Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain, Reference Domain, and Precipitation Scenarios
2.2. Modeling Software and Parameters
2.3. Boundary Conditions
2.3.1. Closed Wall
2.3.2. Zero Water Depth
2.3.3. Stage–Discharge Curve
2.3.4. Drainage Reservoir
2.3.5. Drainage Element
2.4. Validation
2.5. Statistical Measures
- Vol_dif [m3]: The difference in total maximum volume between the test model under different open BCs and the reference model within the study domain.
- PBIAS and PBIAS_sub [%]: The percent bias (PBIAS) investigates the difference in maximum water depth at all nodes between the reference model and the test models. Negative PBIAS values indicate that the test model underpredicts the maximum water depths compared to the reference model, while positive PBIAS values indicate overestimation. The PBIAS is sensitive to the model’s area. Larger model areas tend to dilute the influence of BCs, resulting in smaller PBIAS values, since the region of influence of the BCs is decreasing in comparison to the overall model’s area. To address this, PBIAS_sub is calculated within a subset of the model domain. This subset includes nodes where the maximum water depth deviation from the reference model exceeds 1 cm in at least one of the BCs.
- MAE and MAE_sub [mm]: The mean absolute error (MAE) is a unit-based statistical measure that quantifies the average deviation in maximum water depth at every node between the test models and the reference model. It provides an overall measure of model accuracy. Same as PBIAS, the MAE is sensitive to the model’s area, and MAE_sub is calculated accordingly.
- DBI [m]: A region of influence from the BCs is defined by the area where the absolute difference in maximum simulated water depth between the test and reference models exceeds specific thresholds (1 mm and 1 cm). This area is normalized by the cumulative length of the open boundary segments. This normalized measure is also not sensitive to the model’s area and is termed “distance of boundary influence” (DBI).
- NSE: The Nash–Sutcliffe efficiency (NSE) is used to assess the discharge across each boundary segment, with the segmental discharges from the reference model serving as the observed values. This assessment provides a deeper insight into the behavior of BCs at individual boundary segments.
3. Results
3.1. Effects of the Precipitation Intensity on the BCs
3.2. Evaluation of Difference in Volume, Area and Maximum Water Depth
3.3. Discharges across Open Boundaries
3.3.1. Topographical Inlets
3.3.2. Topographical Outlets
3.3.3. Heterogeneous Cross-Sections
3.4. Optimized Segmental Combination of BCs
- Topographical outlets: The SDC and DR BC both performed well, yet the SDC BC was preferred, mainly in view of the SDC BC’s more consistent performance when considering the NSE values at segments 2 and 6 (see Table 2).
- Heterogeneous-type cross-section, segment 3: Neither of the BCs performed well here; the CW BC was chosen because it yielded the best NSE value (Table 2).
- For the topographical inlet segments 1, 8, and 9, for which the CW BC was adopted, the optimized segmental combination of BCs has identical NSE values to the ones in a CW-BC-only setup. This is according to expectations due to the physical meaning of the CW BC. The same holds for the heterogeneous cross-section segment 3.
- For the topographical outlet segments 2, 4, 5, and 6, the NSEs appear largely unaffected when comparing the optimized segmental combination with the SDC-BC-only setup. However, for segment 2, an improvement in the NSE from 0.86 to 0.92 is noted.
- For the heterogeneous cross-section segment 7, the DR BC NSE of 0.93 was not fully maintained. Yet, the obtained NSE of 0.87 with the optimized segmental combination of BCs is still solid compared to the NSEs originally obtained for any other BC simulation.
4. Discussion
4.1. Performance and Selection of BCs
4.2. Preprocessing Requirements
4.3. Mutual Interference of BCs
4.4. Pre-Assessment of Sensitivity of the BC Selection
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Water: Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- IPCC. Weather and Climate Extreme Events in a Changing Climate: Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Uhe, P.; Mitchell, D.; Bates, P.D.; Allen, M.R.; Betts, R.A.; Huntingford, C.; King, A.D.; Sanderson, B.M.; Shiogama, H. Method Uncertainty Is Essential for Reliable Confidence Statements of Precipitation Projections. J. Clim. 2021, 34, 1227–1240. [Google Scholar] [CrossRef]
- Prokić, M.; Savić, S.; Pavić, D. Pluvial flooding in urban areas across the European continent. Geogr. Pannonica 2019, 23, 216–232. [Google Scholar] [CrossRef]
- Nicklin, H.; Leicher, A.M.; Dieperink, C.; Leeuwen, K. Understanding the Costs of Inaction—An Assessment of Pluvial Flood Damages in Two European Cities. Water 2019, 11, 801. [Google Scholar] [CrossRef]
- Bulti, D.T.; Abebe, B.G. A review of flood modeling methods for urban pluvial flood application. Model. Earth Syst. Environ. 2020, 6, 1293–1302. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- HSB. Ermittlung von Überflutungsgefahren mit Vereinfachten und Detaillierten Hydrodynamischen Modellen. Praxisleitfaden, Erstellt im Rahmen des DBU-Forschungsprojekts “KLASII”; HSB: Bremen, Germany, 2017. [Google Scholar]
- Guo, K.; Guan, M.; Yu, D. Urban surface water flood modelling—A comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 2020, 25, 2843–2860. [Google Scholar] [CrossRef]
- Bates, P.D. Flood Inundation Prediction. Annu. Rev. Fluid Mech. 2022, 54, 287–315. [Google Scholar] [CrossRef]
- van Dijk, E.; van der Meulen, J.; Kluck, J.; Straatman, J.H.M. Comparing modelling techniques for analysing urban pluvial flooding. Water Sci. Technol. 2014, 69, 305–311. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, L.; Li, R.; Yin, J.; Yu, D. Linking a Storm Water Management Model to a Novel Two-Dimensional Model for Urban Pluvial Flood Modeling. Int. J. Disaster Risk Sci. 2020, 11, 508–518. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, A.S.; Djordjević, S.; Savić, D.A. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Reinstaller, S.; Krebs, G.; Pichler, M.; Muschalla, D. Identification of High-Impact Uncertainty Sources for Urban Flood Models in Hillside Peri-Urban Catchments. Water 2022, 14, 1973. [Google Scholar] [CrossRef]
- Fan, Y.; Ao, T.; Yu, H.; Huang, G.; Li, X. A Coupled 1D-2D Hydrodynamic Model for Urban Flood Inundation. Adv. Meteorol. 2017, 2017, 2819308. [Google Scholar] [CrossRef]
- Russo, B.; Sunyer, D.; Velasco, M.; Djordjević, S. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: The case of Barcelona (Spain). J. Hydroinformatics 2015, 17, 473–491. [Google Scholar] [CrossRef]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Popescu, I. Computational Hydraulics: Numerical Methods and Modelling; IWA Publishing: London, UK, 2014; ISBN 9781780400457. [Google Scholar]
- Deletic, A.; Dotto, C.; McCarthy, D.T.; Kleidorfer, M.; Freni, G.; Mannina, G.; Uhl, M.; Henrichs, M.; Fletcher, T.D.; Rauch, W.; et al. Assessing uncertainties in urban drainage models. Phys. Chem. Earth Parts A/B/C 2012, 42–44, 3–10. [Google Scholar] [CrossRef]
- Bates, P.D.; Pappenberger, F.; Romanowicz, R.J. Uncertainty in Flood Inundation Modelling. In Applied Uncertainty Analysis for Flood Risk Management; Beven, K., Hall, J., Eds.; Imperial College Press: London, UK, 2014; pp. 232–269. ISBN 978-1-84816-271-6. [Google Scholar]
- Bermúdez, M.; Neal, J.C.; Bates, P.D.; Coxon, G.; Freer, J.E.; Cea, L.; Puertas, J. Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional-local flood modeling system. Water Resour. Res. 2017, 53, 2770–2785. [Google Scholar] [CrossRef]
- Pappenberger, F.; Matgen, P.; Beven, K.J.; Henry, J.-B.; Pfister, L.; Fraipont, P. Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 2006, 29, 1430–1449. [Google Scholar] [CrossRef]
- Mason, D.C.; Schumann, G.; Bates, P.D. Data Utilization in Flood Inundation Modelling. In Flood Risk Science and Management; Pender, G., Faulkner, H., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 209–233. ISBN 9781405186575. [Google Scholar]
- Rohmat, F.I.W.; Sa’adi, Z.; Stamataki, I.; Kuntoro, A.A.; Farid, M.; Suwarman, R. Flood modeling and baseline study in urban and high population environment: A case study of Majalaya, Indonesia. Urban Clim. 2022, 46, 101332. [Google Scholar] [CrossRef]
- Echeverribar, I.; Morales-Hernández, M.; Brufau, P.; García-Navarro, P. 2D numerical simulation of unsteady flows for large scale floods prediction in real time. Adv. Water Resour. 2019, 134, 103444. [Google Scholar] [CrossRef]
- Bates, P. Fundamental limits to flood inundation modelling. Nat. Water 2023, 1, 566–567. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Alipour, A.; Gavahi, K.; Moftakhari, H.; Moradkhani, H. Toward improved river boundary conditioning for simulation of extreme floods. Adv. Water Resour. 2021, 158, 104059. [Google Scholar] [CrossRef]
- Haile, A.; Rientjes, T. Uncertainty issues in hydrodynamic flood modeling. In Proceedings of the 5th International Symposium on Spatial Data Quality SDQ 2007, Modelling Qualities in Space and Time, ITC, Enschede, The Netherlands, 13–15 June 2007. [Google Scholar]
- Cea, L.; Garrido, M.; Puertas, J. Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas. J. Hydrol. 2010, 382, 88–102. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. A Systematic Analysis of the Interaction between Rain-on-Grid-Simulations and Spatial Resolution in 2D Hydrodynamic Modeling. Water 2021, 13, 2346. [Google Scholar] [CrossRef]
- Hofmann, J.; Schüttrumpf, H. Risk-Based and Hydrodynamic Pluvial Flood Forecasts in Real Time. Water 2020, 12, 1895. [Google Scholar] [CrossRef]
- Kim, H.; Keum, H.; Han, K. Real-Time Urban Inundation Prediction Combining Hydraulic and Probabilistic Methods. Water 2019, 11, 293. [Google Scholar] [CrossRef]
- Nguyen, P.; Thorstensen, A.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Sanders, B.; Koren, V.; Cui, Z.; Smith, M. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. J. Hydrol. 2016, 541, 401–420. [Google Scholar] [CrossRef]
- Son, A.-L.; Kim, B.; Han, K.-Y. A Simple and Robust Method for Simultaneous Consideration of Overland and Underground Space in Urban Flood Modeling. Water 2016, 8, 494. [Google Scholar] [CrossRef]
- Hénonin, J.; Hongtao, M.; Zheng-Yu, Y.; Hartnack, J.; Havnø, K.; Gourbesville, P.; Mark, O. Citywide multi-grid urban flood modelling: The July 2012 flood in Beijing. Urban Water J. 2015, 12, 52–66. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Neelz, S.; Pender, G.; Villanueva, I.; Wright, N.G.; Liang, D.; Falconer, R.A.; Lin, B.; Waller, S.; et al. Benchmarking 2D hydraulic models for urban flooding. Proc. Inst. Civ. Eng.-Water Manag. 2008, 161, 13–30. [Google Scholar] [CrossRef]
- Hartnett, M.; Nash, S. High-resolution flood modeling of urban areas using MSN_Flood. Water Sci. Eng. 2017, 10, 175–183. [Google Scholar] [CrossRef]
- Saad, H.A.; Habib, E.H.; Miller, R.L. Effect of Model Setup Complexity on Flood Modeling in Low-Gradient Basins. J. Am. Water Resour. Assoc. 2021, 57, 296–314. [Google Scholar] [CrossRef]
- Bruwier, M.; Mustafa, A.; Aliaga, D.G.; Archambeau, P.; Erpicum, S.; Nishida, G.; Zhang, X.; Pirotton, M.; Teller, J.; Dewals, B. Influence of urban pattern on inundation flow in floodplains of lowland rivers. Sci. Total Environ. 2018, 622–623, 446–458. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, G.; Bates, P.; Ozdemir, H. Modelling urban floods at submetre resolution: Challenges or opportunities for flood risk management? J. Flood Risk Manag. 2018, 11, S855–S865. [Google Scholar] [CrossRef]
- Zhao, G.; Balstrøm, T.; Mark, O.; Jensen, M.B. Multi-Scale Target-Specified Sub-Model Approach for Fast Large-Scale High-Resolution 2D Urban Flood Modelling. Water 2021, 13, 259. [Google Scholar] [CrossRef]
- Paquier, A.; Bazin, P.H.; El Kadi Abderrezzak, K. Sensitivity of 2D hydrodynamic modelling of urban floods to the forcing inputs: Lessons from two field cases. Urban Water J. 2020, 17, 457–466. [Google Scholar] [CrossRef]
- Bermúdez, M.; Cea, L.; Puertas, J. A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. J. Flood Risk Manag. 2019, 12, e12522. [Google Scholar] [CrossRef]
- OpenStreetMap Contributors. OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 2 July 2024).
- LUBW. Anhänge 1 a, b, c zum Leitfaden Kommunales Starkregenrisikomanagement in Baden-Württemberg; LUBW: Karlsruhe, Germany, 2020. [Google Scholar]
- Junghänel, T.; Bär, F.; Deutschländer, T.; Haberlandt, U.; Otte, I.; Shehu, B.; Stockel, H.; Stricker, K.; Thiele, L.-B.; Willems, W. Methodische Untersuchungen zur Novellierung der Starkregenstatistik für Deutschland (MUNSTAR). Synthesebericht; DWD: Offenbach, Germany, 2022. [Google Scholar]
- Hervouet, J.-M. Hydrodynamics of Free Surface Flows; Wiley: Hoboken, NJ, USA, 2007; ISBN 9780470035580. [Google Scholar]
- EDF. TELEMAC-2D: User Manual. Version v8p4; EDF: Paris, France, 2022; 8p. [Google Scholar]
- Godara, N.; Bruland, O.; Alfredsen, K. Simulation of flash flood peaks in a small and steep catchment using rain-on-grid technique. J. Flood Risk Manag. 2023, 16, e12898. [Google Scholar] [CrossRef]
- Senatsverwaltung Berlin. Geoportal Berlin. Available online: https://www.berlin.de/sen/sbw/stadtdaten/geoportal/ (accessed on 2 July 2024).
- Sherman, L.K. The relation of hydrographs of runoff to size and character of drainage-basins. Trans. AGU 1932, 13, 332. [Google Scholar] [CrossRef]
- Bates, P.; Trigg, M.; Neal, J.; Dabrowa, A. LISFLOOD-FP: User Manual. Code Release 5.9.6; University of Bristol: Bristol, UK, 2013. [Google Scholar]
- Brunner, G. HEC-RAS: River Analysis System User’s Manual. Version 5.0; US Army Corps of Engineers: Washington, DC, USA, 2016. [Google Scholar]
- DHI Water and Environment. MIKE FLOOD.: DHI Software. User Manual; DHI Water and Environment: Hørsholm, Denmark, 2019. [Google Scholar]
BC | DBI 1 mm [m] | DBI 1 cm [m] | Vol_dif [m3] | PBIAS [%] | PBIAS_sub [%] | MAE [mm] | MAE_sub [mm] |
---|---|---|---|---|---|---|---|
CW | 468 | 266 | 2133 | 1.2 | 8.9 | 3.7 | 39.4 |
ZWD | 433 | 259 | −3034 | −1.7 | −10.6 | 2.5 | 25.0 |
DR | 427 | 239 | −2372 | −1.3 | −8.3 | 2.0 | 19.8 |
DE | 436 | 265 | −3012 | −1.6 | −10.3 | 2.7 | 27.3 |
SDC | 422 | 198 | −781 | −0.4 | −2.4 | 1.9 | 18.8 |
BC | Topographical Inlets | Topographical Outlets | Heterogen. Cross-Sections | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 8 | 9 | 2 | 4 | 5 | 6 | 3 | 7 | |
CW | −0.81 | −1.51 | −0.61 | −1.872 | −0.77 | −0.82 | −0.80 | 0 | −0.71 |
ZWD | −5.11 | −1.91 | −43.31 | −16.87 | 0.74 | 0.88 | −3.64 | −14.61 | 0.81 |
DR | −0.82 | −1.91 | −10.60 | 0.38 | 0.97 | 0.998 | 0.87 | −8.01 | 0.93 |
DE | −6.63 | −1.93 | −147.26 | −10.73 | 0.93 | 0.91 | −4.08 | −22.11 | 0.87 |
SDC | −0.81 | −1.51 | −0.61 | 0.86 | 0.989 | 0.998 | 0.998 | −53.93 | −5.26 |
BC | Topographical Inlets | Topographical Outlets | Heterogen. Cross-Sections | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 8 | 9 | 2 | 4 | 5 | 6 | 3 | 7 | |
OPT | −0.81 | −1.51 | −0.61 | 0.92 | 0.987 | 0.998 | 0.998 | 0 | 0.87 |
CW | −0.81 | −1.51 | −0.61 | −1.872 | −0.77 | −0.82 | −0.80 | 0 | −0.71 |
ZWD | −5.11 | −1.91 | −43.31 | −16.87 | 0.74 | 0.88 | −3.64 | −14.61 | 0.81 |
DR | −0.82 | −1.91 | −10.60 | 0.38 | 0.97 | 0.998 | 0.87 | −8.01 | 0.93 |
DE | −6.63 | −1.93 | −147.26 | −10.73 | 0.93 | 0.91 | −4.08 | −22.11 | 0.87 |
SDC | −0.81 | −1.51 | −0.61 | 0.86 | 0.989 | 0.998 | 0.998 | −53.93 | −5.26 |
BC | DBI 1 mm [m] | DBI 1 cm [m] | Vol_dif [m3] | PBIAS [%] | PBIAS_sub [%] | MAE [mm] | MAE_sub [mm] |
---|---|---|---|---|---|---|---|
OPT | 411 | 185 | −1559 | −0.9 | −5.2 | 1.4 | 14.1 |
CW | 468 | 266 | 2133 | 1.2 | 8.9 | 3.7 | 39.4 |
ZWD | 433 | 259 | −3034 | −1.7 | −10.6 | 2.5 | 25.0 |
DR | 427 | 239 | −2372 | −1.3 | −8.3 | 2.0 | 19.8 |
DE | 436 | 265 | −3012 | −1.6 | −10.3 | 2.7 | 27.3 |
SDC | 422 | 198 | −781 | −0.4 | −2.4 | 1.9 | 18.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vos, L.F.; Rüther, N.; Mahajan, K.; Dallmeier, A.; Broich, K. Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods. Water 2024, 16, 2448. https://doi.org/10.3390/w16172448
De Vos LF, Rüther N, Mahajan K, Dallmeier A, Broich K. Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods. Water. 2024; 16(17):2448. https://doi.org/10.3390/w16172448
Chicago/Turabian StyleDe Vos, Leon Frederik, Nils Rüther, Karan Mahajan, Antonia Dallmeier, and Karl Broich. 2024. "Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods" Water 16, no. 17: 2448. https://doi.org/10.3390/w16172448
APA StyleDe Vos, L. F., Rüther, N., Mahajan, K., Dallmeier, A., & Broich, K. (2024). Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods. Water, 16(17), 2448. https://doi.org/10.3390/w16172448