Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Collection and Analysis
2.3. Multivariate Statistical Analysis
2.4. Pollution Evaluation Indices
2.4.1. Heavy Metal Pollution Index (HPI)
2.4.2. Metal Index (MI)
2.4.3. Degree of Contamination (Cd)
2.4.4. Ecological Risk Index (ERI)
2.4.5. Pollution Index (PI)
2.5. Human Health Risk Assessment (HHRA)
3. Results and Discussion
3.1. HMs Analysis and Spatial Variation
3.2. Multivariate Statistical Analysis
3.2.1. Correlation Matrix Analysis
3.2.2. Principal Component Analysis
3.2.3. Hierarchical Cluster Analysis
3.3. Pollution Assessment Using HMs Pollution Indices
3.3.1. Heavy Metal Pollution Index (HPI)
3.3.2. Metal Index (MI)
3.3.3. Degree of Contamination (Cd)
3.3.4. Ecological Risk Index (ERI)
3.3.5. Pollution Index (PI)
3.4. Human Health Risk Assessment (HHRA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Yang, X.; Cui, Z.; Ren, L.; Jiang, S.; Liu, Y.; Yuan, S. The Impact of Human Activities on Blue-Green Water Resources and Quantification of Water Resource Scarcity in the Yangtze River Basin. Sci. Total Environ. 2024, 909, 168550. [Google Scholar] [CrossRef]
- Andrabi, S.; Bakhtiyar, Y.; Yousuf, T.; Akhtar, M.; Nissar, S. Water Quality Assessment in Relation to Fish Assemblage Using Multivariate Analysis in Manasbal Lake, Kashmir. Water Sci. 2024, 38, 92–108. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global Water Resources and the Role of Groundwater in a Resilient Water Future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Saleh, H.N.; Panahande, M.; Yousefi, M.; Asghari, F.B.; Oliveri Conti, G.; Talaee, E.; Mohammadi, A.A. Carcinogenic and Non-Carcinogenic Risk Assessment of Heavy Metals in Groundwater Wells in Neyshabur Plain, Iran. Biol. Trace Elem. Res. 2019, 190, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Abanyie, S.K.; Apea, O.B.; Abagale, S.A.; Amuah, E.E.Y.; Sunkari, E.D. Sources and Factors Influencing Groundwater Quality and Associated Health Implications: A Review. Emerg. Contam. 2023, 9, 100207. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Zhang, Y.; Zhang, X.; Xiao, Y.; Duo, J.; Huang, X.; Sun, M.; Lv, G. Hydrochemical, D–O–Sr Isotopic and Electromagnetic Characteristics of Geothermal Waters from the Erdaoqiao Area, SW China: Insights into Genetic Mechanism and Scaling Potential. Ore Geol. Rev. 2023, 158, 105486. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Zhou, Y.; Chen, J.; Wang, H.; Ren, W.; Qu, W. Cumulative Health Risk Assessment of Multiple Chemicals in Groundwater Based on Deterministic and Monte Carlo Models in a Large Semiarid Basin. J. Clean. Prod. 2022, 352, 131567. [Google Scholar] [CrossRef]
- Islam, M.S. Groundwater: Sources, Functions, and Quality. In Hydrogeochemical Evaluation and Groundwater Quality; Springer Nature: Cham, Switzerland, 2023; pp. 17–36. ISBN 978-3-031-44304-6. [Google Scholar]
- Sharma, K.; Rajan, S.; Nayak, S.K. Chapter 1—Water Pollution: Primary Sources and Associated Human Health Hazards with Special Emphasis on Rural Areas. Water Resour. Manag. Rural. Dev. 2024, 35, 3–14. [Google Scholar]
- Maharjan, A.K.; Kamei, T.; Amatya, I.M.; Mori, K.; Kazama, F.; Toyama, T. Ammonium-Nitrogen (NH4+-N) Removal from Groundwater by a Dropping Nitrification Reactor: Characterization of NH4+-N Transformation and Bacterial Community in the Reactor. Water 2020, 12, 599. [Google Scholar] [CrossRef]
- Nurtazin, S.; Pueppke, S.; Ospan, T.; Mukhitdinov, A.; Elebessov, T. Quality of Drinking Water in the Balkhash District of Kazakhstan’s Almaty Region. Water 2020, 12, 392. [Google Scholar] [CrossRef]
- Rao, K.N.; Latha, P.S. Groundwater Quality Assessment Using Water Quality Index with a Special Focus on Vulnerable Tribal Region of Eastern Ghats Hard Rock Terrain, Southern India. Arab. J. Geosci. 2019, 12, 267. [Google Scholar] [CrossRef]
- Kana, A.A. Heavy Metal Assessment of Groundwater Quality in Part of Karu, Central Nigeria. Water Pract. Technol. 2022, 17, 1802–1817. [Google Scholar] [CrossRef]
- Feng, B.; Ma, Y.; Qi, Y.; Zhong, Y.; Sha, X. Health Risk Assessment of Groundwater Nitrogen Pollution in Yinchuan Plain. J. Contam. Hydrol. 2022, 249, 104031. [Google Scholar] [CrossRef] [PubMed]
- Marghade, D. Detailed Geochemical Assessment & Indexing of Shallow Groundwater Resources in Metropolitan City of Nagpur (Western Maharashtra, India) with Potential Health Risk Assessment of Nitrate Enriched Groundwater for Sustainable Development. Geochemistry 2020, 80, 125627. [Google Scholar] [CrossRef]
- Toi Bissang, B.; Aragón-Barroso, A.J.; Baba, G.; González-López, J.; Osorio, F. Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo. Water 2024, 16, 471. [Google Scholar] [CrossRef]
- Saddik, M.; Fadili, A.; Makan, A. Assessment of Heavy Metal Contamination in Surface Sediments along the Mediterranean Coast of Morocco. Environ. Monit. Assess. 2019, 191, 197. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L.; Narany, T.S.; Tiri, A. Evaluation of Potential Health Risk of Heavy Metals in Groundwater Using the Integration of Indicator Kriging and Multivariate Statistical Methods. Groundw. Sustain. Dev. 2017, 4, 12–22. [Google Scholar] [CrossRef]
- Khan, M.; Ellahi, A.; Niaz, R.; Ghoneim, M.E.; Tag-eldin, E.; Rashid, A. Water Quality Assessment of Alpine Glacial Blue Water Lakes and Glacial-Fed Rivers. Geomat. Nat. Hazards Risk 2022, 13, 2597–2617. [Google Scholar] [CrossRef]
- Yin, X.; Shao, P.; Ding, L.; Xi, Y.; Zhang, K.; Yang, L.; Shi, H.; Luo, X. Protonation of Rhodanine Polymers for Enhancing the Capture and Recovery of Ag+ from Highly Acidic Wastewater. Environ. Sci. Nano 2019, 6, 3307–3315. [Google Scholar] [CrossRef]
- Ge, X.; Ma, Y.; Song, X.; Wang, G.; Zhang, H.; Zhang, Y.; Zhao, H. β-FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. ACS Appl. Mater. Interfaces 2017, 9, 13480–13490. [Google Scholar] [CrossRef]
- Aithani, D.; Kushawaha, J. Heavy Metals Contamination in Environment. In Remediation of Heavy Metals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 15–30. ISBN 978-1-119-85358-9. [Google Scholar]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Lace, A.; Cleary, J. A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors 2021, 9, 60. [Google Scholar] [CrossRef]
- Kou, B.; Yuan, Y.; Zhu, X.; Ke, Y.; Wang, H.; Yu, T.; Tan, W. Effect of Soil Organic Matter-Mediated Electron Transfer on Heavy Metal Remediation: Current Status and Perspectives. Sci. Total Environ. 2024, 917, 170451. [Google Scholar] [CrossRef]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic Amendments for in Situ Immobilization of Heavy Metals in Soil: A Review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.U.; Haider, Z.; Munir, R.; Zulfiqar, U.; Rehman, M.; Javaid, M.H.; Ahmad, I.; Nana, C.; Saeed, M.S.; Ali, B.; et al. The Synergistic Potential of Biochar and Nanoparticles in Phytoremediation and Enhancing Cadmium Tolerance in Plants. Chemosphere 2024, 354, 141672. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S.; et al. Environmental Persistence, Bioaccumulation, and Ecotoxicology of Heavy Metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Bețianu, C.; Cozma, P.; Gavrilescu, M. Human Health Hazards and Risks Generated by the Bioaccumulation of Lead from the Environment in the Food Chain. In Lead Toxicity Mitigation: Sustainable Nexus Approaches; Kumar, N., Jha, A.K., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 73–123. ISBN 978-3-031-46146-0. [Google Scholar]
- Sable, H.; Singh, V.; Kumar, V.; Roy, A.; Pandit, S.; Kaur, K.; Rustagi, S.; Malik, S. Toxicological and Bioremediation Profiling of Nonessential Heavy Metals (Mercury, Chromium, Cadmium, Aluminium) and Their Impact on Human Health: A Review. Toxicol. Anal. Clin. 2024, 36, 205–234. [Google Scholar] [CrossRef]
- Tyczyńska, M.; Gędek, M.; Brachet, A.; Stręk, W.; Flieger, J.; Teresiński, G.; Baj, J. Trace Elements in Alzheimer’s Disease and Dementia: The Current State of Knowledge. J. Clin. Med. 2024, 13, 2381. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; De Maio, A.C.; Basile, G.; Facente, A.; Scali, E.; Andreu, I.; Sinicropi, M.S.; Iacopetta, D.; Catalano, A. Phytochemicals Involved in Mitigating Silent Toxicity Induced by Heavy Metals. Foods 2024, 13, 978. [Google Scholar] [CrossRef]
- Anchidin-Norocel, L.; Gutt, G.; Tătăranu, E.; Amariei, S. Electrochemical Sensors and Biosensors: Effective Tools for Detecting Heavy Metals in Water and Food with Possible Implications for Children’s Health. Int. J. Electrochem. Sci. 2024, 19, 100643. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Q.; Wang, H.; Yang, J.; Zhang, X.; Li, Z.; Martín, J.D. A Hydrochemical and Isotopic Approach for Source Identification and Health Risk Assessment of Groundwater Arsenic Pollution in the Central Yinchuan Basin. Environ. Res. 2023, 231, 116153. [Google Scholar] [CrossRef] [PubMed]
- Budi, H.S.; Opulencia, M.J.C.; Afra, A.; Abdelbasset, W.K.; Abdullaev, D.; Majdi, A.; Taherian, M.; Ekrami, H.A.; Mohammadi, M.J. Source, Toxicity and Carcinogenic Health Risk Assessment of Heavy Metals. Rev. Environ. Health 2022, 39, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Vashishth, R. From Water to Plate: Reviewing the Bioaccumulation of Heavy Metals in Fish and Unraveling Human Health Risks in the Food Chain. Emerg. Contam. 2024, 10, 100358. [Google Scholar] [CrossRef]
- Althomali, R.H.; Abbood, M.A.; Saleh, E.A.M.; Djuraeva, L.; Abdullaeva, B.S.; Habash, R.T.; Alhassan, M.S.; Alawady, A.H.R.; Alsaalamy, A.H.; Najafi, M.L. Exposure to Heavy Metals and Neurocognitive Function in Adults: A Systematic Review. Environ. Sci. Eur. 2024, 36, 18. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Osman, A.I.; Hosny, M.; Elgarahy, A.M.; Eltaweil, A.S.; Rooney, D.W.; Chen, Z.; Rahim, N.S.; Sekar, M.; Gopinath, S.C.B.; et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega 2024, 9, 5100–5126. [Google Scholar] [CrossRef]
- Howard, R.; Al-Mayhani, T.; Carr, A.; Leff, A.; Morrow, J.; Rossor, A. Toxic, Metabolic and Physical Insults to the Nervous System. In Neurology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 903–943. ISBN 978-1-119-71567-2. [Google Scholar]
- Shukla, S.; Mbingwa, G.; Khanna, S.; Dalal, J.; Sankhyan, D.; Malik, A.; Badhwar, N. Environment and Health Hazards Due to Military Metal Pollution: A Review. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100857. [Google Scholar] [CrossRef]
- Witkowski, A.J.; Dąbrowska, D.; Wróbel, J. Groundwater Quality Assessment in the Area of the Zinc Smelter in Miasteczko Śląskie (Poland) Using Selected Metal Indices. Water 2024, 16, 279. [Google Scholar] [CrossRef]
- Zainudin, A.M.; Zulkefli, S.N.; Looi, L.J.; Aris, A.Z.; Sefie, A.; Isa, N.M. Spatial and Temporal Evaluation of Groundwater Hydrochemistry in an Active Phreatic Zone of Developed Basin in Selangor, Malaysia. Appl. Geochem. 2023, 154, 105656. [Google Scholar] [CrossRef]
- Singh, K.K.; Tewari, G.; Kumar, S.; Busa, R.; Chaturvedi, A.; Rathore, S.S.; Singh, R.K.; Gangwar, A. Understanding Urban Groundwater Pollution in the Upper Gangetic Alluvial Plains of Northern India with Multiple Industries and Their Impact on Drinking Water Quality and Associated Health Risks. Groundw. Sustain. Dev. 2023, 21, 100902. [Google Scholar] [CrossRef]
- Sarhat, A.R.; Al-Obaidi, B.S. Contamination by Heavy Metals in the Sediments of Sirwan/Diyala River, Garmian Region. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 022010. [Google Scholar] [CrossRef]
- Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.; Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K.; Singh, R.P.; Anshumali; Kumari, D.; Jha, P.K.; Mehta, P. Characterization of Heavy Metal Pollution in an Anthropogenically and Geologically Influenced Semi-Arid Region of East India and Assessment of Ecological and Human Health Risks. Sci. Total Environ. 2020, 705, 135801. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Bhattacharjee, S.; Mondal, G.C.; Kumar, V.; Singh, P.K.; Singh, A.K. Exploring New Correlation between Hazard Index and Heavy Metal Pollution Index in Groundwater. Ecol. Indic. 2019, 97, 239–246. [Google Scholar] [CrossRef]
- Sawut, R.; Kasim, N.; Maihemuti, B.; Hu, L.; Abliz, A.; Abdujappar, A.; Kurban, M. Pollution Characteristics and Health Risk Assessment of Heavy Metals in the Vegetable Bases of Northwest China. Sci. Total Environ. 2018, 642, 864–878. [Google Scholar] [CrossRef]
- Patel, N.; Bhatt, D. Insights of Ground Water Quality Assessment Methods—A Review. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Kandel, K.; Sharma, C.M.; Rawat, B.; Paudyal, R.; Li, M.; Pandey, A.; Zhang, Q. Synthesis Analysis of Hydrogeochemistry of Nepal Himalayan Rivers: Perspective from Major Ions and Trace Elements. Ecol. Indic. 2024, 163, 112080. [Google Scholar] [CrossRef]
- Ribeiro, P.G.; de Oliveira, C.; Guerra, M.B.B.; de Carvalho, T.S.; Martins, G.C.; Pereira, W.V.d.S.; Ramos, S.J.; Guilherme, L.R.G. Rare Earths as Emerging Trace Element Contaminants in the Soil. Curr. Pollut. Rep. 2024, 10, 443–458. [Google Scholar] [CrossRef]
- Onyena, A.P.; Folorunso, O.M.; Nwanganga, N.; Udom, G.J.; Ekhator, O.C.; Frazzoli, C.; Ruggieri, F.; Bocca, B.; Orisakwe, O.E. Engaging One Health in Heavy Metal Pollution in Some Selected Nigerian Niger Delta Cities. A Systematic Review of Pervasiveness, Bioaccumulation and Subduing Environmental Health Challenges. Biol. Trace Elem. Res. 2024, 202, 1356–1389. [Google Scholar] [CrossRef]
- Zhang, S.; Han, Y.; Peng, J.; Chen, Y.; Zhan, L.; Li, J. Human Health Risk Assessment for Contaminated Sites: A Retrospective Review. Environ. Int. 2023, 171, 107700. [Google Scholar] [CrossRef]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; He, S.; Yuan, H.; Ji, D.; Li, R.; Song, Y.; Xu, W.; Liu, B.; Xu, Y. Groundwater Environment and Health Risk Assessment in an In Situ Oil Shale Mining Area. Water 2024, 16, 185. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, R.; Huang, X.; Yan, Y. Health Risk Appraisal of Trace Elements in Groundwater in an Urban Area: A Case Study of Sichuan Basin, Southwest China. Water 2023, 15, 4286. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Soleimani, H.; Shahsavani, S.; Parseh, I.; Mohammadpour, A.; Azadbakht, O.; Javanmardi, P.; Faraji, H.; Babakrpur Nalosi, K. Comprehensive Health Risk Analysis of Heavy Metal Pollution Using Water Quality Indices and Monte Carlo Simulation in R Software. Sci. Rep. 2023, 13, 15817. [Google Scholar] [CrossRef] [PubMed]
- Munene, E.N.; Hashim, N.O.; Ambusso, W.N. Human Health Risk Assessment of Heavy Metal Concentration in Surface Water of Sosian River, Eldoret Town, Uasin-Gishu County Kenya. MethodsX 2023, 11, 102298. [Google Scholar] [CrossRef]
- Selvam, S.; Manimaran, G.; Sivasubramanian, P.; Balasubramanian, N.; Seshunarayana, T. GIS-Based Evaluation of Water Quality Index of Groundwater Resources around Tuticorin Coastal City, South India. Environ. Earth Sci. 2014, 71, 2847–2867. [Google Scholar] [CrossRef]
- Nduka, J.K.; Kelle, H.I.; Umeh, T.C.; Okafor, P.C.; Iloka, G.C.; Okoyomon, E. Ecological and Health Risk Assessment of Radionuclides and Heavy Metals of Surface and Ground Water of Ishiagu–Ezillo Quarry Sites of Ebonyi, Southeast Nigeria. J. Hazard. Mater. Adv. 2023, 10, 100307. [Google Scholar] [CrossRef]
- Dippong, T.; Mihali, C.; Avram, A. Evaluating Groundwater Metal and Arsenic Content in Piatra, North-West of Romania. Water 2024, 16, 539. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Ullah, Z.; Ali, A.; Sardar, T.; Iqbal, J.; Gao, X.; Bundschuh, J.; Li, C.; Khattak, S.A.; et al. Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model. Int. J. Environ. Res. Public Health 2023, 20, 2113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tao, S.; Sun, Z.; Chen, Y.; Xu, J. Determination of Heavy Metals and Health Risk Assessment in Tap Water from Wuhan, China, a City with Multiple Drinking Water Sources. Water 2023, 15, 3709. [Google Scholar] [CrossRef]
- Egbueri, J.C. Groundwater Quality Assessment Using Pollution Index of Groundwater (PIG), Ecological Risk Index (ERI) and Hierarchical Cluster Analysis (HCA): A Case Study. Groundw. Sustain. Dev. 2020, 10, 100292. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Oueld Lhaj, M.; Dakak, H.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Zouahri, A. Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy 2024, 14, 1112. [Google Scholar] [CrossRef]
- El Azhari, H.; Cherif, E.K.; El Halimi, R.; Azzirgue, E.M.; Ou Larbi, Y.; Coren, F.; Salmoun, F. Predicting the Production and Depletion of Rare Earth Elements and Their Influence on Energy Sector Sustainability through the Utilization of Multilevel Linear Prediction Mixed-Effects Models with R Software. Sustainability 2024, 16, 1951. [Google Scholar] [CrossRef]
- Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; Esteves Da Silva, J.C.G.; Salmoun, F. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2022, 15, 130. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Aabad, M.; Bouaziz, A.; Falisse, A.; Martin, J.F. Improving Yield and Water Use Efficiency of Sugarcane under Drip. Rev. Marocaine Des Sci. Agron. Vétérinaires 2016, 5, 32–40. [Google Scholar]
- Mrabet, L.; Loukili, A.; Belghyti, D.; Attarassi, B. Impact of Leachates from the Landfill in the Kenitra City (Morocco) on the Water Resources. Int. J. Appl. Environ. Sci. 2019, 14, 541–553. [Google Scholar]
- Chow, A.T.-S.; Ulus, Y.; Huang, G.; Kline, M.A.; Cheah, W.-Y. Challenges in Quantifying and Characterizing Dissolved Organic Carbon: Sampling, Isolation, Storage, and Analysis. J. Environ. Qual. 2022, 51, 837–871. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Chen, B.; He, M.; Hu, B. Chip-Based Array Magnetic Solid Phase Microextraction on-Line Coupled with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Heavy Metals in Cells. Analyst 2015, 140, 5619–5626. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, X.; Xu, J.; Pan, G.; Gu, F. Anthropogenic Impacts on Isotopic and Geochemical Characteristics of Urban Streams: A Case Study in Wuhan, China. Environ. Sci. Pollut. Res. 2021, 28, 39186–39198. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; Kafrawy, S.B.E.; Ahmed, M.H. Geomatics Based Approach for Assessing Qaroun Lake Pollution. Egypt. J. Remote Sens. Space Sci. 2019, 22, 279–296. [Google Scholar] [CrossRef]
- Pan, Y.; She, D.; Ding, J.; Abulaiti, A.; Zhao, J.; Wang, Y.; Liu, R.; Wang, F.; Shan, J.; Xia, Y. Coping with Groundwater Pollution in High-Nitrate Leaching Areas: The Efficacy of Denitrification. Environ. Res. 2024, 250, 118484. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Sunitha, V.; Reddy, Y.S.; Suvarna, B.; Reddy, B.M.; Reddy, M.R. Data on Water Quality Index Development for Groundwater Quality Assessment from Obulavaripalli Mandal, YSR District, A.P India. Data Brief 2019, 24, 103846. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.; Meng, X.; Wen, X.; Wu, J.; Yu, H.; Wu, M. Contamination Characteristics, Source Identification, and Source-Specific Health Risks of Heavy Metal(Loid)s in Groundwater of an Arid Oasis Region in Northwest China. Sci. Total Environ. 2022, 841, 156733. [Google Scholar] [CrossRef]
- WHO World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0.
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Gaikwad, S.K.; Muley, A.A.; Varade, A.M. Health Risk Assessment of Heavy Metal Contamination in Groundwater of Kadava River Basin, Nashik, India. Model. Earth Syst. Environ. 2018, 4, 969–980. [Google Scholar] [CrossRef]
- Tamasi, G.; Cini, R. Heavy Metals in Drinking Waters from Mount Amiata (Tuscany, Italy). Possible Risks from Arsenic for Public Health in the Province of Siena. Sci. Total Environ. 2004, 327, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Ahmed, Z.; Howladar, M.F. Evaluation of Heavy Metal Contamination in Water, Soil and Plant around the Open Landfill Site Mogla Bazar in Sylhet, Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100311. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing Heavy Metal Contamination in Sado Estuary Sediment: An Index Analysis Approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Edet, A.E.; Offiong, O.E. Evaluation of Water Quality Pollution Indices for Heavy Metal Contamination Monitoring. A Study Case from Akpabuyo-Odukpani Area, Lower Cross River Basin (Southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Megremi, I. Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities. Minerals 2021, 11, 775. [Google Scholar] [CrossRef]
- Botle, A.; Salgaonkar, S.; Tiwari, R.; Ambadekar, S.; Barabde, G.R. Brief Status of Contamination in Surface Water of Rivers of India by Heavy Metals: A Review with Pollution Indices and Health Risk Assessment. Environ. Geochem. Health 2023, 45, 2779–2801. [Google Scholar] [CrossRef]
- Sudharshan Reddy, Y.; Sunitha, V. Assessment of Heavy Metal Pollution and Its Health Implications in Groundwater for Drinking Purpose around Inactive Mines, SW Region of Cuddapah Basin, South India. Total Environ. Res. Themes 2023, 8, 100069. [Google Scholar] [CrossRef]
- Goher, M.E.; Farhat, H.I.; Abdo, M.H.; Salem, S.G. Metal Pollution Assessment in the Surface Sediment of Lake Nasser, Egypt. Egypt. J. Aquat. Res. 2014, 40, 213–224. [Google Scholar] [CrossRef]
- Bineshpour, M.; Payandeh, K.; Nazarpour, A.; Sabzalipour, S. Status, Source, Human Health Risk Assessment of Potential Toxic Elements (PTEs), and Pb Isotope Characteristics in Urban Surface Soil, Case Study: Arak City, Iran. Environ. Geochem. Health 2021, 43, 4939–4958. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Jesuraja, K.; Roy, P.D.; Venkatramanan, S.; Khan, R.; Shukla, S.; Manimaran, D.; Muthukumar, P. Human Health Risk Assessment of Heavy Metal and Pathogenic Contamination in Surface Water of the Punnakayal Estuary, South India. Chemosphere 2022, 298, 134027. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency; Office of Emergency; Remedial Response. Risk Assessment Guidance for Superfund: Pt. A. Human Health Evaluation Manual; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1.
- Tokatli, C.; Ustaoğlu, F. Health Risk Assessment of Toxicants in Meriç River Delta Wetland, Thrace Region, Turkey. Environ. Earth Sci. 2020, 79, 426. [Google Scholar] [CrossRef]
- Mahato, M.K.; Singh, P.K.; Tiwari, A.K.; Singh, A.K. Risk Assessment Due to Intake of Metals in Groundwater of East Bokaro Coalfield, Jharkhand, India. Expo. Health 2016, 8, 265–275. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global Evaluation of Heavy Metal Content in Surface Water Bodies: A Meta-Analysis Using Heavy Metal Pollution Indices and Multivariate Statistical Analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Regional Screening Level (RSL) Summary Table; United States Environmental Protection Agency: Washington, DC, USA, 2013.
- Das Sharma, S. Risk Assessment via Oral and Dermal Pathways from Heavy Metal Polluted Water of Kolleru Lake—A Ramsar Wetland in Andhra Pradesh, India. Environ. Anal. Health Toxicol. 2020, 35, e2020019. [Google Scholar] [CrossRef]
- Kumar, R.N.; Solanki, R.; Kumar, J.I.N. Seasonal Variation in Heavy Metal Contamination in Water and Sediments of River Sabarmati and Kharicut Canal at Ahmedabad, Gujarat. Environ. Monit. Assess. 2013, 185, 359–368. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Spatial Distribution of Metal(Loid)s in Groundwater of a Mining Dominated Area: Recognising Metal(Loid) Sources and Assessing Carcinogenic and Non-Carcinogenic Human Health Risk. Int. J. Environ. Anal. Chem. 2016, 96, 1313–1330. [Google Scholar] [CrossRef]
- Gao, B.; Gao, L.; Gao, J.; Xu, D.; Wang, Q.; Sun, K. Simultaneous Evaluations of Occurrence and Probabilistic Human Health Risk Associated with Trace Elements in Typical Drinking Water Sources from Major River Basins in China. Sci. Total Environ. 2019, 666, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk Analysis of Heavy Metal Concentration in Surface Waters across the Rural-Urban Interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef]
- Sinha, D.; Datta, S.; Mishra, R.; Agarwal, P.; Kumari, T.; Adeyemi, S.B.; Kumar Maurya, A.; Ganguly, S.; Atique, U.; Seal, S.; et al. Negative Impacts of Arsenic on Plants and Mitigation Strategies. Plants 2023, 12, 1815. [Google Scholar] [CrossRef]
- Singh, A.; Kostova, I. Health Effects of Heavy Metal Contaminants Vis-à-Vis Microbial Response in Their Bioremediation. Inorganica Chim. Acta 2024, 568, 122068. [Google Scholar] [CrossRef]
- Obasi, P.N.; Akudinobi, B.B. Potential Health Risk and Levels of Heavy Metals in Water Resources of Lead–Zinc Mining Communities of Abakaliki, Southeast Nigeria. Appl. Water Sci. 2020, 10, 184. [Google Scholar] [CrossRef]
- Mubeen, S.; Ni, W.; He, C.; Yang, Z. Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety. Agriculture 2023, 13, 471. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Haider, F.U.; Ahmad, M.; Hussain, S.; Maqsood, M.F.; Ishfaq, M.; Shahzad, B.; Waqas, M.M.; Ali, B.; Tayyab, M.N.; et al. Chromium Toxicity, Speciation, and Remediation Strategies in Soil-Plant Interface: A Critical Review. Front. Plant Sci. 2023, 13, 1081624. [Google Scholar] [CrossRef] [PubMed]
- Fahim, R.; Cheng, L.; Mishra, S. Structural and Functional Perspectives of Carbon Filter Media in Constructed Wetlands for Pollutants Abatement from Wastewater. Chemosphere 2023, 345, 140514. [Google Scholar] [CrossRef]
- Hassan, M.U.; Lihong, W.; Nawaz, M.; Ali, B.; Tang, H.; Rasheed, A.; Zain, M.; Alqahtani, F.M.; Hashem, M.; Qari, S.H.; et al. Silicon a Key Player to Mitigate Chromium Toxicity in Plants: Mechanisms and Future Prospective. Plant Physiol. Biochem. 2024, 208, 108529. [Google Scholar] [CrossRef]
- Samantara, M.K.; Padhi, R.K.; Sowmya, M.; Kumaran, P.; Satpathy, K.K. Heavy Metal Contamination, Major Ion Chemistry and Appraisal of the Groundwater Status in Coastal Aquifer, Kalpakkam, Tamil Nadu, India. Groundw. Sustain. Dev. 2017, 5, 49–58. [Google Scholar] [CrossRef]
- Mesquita, A.F.; Gonçalves, F.J.; Gonçalves, A.M. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review. Int. J. Environ. Res. Public Health 2023, 20, 3706. [Google Scholar] [CrossRef] [PubMed]
- Pant, R.; Mathpal, N.; Chauhan, R.; Singh, A.; Gupta, A. A Review of Mercury Contamination in Water and Its Impact on Public Health. In Mercury Toxicity Mitigation: Sustainable Nexus Approach; Springer Nature: Cham, Switzerland, 2024; pp. 93–115. [Google Scholar] [CrossRef]
- Vácha, R. Heavy Metal Pollution and Its Effects on Agriculture. Agronomy 2021, 11, 1719. [Google Scholar] [CrossRef]
- Zheng, X.; Fang, Y.; Lin, J.; Luo, J.; Li, S.; Aschner, M.; Jiang, Y. Signal Transduction Associated with Mn-Induced Neurological Dysfunction. Biol. Trace Elem. Res. 2023, 202, 1–12. [Google Scholar] [CrossRef]
- Mustafa, A.; Zulfiqar, U.; Mumtaz, M.Z.; Radziemska, M.; Haider, F.U.; Holatko, J.; Hammershmiedt, T.; Naveed, M.; Ali, H.; Kintl, A.; et al. Nickel (Ni) Phytotoxicity and Detoxification Mechanisms: A Review. Chemosphere 2023, 328, 138574. [Google Scholar] [CrossRef]
- Kazberuk, W.; Szulc, W.; Rutkowska, B. Use Bottom Sediment to Agriculture—Effect on Plant and Heavy Metal Content in Soil. Agronomy 2021, 11, 1077. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Nerušil, P.; Kunzová, E. Comparison of the Concentration of Risk Elements in Alluvial Soils Determined by pXRF In Situ, in the Laboratory, and by ICP-OES. Agronomy 2021, 11, 938. [Google Scholar] [CrossRef]
- Piwowarska, D.; Kiedrzyńska, E.; Jaszczyszyn, K. A Global Perspective on the Nature and Fate of Heavy Metals Polluting Water Ecosystems, and Their Impact and Remediation. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1436–1458. [Google Scholar] [CrossRef]
- Duan, M.; Li, T.; Liu, B.; Yin, S.; Zang, J.; Lv, C.; Zhao, G.; Zhang, T. Zinc Nutrition and Dietary Zinc Supplements. Crit. Rev. Food Sci. Nutr. 2023, 63, 1277–1292. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Mdarhri Alaoui, M.; Sanad, H.; Iben Halima, O.; Zouahri, A. Assessing the Evolution of Stability and Maturity in Co-Composting Sheep Manure with Green Waste Using Physico-Chemical and Biological Properties and Statistical Analyses: A Case Study of Botanique Garden in Rabat, Morocco. Agronomy 2024, 14, 1573. [Google Scholar] [CrossRef]
- Das, S.; Nag, S.K. Application of Multivariate Statistical Analysis Concepts for Assessment of Hydrogeochemistry of Groundwater—A Study in Suri I and II Blocks of Birbhum District, West Bengal, India. Appl. Water Sci. 2017, 7, 873–888. [Google Scholar] [CrossRef]
- Kumar, M.; Das, N.; Tripathi, S.; Verma, A.; Jha, P.K.; Bhattacharya, P.; Mahlknecht, J. Global Co-Occurrences of Multi-(Emerging)-Contaminants in the Hotspots of Arsenic Polluted Groundwater: A Pattern of Menace. Curr. Opin. Environ. Sci. Health 2023, 34, 100483. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal Variation of Soil Heavy Metals in China: The Pollution Status and Risk Assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Zhang, Q.-C.; Yan, C.-A.; Tang, G.-Y.; Zhang, M.-Y.; Ma, L.Q.; Gu, R.-H.; Xiang, P. Heavy Metal(loid)s in Agriculture Soils, Rice, and Wheat across China: Status Assessment and Spatiotemporal Analysis. Sci. Total Environ. 2023, 882, 163361. [Google Scholar] [CrossRef] [PubMed]
- George, S.E.; Wan, Y. Microbial Functionalities and Immobilization of Environmental Lead: Biogeochemical and Molecular Mechanisms and Implications for Bioremediation. J. Hazard. Mater. 2023, 457, 131738. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Chand, S.; Chand, S.; Rout, P.R.; Naik, S.K. Emerging Groundwater Contaminants: A Comprehensive Review on Their Health Hazards and Remediation Technologies. Groundw. Sustain. Dev. 2023, 20, 100868. [Google Scholar] [CrossRef]
- Kükrer, S.; Mutlu, E. Assessment of Surface Water Quality Using Water Quality Index and Multivariate Statistical Analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess. 2019, 191, 71. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Stefan, D.S.; Bosomoiu, M.; Teodorescu, G. The Behavior of Polymeric Pipes in Drinking Water Distribution System—Comparison with Other Pipe Materials. Polymers 2023, 15, 3872. [Google Scholar] [CrossRef]
Parameters | Si (µg/L) | Wi | MACi (µg/L) |
---|---|---|---|
As | 10 | 0.1349614 | 10 |
Cd | 3 | 0.4498715 | 30 |
Cr | 50 | 0.0269923 | 50 |
Cu | 2000 | 0.0006748 | 2000 |
Fe | 300 | 0.0044987 | 300 |
Hg | 6 | 0.2249357 | 6 |
Mn | 400 | 0.003374 | 400 |
Ni | 70 | 0.0192802 | 70 |
Pb | 10 | 0.1349614 | 10 |
Zn | 3000 | 0.0004499 | 3000 |
Total | 1 |
HPI Values | HPI Classification |
---|---|
<15 | Low water pollution |
15 < HPI < 30 | Medium water pollution |
>30 | High water pollution |
MI Values | MI Classification |
---|---|
<0.3 | Very pure |
0.3 < MI < 1 | Pure |
1 < MI < 2 | Slightly affected |
2 < MI < 4 | Moderately affected |
4 < MI < 6 | Strongly affected |
>6 | Seriously affected |
Cd Values | Cd Classification |
---|---|
<1 | Low |
1 < Cd < 3 | Medium |
>3 | High |
ERI Values | ERI Classification |
---|---|
<150 | Low ecological risk |
150 < ERI < 300 | Moderate ecological risk |
300 < ERI < 600 | Considerable ecological risk |
>600 | Very high ecological risk |
PI Values | PI Classification |
---|---|
<1 | No effect |
1 < PI < 2 | Slightly affected |
2 < PI <3 | Moderately affected |
3 < PI <5 | Strongly affected |
>5 | Seriously affected |
Parameters | Unit | Minimum | Maximum | WHO (2017) | Mean | St. Dev. | CV | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
As | (µg/L) | 0.13 | 11.02 | 10 | 3.01 | 2.93 | 0.97 | 1.57 | 1.61 |
Cd | 0.80 | 4.20 | 3 | 1.86 | 0.95 | 0.51 | 1.01 | 0.04 | |
Cr | 10.30 | 62.00 | 50 | 29.01 | 15.89 | 0.55 | 0.89 | −0.28 | |
Cu | 115.60 | 2289.60 | 2000 | 549.82 | 534.70 | 0.97 | 2.26 | 5.43 | |
Fe | 297.10 | 511.60 | 300 | 391.92 | 55.02 | 0.14 | 0.74 | −0.28 | |
Hg | 0.10 | 6.20 | 6 | 1.35 | 1.79 | 1.33 | 1.83 | 2.24 | |
Mn | 126.40 | 689.60 | 400 | 304.76 | 112.85 | 0.37 | 1.86 | 4.86 | |
Ni | 25.60 | 76.10 | 70 | 44.98 | 15.05 | 0.33 | 0.65 | −0.67 | |
Pb | 1.03 | 15.25 | 10 | 4.43 | 4.35 | 0.98 | 1.04 | −0.29 | |
Zn | 1057.50 | 4525.40 | 3000 | 1727.51 | 904.38 | 0.52 | 1.64 | 2.45 |
As | Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
As | 1 | |||||||||
Cd | −0.568 | 1 | ||||||||
Cr | −0.310 | 0.669 | 1 | |||||||
Cu | 0.532 | −0.588 | −0.451 | 1 | ||||||
Fe | −0.308 | 0.761 | 0.613 | 0.720 | 1 | |||||
Hg | 0.791 | −0.496 | 0.717 | 0.596 | −0.589 | 1 | ||||
Mn | 0.429 | −0.564 | −0.482 | 0.460 | 0.511 | 0.428 | 1 | |||
Ni | −0.585 | 0.895 | 0.701 | −0.532 | 0.709 | 0.578 | −0.446 | 1 | ||
Pb | −0.215 | 0.646 | 0.747 | −0.506 | 0.652 | 0.736 | −0.449 | 0.672 | 1 | |
Zn | 0.837 | −0.651 | −0.648 | 0.445 | 0.463 | 0.660 | 0.566 | 0.573 | −0.796 | 1 |
Parameters | Components | |
---|---|---|
PC1 | PC2 | |
As | 0.879 | −0.378 |
Cd | −0.361 | 0.840 |
Cr | −0.246 | 0.873 |
Cu | 0.705 | −0.386 |
Fe | −0.401 | 0.811 |
Hg | 0.814 | −0.230 |
Mn | 0.638 | −0.233 |
Ni | −0.272 | 0.826 |
Pb | −0.266 | 0.885 |
Zn | 0.848 | −0.358 |
Eigenvalue | 6.648 | 1.023 |
Variability (%) | 66.475 | 10.232 |
Cumulative (%) | 66.475 | 76.707 |
Samples | HPI Value | Class | MI Value | Class | Cd Value | Class | ERI Value | Class |
---|---|---|---|---|---|---|---|---|
P1 | 76.24 | High water pollution | 7.39 | Seriously affected | 6.95 | High | 52.48 | Low ecological risk |
P2 | 69.97 | High water pollution | 6.65 | Seriously affected | 6.21 | High | 49.18 | Low ecological risk |
P3 | 69.70 | High water pollution | 6.93 | Seriously affected | 6.49 | High | 48.84 | Low ecological risk |
P4 | 100.02 | High water pollution | 8.91 | Seriously affected | 8.47 | High | 67.09 | Low ecological risk |
P5 | 100.32 | High water pollution | 9.27 | Seriously affected | 8.83 | High | 66.89 | Low ecological risk |
P6 | 70.85 | High water pollution | 7.23 | Seriously affected | 6.79 | High | 48.95 | Low ecological risk |
P7 | 63.49 | High water pollution | 5.88 | Strongly affected | 5.44 | High | 44.67 | Low ecological risk |
P8 | 37.93 | High water pollution | 4.75 | Strongly affected | 4.31 | High | 26.37 | Low ecological risk |
P9 | 48.36 | High water pollution | 4.24 | Strongly affected | 3.80 | High | 34.61 | Low ecological risk |
P10 | 28.62 | Medium water pollution | 3.91 | Moderately affected | 3.47 | High | 22.69 | Low ecological risk |
P11 | 32.06 | High water pollution | 3.92 | Moderately affected | 3.48 | High | 25.31 | Low ecological risk |
P12 | 42.60 | High water pollution | 4.12 | Strongly affected | 3.68 | High | 32.51 | Low ecological risk |
P13 | 24.43 | Medium water pollution | 3.44 | Moderately affected | 3.00 | High | 19.93 | Low ecological risk |
P14 | 29.73 | Medium water pollution | 3.88 | Moderately affected | 3.44 | High | 23.08 | Low ecological risk |
P15 | 24.08 | Medium water pollution | 3.63 | Moderately affected | 3.19 | High | 18.79 | Low ecological risk |
P16 | 25.74 | Medium water pollution | 3.70 | Moderately affected | 3.26 | High | 19.85 | Low ecological risk |
P17 | 22.74 | Medium water pollution | 3.53 | Moderately affected | 3.09 | High | 18.31 | Low ecological risk |
P18 | 24.93 | Medium water pollution | 3.52 | Moderately affected | 3.08 | High | 19.32 | Low ecological risk |
P19 | 27.80 | Medium water pollution | 4.19 | Strongly affected | 3.74 | High | 21.53 | Low ecological risk |
P20 | 22.08 | Medium water pollution | 3.78 | Moderately affected | 3.34 | High | 17.69 | Low ecological risk |
P21 | 22.72 | Medium water pollution | 3.34 | Moderately affected | 2.90 | Medium | 17.30 | Low ecological risk |
P22 | 36.56 | High water pollution | 4.35 | Strongly affected | 3.91 | High | 26.61 | Low ecological risk |
P23 | 20.23 | Medium water pollution | 3.62 | Moderately affected | 3.18 | High | 16.91 | Low ecological risk |
P24 | 29.00 | Medium water pollution | 3.62 | Moderately affected | 3.18 | High | 23.68 | Low ecological risk |
P25 | 25.65 | Medium water pollution | 3.44 | Moderately affected | 3.00 | High | 20.09 | Low ecological risk |
P26 | 26.16 | Medium water pollution | 3.54 | Moderately affected | 3.10 | High | 20.82 | Low ecological risk |
P27 | 28.74 | Medium water pollution | 3.42 | Moderately affected | 2.98 | Medium | 23.48 | Low ecological risk |
P28 | 23.66 | Medium water pollution | 3.70 | Moderately affected | 3.26 | High | 19.79 | Low ecological risk |
P29 | 128.60 | High water pollution | 12.17 | Seriously affected | 1173 | High | 88.28 | Low ecological risk |
P30 | 117.74 | High water pollution | 11.11 | Seriously affected | 10.67 | High | 81.57 | Low ecological risk |
Parameters | As | Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|
PI values | 0.58 | 0.83 | 0.69 | 0.61 | 1.22 | 0.53 | 1.14 | 0.58 | 0.94 | 0.93 |
Effect | No effect | No effect | No effect | No effect | Slightly affected | No effect | Slightly affected | No effect | No effect | No effect |
Parameters | HI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | |||
As | 0.3 | 0.123 | 0.0860 | 0.0963 | 0.0004 | 0.0006 | 0.2866 | 0.3210 | 0.0035 | 0.0045 | 0.2901 | 0.3255 |
Cd | 0.5 | 0.005 | 0.0531 | 0.0595 | 0.0003 | 0.0003 | 0.1063 | 0.1190 | 0.0536 | 0.0687 | 0.1599 | 0.1878 |
Cr | 3 | 0.015 | 0.8288 | 0.9282 | 0.0084 | 0.0107 | 0.2763 | 0.3094 | 0.5569 | 0.7147 | 0.8332 | 1.0241 |
Cu | 40 | 12 | 15.7092 | 17.5943 | 0.0792 | 0.1016 | 0.3927 | 0.4399 | 0.0066 | 0.0085 | 0.3993 | 0.4483 |
Fe | 300 | 45 | 11.1976 | 12.5413 | 0.0564 | 0.0724 | 0.0373 | 0.0418 | 0.0013 | 0.0016 | 0.0386 | 0.0434 |
Hg | 0.3 | 0.3 | 0.0386 | 0.0432 | 0.0002 | 0.0002 | 0.1286 | 0.1440 | 0.0006 | 0.0008 | 0.1292 | 0.1448 |
Mn | 24 | 0.96 | 8.7073 | 9.7522 | 0.0439 | 0.0563 | 0.3628 | 0.4063 | 0.0457 | 0.0587 | 0.4085 | 0.4650 |
Ni | 20 | 0.8 | 1.2852 | 1.4394 | 0.0065 | 0.0083 | 0.0643 | 0.0720 | 0.0081 | 0.0104 | 0.0724 | 0.0824 |
Pb | 1.4 | 0.42 | 0.1266 | 0.1418 | 0.0006 | 0.0008 | 0.0905 | 0.1013 | 0.0015 | 0.0020 | 0.0920 | 0.1033 |
Zn | 300 | 60 | 49.3576 | 55.2805 | 0.2488 | 0.3192 | 0.1645 | 0.1843 | 0.0041 | 0.0053 | 0.1687 | 0.1896 |
Parameters | TCR | |||||
---|---|---|---|---|---|---|
Adult | Children | Adult | Children | Adult | Children | |
As | ||||||
Cd | ||||||
Cr | ||||||
Ni | ||||||
Pb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanad, H.; Moussadek, R.; Dakak, H.; Zouahri, A.; Oueld Lhaj, M.; Mouhir, L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 2417. https://doi.org/10.3390/w16172417
Sanad H, Moussadek R, Dakak H, Zouahri A, Oueld Lhaj M, Mouhir L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water. 2024; 16(17):2417. https://doi.org/10.3390/w16172417
Chicago/Turabian StyleSanad, Hatim, Rachid Moussadek, Houria Dakak, Abdelmjid Zouahri, Majda Oueld Lhaj, and Latifa Mouhir. 2024. "Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco" Water 16, no. 17: 2417. https://doi.org/10.3390/w16172417
APA StyleSanad, H., Moussadek, R., Dakak, H., Zouahri, A., Oueld Lhaj, M., & Mouhir, L. (2024). Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water, 16(17), 2417. https://doi.org/10.3390/w16172417