Harvest of Myriophyllum spicatum Facilitates the Growth of Vallisneria denseserrulata but Has No Significant Effects on Water Quality in a Mesocosm Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Set-Up
2.2. Sampling and Measurements
2.2.1. Water Samples
2.2.2. Plant Morphophysiological Traits
2.3. Statistical Analyses
3. Results
3.1. Nutrient Concentrations
3.2. Phytoplankton Biomass (Chlorophyll a Contents)
3.3. Light Attenuation
3.4. Growth and Morphological Traits of M. spicatum
3.5. Growth and Morphological Traits of V. denseserrulata
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheffer, M.; Hosper, S.H.; Meijer, M.-L.; Moss, B.; Jeppesen, E. Alternative Equilibria in Shallow Lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef] [PubMed]
- The Structuring Role of Submerged Macrophytes in Lakes; Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. (Eds.) Ecological Studies; Springer: New York, NY, USA, 1998; Volume 131, ISBN 978-1-4612-6871-0. [Google Scholar]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global Loss of Aquatic Vegetation in Lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Botrel, M.; Maranger, R. Global Historical Trends and Drivers of Submerged Aquatic Vegetation Quantities in Lakes. Glob. Change Biol. 2023, 29, 2493–2509. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, T.L.; Peder Jensen, J.; Jeppesen, E.; Søndergaard, M. Response of Submerged Macrophytes in Danish Lakes to Nutrient Loading Reductions and Biomanipulation. Hydrobiologia 2003, 506–509, 641–649. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Zhong, P.; Zhang, X.; Ning, J.; Larsen, S.E.; Chen, D.; Gao, Y.; He, H.; Jeppesen, E. Successful Restoration of a Tropical Shallow Eutrophic Lake: Strong Bottom-up but Weak Top-down Effects Recorded. Water Res. 2018, 146, 88–97. [Google Scholar] [CrossRef]
- Zeng, L.; He, F.; Dai, Z.; Xu, D.; Liu, B.; Zhou, Q.; Wu, Z. Effect of Submerged Macrophyte Restoration on Improving Aquatic Ecosystem in a Subtropical, Shallow Lake. Ecol. Eng. 2017, 106, 578–587. [Google Scholar] [CrossRef]
- Bakker, E.S.; Sarneel, J.M.; Gulati, R.D.; Liu, Z.; van Donk, E. Restoring Macrophyte Diversity in Shallow Temperate Lakes: Biotic versus Abiotic Constraints. Hydrobiologia 2013, 710, 23–37. [Google Scholar] [CrossRef]
- Hilt, S.; Gross, E.M.; Hupfer, M.; Morscheid, H.; Mählmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.-M.; Schneider, S.; et al. Restoration of Submerged Vegetation in Shallow Eutrophic Lakes—A Guideline and State of the Art in Germany. Limnologica 2006, 36, 155–171. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Jensen, J.P.; Havens, K.E.; Anneville, O.; Carvalho, L.; Coveney, M.F.; Deneke, R.; Dokulil, M.T.; Foy, B.; et al. Lake Responses to Reduced Nutrient Loading—An Analysis of Contemporary Long-Term Data from 35 Case Studies. Freshw. Biol. 2005, 50, 1747–1771. [Google Scholar] [CrossRef]
- Körner, S. Loss of Submerged Macrophytes in Shallow Lakes in North-Eastern Germany. Int. Rev. Hydrobiol. 2002, 87, 375–384. [Google Scholar] [CrossRef]
- Kuiper, J.J.; Verhofstad, M.J.J.M.; Louwers, E.; Bakker, E.S.; Brederveld, R.J.; van Gerven, L.P.A.; Janssen, A.B.G.; de Klein, J.J.M.; Mooij, W.M. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? Environ. Manage. 2017, 59, 619–634. [Google Scholar] [CrossRef]
- Klančnik, K.; Iskra, I.; Gradinjan, D.; Gaberščik, A. The Quality and Quantity of Light in the Water Column Are Altered by the Optical Properties of Natant Plant Species. Hydrobiologia 2018, 812, 203–212. [Google Scholar] [CrossRef]
- Kohzu, A.; Shimotori, K.; Imai, A. Effects of Macrophyte Harvesting on the Water Quality and Bottom Environment of Lake Biwa, Japan. Limnology 2019, 20, 83–92. [Google Scholar] [CrossRef]
- Luo, J.; Pu, R.; Duan, H.; Ma, R.; Mao, Z.; Zeng, Y.; Huang, L.; Xiao, Q. Evaluating the Influences of Harvesting Activity and Eutrophication on Loss of Aquatic Vegetations in Taihu Lake, China. Int. J. Appl. Earth Obs. Geoinform. 2020, 87, 102038. [Google Scholar] [CrossRef]
- Hussner, A.; Stiers, I.; Verhofstad, M.J.J.M.; Bakker, E.S.; Grutters, B.M.C.; Haury, J.; van Valkenburg, J.L.C.H.; Brundu, G.; Newman, J.; Clayton, J.S.; et al. Management and Control Methods of Invasive Alien Freshwater Aquatic Plants: A Review. Aquat. Bot. 2017, 136, 112–137. [Google Scholar] [CrossRef]
- Lin, X.; Wu, X.; Liu, D.; Ge, X.; Chen, L.; Gao, Z.; Song, S.; Zhong, C.; Xiang, Z. Effect of Different Hydrilla Verticillata Harvesting Intensities on Vallisneria Natans: Implications for Restoring and Managing Submerged Macrophytes. Plant Soil 2023, 1–15. [Google Scholar] [CrossRef]
- Best, E.P.H. The Impact of Mechanical Harvesting Regimes on the Aquatic and Shore Vegetation in Water Courses of Agricultural Areas of the Netherlands. Vegetatio 1994, 112, 57–71. [Google Scholar] [CrossRef]
- Sabbatini, M.; Murphy, K.J. Response of Callitriche and Potamogeton to Cutting, Dredging and Shade in English Drainage Channels. J. Aquat. Plant Manag. 1996, 34, 8–12. [Google Scholar]
- Agrawal, A.A. Overcompensation of Plants in Response to Herbivory and the By-Product Benefits of Mutualism. Trends Plant Sci. 2000, 5, 309–313. [Google Scholar] [CrossRef]
- Li, K.; Liu, Z.; Gu, B. Compensatory Growth of a Submerged Macrophyte (Vallisneria Spiralis) in Response to Partial Leaf Removal: Effects of Sediment Nutrient Levels. Aquat. Ecol. 2010, 44, 701–707. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Ge, X.; Gui, Z.; Zhou, M.; Bian, L.; Liu, L. Effects of Harvest Intensity on Myriophyllum Aquaticum Growth and Water Purification. J. Hydroecology 2022, 43, 95–102. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, L.; Ma, S.; Wu, Y.; Ye, Q.; Chang, Y.; Ye, Y.; Chen, K. Response of a Submerged Macrophyte (Vallisneria Natans) to Water Depth Gradients and Sediment Nutrient Concentrations. Sci. Total Environ. 2024, 912, 169154. [Google Scholar] [CrossRef]
- Su, H.; Wu, Y.; Xia, W.; Yang, L.; Chen, J.; Han, W.; Fang, J.; Xie, P. Stoichiometric Mechanisms of Regime Shifts in Freshwater Ecosystem. Water Res. 2019, 149, 302–310. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Zhao, Y.; Zhou, W.; Li, L.; Wang, B.; Cui, X.; Chen, J.; Song, Z. Divergences in Reproductive Strategy Explain the Distribution Ranges of Vallisneria Species in China. Aquat. Bot. 2016, 132, 41–48. [Google Scholar] [CrossRef]
- Madsen, J.d.; Hartleb, C.f.; Boylen, C.w. Photosynthetic Characteristics of Myriophyllum Spicatum and Six Submersed Aquatic Macrophyte Species Native to Lake George, New York. Freshw. Biol. 1991, 26, 233–240. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B. Environmental Influences on Aquatic Plants in Freshwater Ecosystems. Environ. Rev. 2006, 14, 89–136. [Google Scholar] [CrossRef]
- Min, F.; Zuo, J.; Liu, B.; Dai, Z.; Zeng, L.; He, F.; Wu, Z. Competition between Myriophyllum Spicatum L. and Vallisneria Natans (Lour.) Hara at Different Growth Stages. Plant Sci. J. 2016, 34, 47–55. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass Allocation to Leaves, Stems and Roots: Meta-analyses of Interspecific Variation and Environmental Control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Cahill, J.F., Jr. Interactions between Root and Shoot Competition Vary among Species. Oikos 2002, 99, 101–112. [Google Scholar] [CrossRef]
- Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment Interactions with Submersed Macrophyte Growth and Community Dynamics. Aquat. Bot. 1991, 41, 41–65. [Google Scholar] [CrossRef]
- Carignan, R.; Kalff, J. Phosphorus Sources for Aquatic Weeds: Water or Sediments? Science 1980, 207, 987–989. [Google Scholar] [CrossRef]
- Jin, X.; Tu, Q. The Standard Methods for Observation and Analysis in Lake Eutrophication, 2nd ed.; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-521-15175-7. [Google Scholar]
- Hunt, R. Plant Growth Curves: The Functional Approach to Plant Growth Analysis; Edward Arnold: London, UK, 1982; ISBN 978-0-7131-2844-4. [Google Scholar]
- Liu, Y.; He, L.; Hilt, S.; Wang, R.; Zhang, H.; Ge, G. Shallow Lakes at Risk: Nutrient Enrichment Enhances Top-down Control of Macrophytes by Invasive Herbivorous Snails. Freshw. Biol. 2021, 66, 436–446. [Google Scholar] [CrossRef]
- Kebrom, T.H. A Growing Stem Inhibits Bud Outgrowth—The Overlooked Theory of Apical Dominance. Front. Plant Sci. 2017, 8, 1874. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ding, M.; Jeppesen, E. Variation in Growth, Reproduction, and Resource Allocation in an Aquatic Plant, Vallisneria Spinulosa: The Influence of Amplitude and Frequency of Water Level Fluctuations. Aquat. Sci. 2020, 82, 81. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource Limitation in Plants-An Economic Analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Yoshizuka, E.M.; Roach, D.A. Plastic Growth Responses to Simulated Herbivory. Int. J. Plant Sci. 2011, 172, 521–529. [Google Scholar] [CrossRef]
- Chambers, P.A.; Prepas, E.E. Competition and Coexistence in Submerged Aquatic Plant Communities: The Effects of Species Interactions versus Abiotic Factors. Freshw. Biol. 1990, 23, 541–550. [Google Scholar] [CrossRef]
- Hao, B.; Wu, H.; Shi, Q.; Liu, G.; Xing, W. Facilitation and Competition among Foundation Species of Submerged Macrophytes Threatened by Severe Eutrophication and Implications for Restoration. Ecol. Eng. 2013, 60, 76–80. [Google Scholar] [CrossRef]
- Xu, W.; Hu, W.; Deng, J.; Zhu, J.; Li, Q. Effects of Harvest Management of Trapa Bispinosa on an Aquatic Macrophyte Community and Water Quality in a Eutrophic Lake. Ecol. Eng. 2014, 64, 120–129. [Google Scholar] [CrossRef]
- Segre, H.; DeMalach, N.; Henkin, Z.; Kadmon, R. Quantifying Competitive Exclusion and Competitive Release in Ecological Communities: A Conceptual Framework and a Case Study. PLoS ONE 2016, 11, e0160798. [Google Scholar] [CrossRef]
- Carpenter, S.R. Mechanical Cutting of Submersed Macrophytes: Immediate Effects on Littoral Water Chemistry and Metabolism. Water Res. 1978, 12, 55–57. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-429-18923-4. [Google Scholar]
- Xu, W.; Hu, W.; Deng, J.; Zhu, J.; Li, Q. How Do Water Depth and Harvest Intensity Affect the Growth and Reproduction of Elodea Nuttallii (Planch.) St. John? J. Plant Ecol. 2016, 9, 212–223. [Google Scholar] [CrossRef]
TN | TP | Chl-a | K30 | |||||
---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | χ2 | p | |
V. denseserrulata | 6.3 | 0.01 | 2 | 0.2 | 3.9 | 0.05 | 19.3 | <0.001 |
Harvest | 0.7 | 0.4 | 0 | 0.8 | 0.1 | 0.8 | 4.1 | 0.04 |
Time | 3.2 | 0.1 | 1.1 | 0.3 | 156.4 | <0.001 | 4.0 | 0.04 |
V. denseserrulata × Harvest | 0.9 | 0.3 | 1.2 | 0.3 | 0.3 | 0.6 | 4.2 | 0.04 |
V. denseserrulata × Time | 4.4 | 0.04 | 0 | 0.9 | 9.6 | 0.001 | 14.0 | <0.001 |
Harvesting × Time | 0.5 | 0.5 | 0.1 | 0.8 | 0.1 | 0.8 | 4.7 | 0.03 |
V. denseserrulata × Harvest × Time | 1 | 0.3 | 0.3 | 0.6 | 8.8 | 0.003 | 1.1 | 0.3 |
Traits | V. denseserrulata | Harvest | V. denseserrulata × Harvest | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Cumulative weight | 72.5 | <0.001 | 0.1 | 0.7 | 0.3 | 0.6 |
RGR | 25.8 | <0.001 | 0.1 | 0.8 | 0.4 | 0.5 |
Below/Above-ground biomass ratio | 1.4 | 0.3 | 10.2 | 0.008 | 9.6 | 0.009 |
Branch number | 6.1 | 0.02 | 2.0 | 0.2 | 0.1 | 0.8 |
Internode length of main stem | 11.9 | <0.001 | 4.2 | 0.04 | 0.2 | 0.6 |
Plant number | 11.9 | 0.005 | 1.0 | 0.3 | 0.1 | 0.8 |
Root surface area | 13.2 | <0.001 | 14.0 | <0.001 | 4.6 | 0.03 |
Root volume | 6.5 | 0.01 | 10.8 | 0.002 | 4.2 | 0.04 |
Root number per plant | 13.0 | <0.001 | 0.1 | 0.8 | 0.8 | 0.4 |
Maximum root length | 32.0 | <0.001 | 1.2 | 0.3 | 1.9 | 0.2 |
Root crossings | 62.3 | <0.001 | 3.5 | 0.07 | 2.3 | 0.1 |
Root tips | 27.6 | <0.001 | 6.5 | 0.01 | 6.2 | 0.02 |
Root forks | 47.1 | <0.001 | 10.7 | 0.002 | 6.0 | 0.02 |
Total root length | 32.6 | <0.001 | 8.6 | 0.004 | 2.5 | 0.1 |
Diameter of main stem | 5.2 | 0.03 | 2.9 | 0.09 | 0.6 | 0.4 |
Individual weight | 0.0 | 0.96 | 18.8 | <0.001 | 0.0 | 0.99 |
Root average diameter | 0.4 | 0.5 | 15.5 | <0.001 | 1.9 | 0.2 |
Stem length | 18.6 | <0.001 | 183.0 | <0.001 | 19.4 | <0.001 |
Leaf number per plant | 0.2 | 0.6 | 28.4 | <0.001 | 3.1 | 0.08 |
Node numbers of main stem | 0.0 | 0.9 | 89.9 | <0.001 | 4.29 | 0.04 |
Traits | F | p |
---|---|---|
Total biomass | 7.4 | 0.03 |
RGR | 6.6 | 0.04 |
Plant number | 1.0 | 0.4 |
Height | 8.3 | 0.01 |
Individual weight | 4.8 | 0.04 |
Below/Above-ground biomass ratio | 0.0 | 0.9 |
Leaf number per plant | 0.36 | 0.6 |
Leaf length | 7.6 | 0.01 |
Leaf width | 6.9 | 0.01 |
Leaf thickness | 0.6 | 0.4 |
Internode length of stolon | 0.9 | 0.4 |
Diameter of the stolon | 0.0 | 0.98 |
Root number per plant | 0.0 | 0.9 |
Maximum root length | 0.0 | 0.98 |
Total root length | 0.6 | 0.4 |
Root surface area | 0.0 | 0.98 |
Root average diameter | 0.77 | 0.4 |
Root volume | 0.2 | 0.7 |
Root tips | 2.7 | 0.1 |
Root forks | 0.0 | 0.9 |
Root crossings | 1.0 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Gao, J.; Wang, Q.; Zhen, W.; Gao, Y.; Huang, X.; He, H.; Guan, B.; Li, K.; Liu, Z.; et al. Harvest of Myriophyllum spicatum Facilitates the Growth of Vallisneria denseserrulata but Has No Significant Effects on Water Quality in a Mesocosm Experiment. Water 2024, 16, 2441. https://doi.org/10.3390/w16172441
Lin Z, Gao J, Wang Q, Zhen W, Gao Y, Huang X, He H, Guan B, Li K, Liu Z, et al. Harvest of Myriophyllum spicatum Facilitates the Growth of Vallisneria denseserrulata but Has No Significant Effects on Water Quality in a Mesocosm Experiment. Water. 2024; 16(17):2441. https://doi.org/10.3390/w16172441
Chicago/Turabian StyleLin, Zhenmei, Jian Gao, Qianhong Wang, Wei Zhen, Yiming Gao, Xiaolong Huang, Hu He, Baohua Guan, Kuanyi Li, Zhengwen Liu, and et al. 2024. "Harvest of Myriophyllum spicatum Facilitates the Growth of Vallisneria denseserrulata but Has No Significant Effects on Water Quality in a Mesocosm Experiment" Water 16, no. 17: 2441. https://doi.org/10.3390/w16172441
APA StyleLin, Z., Gao, J., Wang, Q., Zhen, W., Gao, Y., Huang, X., He, H., Guan, B., Li, K., Liu, Z., & Yu, J. (2024). Harvest of Myriophyllum spicatum Facilitates the Growth of Vallisneria denseserrulata but Has No Significant Effects on Water Quality in a Mesocosm Experiment. Water, 16(17), 2441. https://doi.org/10.3390/w16172441