimating Leakages in Water Distribution Networks Based Only on Inlet Flow Data. J. Water Resour. Plan. Manag. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Romero-Ben, L.; Alves, D.; Blesa, J.; Cembrano, G.; Puig, V.; Duviella, E. Leak Localization in Water Distribution Networks Using Data-Driven and Model-Based Approaches. J. Water Resour. Plan. Manag. 2022, 148, 04022016. [Google Scholar] [CrossRef]
- Van Thienen, P.; Pieterse-Quirijns, I.; Vreeburg, J.; Vangeel, K.; Kapelan, Z. Applications of discriminative flow pattern analysis using the CFPD method. Water Supply 2013, 13, 906–913. [Google Scholar] [CrossRef]
- Fidelis Costa, D.; Kepler Soares, A. CFPD Method for Consumption Pattern Changes Identification in a District Metering Area with Digital Water Meters. In Proceedings of the World Environmental and Water Resources Congress 2021, Virtually, 7–11 June 2021; pp. 1014–1022. [Google Scholar]
- Van Thienen, P.; Montiel, F. Flow Analysis and Leak Detection with the CFPD Method in the Paris Drinking Water Distribution System. In Proceedings of the 11th International Conference on Hydroinformatics HIC, New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Van Thienen, P. A method for quantitative discrimination in flow pattern evolution of water distribution supply areas with interpretation in terms of demand and leakage. J. Hydroinform. 2013, 15, 86–102. [Google Scholar] [CrossRef]
- Farah, E.; Shahrour, I. Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow. Water Resour. Manag. 2017, 31, 4821–4833. [Google Scholar] [CrossRef]
- Sitaropoulos, K.; Salamone, S.; Sela, L. Frequency-based leak signature investigation using acoustic sensors in urban water distribution networks. Adv. Eng. Inform. 2023, 55, 101905. [Google Scholar] [CrossRef]
- Fan, H.; Tariq, S.; Zayed, T. Acoustic leak detection approaches for water pipelines. Autom. Constr. 2022, 138, 104226. [Google Scholar] [CrossRef]
- Levinas, D.; Perelman, G.; Ostfeld, A. Water Leak Localization Using High-Resolution Pressure Sensors. Water 2021, 13, 591. [Google Scholar] [CrossRef]
- Zeidouni, M.; Pooladi-Darvish, M.; Keith, D.W. Leakage detection and characterization through pressure monitoring. Energy Procedia 2011, 4, 3534–3541. [Google Scholar] [CrossRef]
- De Coster, A.; Pérez Medina, J.L.; Nottebaere, M.; Alkhalifeh, K.; Neyt, X.; Vanderdonckt, J.; Lambot, S. Towards an improvement of GPR-based detection of pipes and leaks in water distribution networks. J. Appl. Geophys. 2019, 162, 138–151. [Google Scholar] [CrossRef]
- Ayala–Cabrera, D.; Herrera, M.; Izquierdo, J.; Ocaña–Levario, S.J.; Pérez–García, R. GPR-Based Water Leak Models in Water Distribution Systems. Sensors 2013, 13, 15912–15936. [Google Scholar] [CrossRef]
- Chatelard, C.; Muñoz, J.S.; Krapez, J.C.; Mazel, C.; Olichon, V.; Polo, J.B.; Frédéric, Y.M.; Hélias, F.; Barillot, P.; Legoff, I.; et al. Leak Detection in Water Transmission Systems by Multispectral Remote Sensing with Airplane and UAV. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7124–7127. [Google Scholar]
- Smith, B.; John, G.; Stark, B.; Christensen, L.E.; Chen, Y. Applicability of unmanned aerial systems for leak detection. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 1220–1227. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farah, E.; Shahrour, I. Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale. Water 2024, 16, 2530. https://doi.org/10.3390/w16172530
Farah E, Shahrour I. Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale. Water. 2024; 16(17):2530. https://doi.org/10.3390/w16172530
Chicago/Turabian StyleFarah, Elias, and Isam Shahrour. 2024. "Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale" Water 16, no. 17: 2530. https://doi.org/10.3390/w16172530
APA StyleFarah, E., & Shahrour, I. (2024). Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale. Water, 16(17), 2530. https://doi.org/10.3390/w16172530