Water Level Predictions at Both Entrances of a Sea Strait by Using Machine Learning
Abstract
:1. Introduction
2. Site Description
3. Data Description, Methodology and ML Application
3.1. Data Description
3.2. Machine Learning (ML) Methodology
3.2.1. Data Collection
3.2.2. Data Pre-Processing
- (a)
- Data Cleaning
- (b)
- Data Reduction
- (c)
- Data Transformation
3.2.3. Model Training
3.2.4. Model Evaluation
- (a)
- Validating Model:
- (b)
- Testing Model:
3.2.5. Model Tuning
4. Results and Discussion
4.1. Selection of Predictors (Independent Variables) or Inputs
4.2. The Effect of Training Data Length on the Prediction of Model Success
4.3. The Effect of Using Predicted Water Levels in Predicting Capacity of a Hydrodynamic Model
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, E.; Rappaport, E.; Landsea, C. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones from 1851 to 2006 (and Other Frequently Requested Hurricane Facts). Technical Report NHC Miami. 2007. Available online: https://www.nhc.noaa.gov/pdf/NWS-TPC-5.pdf (accessed on 17 March 2024).
- Andre, C.; Monfort, D.; Bouzit, M.; Vinchon, C. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: Insights gained from Johanna (2008) and xynthia (2010) storm events. Nat. Hazards Earth Syst. Sci. 2013, 13, 2003–2012. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Merrifield, M.A. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef]
- Idier, D.; Bertin, X.; Thompson, P.; Pickering, M.D. Interactions between mean sea level, tide, surge, waves and flooding: Mechanisms and contributions to sea level variations at the coast. Surv. Geophys 2019, 40, 1603–1630. [Google Scholar] [CrossRef]
- Martin, A.G.L. International Straits: Concept, Classification and Rules of Passage; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Armi, L.; Farmer, D.M. The flow of Atlantic water through the Strait of Gibraltar. Prog. Oceanogr. 1988, 21, 1–103. [Google Scholar] [CrossRef]
- Özsoy, E.; Latif, M.A.; Beşiktepe, Ş.; Çetin, N.; Gregg, M.; Belekopytov, V.; Goryachkin, Y.; Vassile, D. The Bosphorus Strait: Exchange fluxes, currents and sea-level changes. In Ecosystem Modeling as a Management Tool for the Blacksea; Ivanov, L.I., Oğuz, T., Eds.; NATO Science Series 2: Environmental Security; Kluwer Academic Pub.: Dordrecht, The Netherlands, 1998; Volumes 1 and 2. [Google Scholar]
- Ünlülata, Ü.; Oğuz, T.; Latif, M.A.; Özsoy, E. On the physical oceanography of the Turkish Straits. In The Physical Oceanography of Sea Straits; Pratt, L.J., Ed.; NATO ASI Series (Mathematical and Physical Sciences); Springer: Dordrecht, The Netherlands, 1990; Volume 318. [Google Scholar] [CrossRef]
- Kanarska, Y.; Maderich, V. Modeling of seasonal exchange flows through the dardanelles strait. Estuar. Coast. Shelf Sci. 2008, 79, 449–458. [Google Scholar] [CrossRef]
- Li, Y.; Wolanski, E.; Zhang, H. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China. Estuar. Coast. Shelf Sci. 2015, 158, 1–11. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of Hurricanes Katrina and Rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Suh, S.-W.; Lee, H.-Y. Forerunner storm surge under macro-tidal environmental conditions in shallow coastal zones of the Yellow Sea Cont. Shelf Res. 2018, 169, 1–16. [Google Scholar] [CrossRef]
- Fernandez-Montblanc, T.; Vousdoukas, M.I.; Ciavola, P.; Voukouvalas, E.; Mentaschi, L.; Breyiannis, G.; Feyen, L.; Salamon, P. Towards robust pan-European storm surge forecasting. Ocean Model. 2019, 133, 129–144. [Google Scholar] [CrossRef]
- Salmun, H.; Molod, A.; Wisniewska, K.; Buonaiuto, F.S. Statistical prediction of the storm surge associated with cool-weather storms at the Battery, New York. J. Appl. Meteorol. Climatol. 2011, 50, 273–282. [Google Scholar] [CrossRef]
- Lopeman, M.; Deodatis, G.; Franco, G. Extreme storm surge hazard estimation in lower Manhattan: Clustered separated peaks-over-threshold simulation (CSPS) method. Nat. Hazards 2015, 78, 355–391. [Google Scholar] [CrossRef]
- Roberts, K.J.; Colle, B.A.; Georgas, N.; Munch, S.B. A regression-based approach for cool-season storm surge predictions along the New York–New Jersey coast. J. Appl. Meteorol. Climatol. 2015, 54, 1773–1791. [Google Scholar] [CrossRef]
- Kim, S.; Matsumi, Y.; Pan, S.; Mase, H. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan. Ocean Eng. 2016, 122, 44–53. [Google Scholar] [CrossRef]
- Bruneau, N.; Polton, J.; Williams, J.; Holt, J. Estimation of global coastal sea level extremes using neural networks. Environ. Res. Lett. 2020, 15, 074030. [Google Scholar] [CrossRef]
- Mitchell, T.M.; Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Springer Nature: London, UK, 2021. [Google Scholar] [CrossRef]
- Alpaydin, E. Machine Learning; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. Machine learning basics. Deep Learn. 2016, 98–164. Available online: http://whdeng.cn/Teaching/PPT_01_Machine%20learning%20Basics.pdf (accessed on 9 February 2024).
- Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Maderich, V.; Ilyin, Y.; Lemeshko, E. Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling. Mediterr. Mar. Sci. 2015, 16, 444–459. [Google Scholar] [CrossRef]
- Oguz, T.; Ozsoy, E.; Latif, M.A.; Sur, H.I.; Ünlüata, Ü. Modeling of hydraulically controlled exchange flow in the Bosphorus Strait. J. Phys. Oceanogr. 1990, 20, 945–965. [Google Scholar] [CrossRef]
- Çolpan Polat, S.; Tugrul, S. Nutrient and organic carbon exchanges between the Black and Marmara seas through the Bosphorus Strait. Continent. Shelf Res. 1995, 15, 1115–1132. [Google Scholar] [CrossRef]
- Hubareva, E.; Svetlichny, L.; Kideys, A.; Isinibilir, M. Fate of the Black Sea Acartia clausi and Acartia tonsa (Copepoda) penetrating into the Marmara Sea through the Bosphorus. Estuar. Coast Shelf Sci. 2008, 76, 131–140. [Google Scholar] [CrossRef]
- Yuksel, Y.; Ayat, B.; Ozturk, M.N.; Aydogan, B.; Guler, I.; Cevik, E.O.; Yalçıner, A.C. Responses of the stratified flows to their driving conditions-A field study. Ocean Eng. 2008, 35, 1304–1321. [Google Scholar] [CrossRef]
- Ozturk, M.; Altas, F. Seasonal variability of stratified flow properties in a non-tidal strait-A field study. Estuar. Coast. Shelf Sci. 2022, 264, 107700. [Google Scholar] [CrossRef]
- Arisoy, Y.; Akyarli, A. Long term current and sea level measurements conducted at Bosphorus. In Physical Oceanography of Sea Straits; North Atlantic Treaty Organization NATOASI Series; Springer: Dordrecht, The Netherlands, 1989; pp. 225–236. [Google Scholar]
- Aydoğan, B.; Ayat, B.; Öztürk, M.N.; Özkan Çevik, E.; Yüksel, Y. Current velocity forecasting in straits with artificial neural networks, a case study: Strait of İstanbul. Ocean Eng. 2010, 37, 443–453. [Google Scholar] [CrossRef]
- Jarosz, E.; Teague, W.J.; Book, J.W.; Beşiktepe, Ş. On flow variability in the Bosphorus Strait. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Öztürk, M.; Ayat, B.; Aydoğan, B.; Yüksel, Y. 3D Numerical modeling of stratified flows: Case study of the Bosphorus Strait. J. Waterw. Port Coast. Ocean Eng. 2012, 138, 406–419. [Google Scholar] [CrossRef]
- Book, J.W.; Jarosz, E.; Chiggiato, J.; Beşiktepe, Ş. The oceanic response of the Turkish Straits System to an extreme drop in atmospheric pressure. J. Geophys. Res. Ocean. 2014, 119, 3629–3644. [Google Scholar] [CrossRef]
- Saçu, Ş.; Şen, O.; Erdik, T. A stochastic assessment for oil contamination probability: A case study of the Bosphorus. Ocean Eng. 2021, 231, 109064. [Google Scholar] [CrossRef]
- Ozturk, M. Numerical modeling of the effect of duration of barotropic forcing on sea strait flow: Case study of the Bosphorus Strait. J. Hydraul. Eng. 2013, 139, 1199–1211. [Google Scholar] [CrossRef]
- Alpar, B.; Yuce, H. Sea-level variations and their interactions between the blacksea and the Aegean Sea. Estuar. Coast. Shelf Sci. 1998, 46, 609–619. [Google Scholar] [CrossRef]
- Ozturk, M.; Yuksel, Y. Tidal and non-tidal sea level analysis in enclosed and inland basins: The Black, Aegean, Marmara, and Eastern Mediterranean (Levantine) Seas. Reg. Stud. Mar. Sci. 2023, 61, 102848. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023. [Google Scholar] [CrossRef]
- Ozturk, M.; Altas, F. The meteorological, hydrological and tidal components of Bosphorus flow. Reg. Stud. Mar. Sci. 2021, 48, 102060. [Google Scholar] [CrossRef]
- Global Runoff Data Centre (GRDC); Federal Institute of Hydrology: Koblenz, Germany, 2020. Available online: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Stations (accessed on 28 November 2023).
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011, 24. [Google Scholar]
- DeCastro-García, N.; Muñoz Castañeda, Á.L.; Escudero García, D.; Carriegos, M.V. Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm. Complexity 2019, 2019, 6278908. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Oda, Y.; Ito, K.; Solomon, C.Y. Current Forecast for Tunnel-Element Immersion in the Bosphorus Strait, Turkey. J. Waterw. Port Coast. Ocean. Eng. 2009, 135, 108–119. [Google Scholar] [CrossRef]
- Tur, R.; Tas, E.; Haghighi, A.T.; Mehr, A.D. Sea Level Prediction Using Machine Learning. Water 2021, 13, 3566. [Google Scholar] [CrossRef]
- Sur, H.İ.; Özsoy, E.; Ünlüata, Ü. Boundary current instabilities, up welling, shelf mixing and eutrophication processes in the Black Sea. Prog. Oceanogr. 1994, 33, 249–302. [Google Scholar] [CrossRef]
- Karsavran, Y.; Erdik, T. Artificial intelligence based prediction of seawater level: A case study for bosphorus strait. International Journal of Mathematical. Eng. Manag. Sci. 2021, 6, 1242. [Google Scholar]
- Deltares. Delft3D-FLOW Users Manual. Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, including Sediments. 2020. Available online: https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf (accessed on 11 October 2023).
Site | Parameter | Min. | Max. | Mean | Std. Dev. (σ) |
---|---|---|---|---|---|
The Black Sea | Wind speed | 0.026 | 11.902 | 4.08 | 2.086 |
N-S wind speed | −10.756 | 10.83 | 2.85 | 1.894 | |
Air pressure | 992.57 | 1035.5 | 1015.6 | 6.673 | |
Water level | −0.06 | 0.57 | 0.281 | 0.0953 | |
The Sea of Marmara | Wind speed | 0.051 | 12.592 | 4.10 | 2.128 |
N-S wind speed | −11.032 | 10.205 | 2.94 | 1.912 | |
Air pressure | 993.24 | 1035.3 | 1015.5 | 6.645 | |
Water level | −0.30 | 0.42 | 0.044 | 0.1054 | |
Danube River | Discharge | 3290 | 14,400 | 8460.3 | 3080.5 |
H1 | S1 | K1 | O1 | M2 | S2 | ||
---|---|---|---|---|---|---|---|
Tidal Harmonics | Peiod (h) | 12.44 | 24 | 23.93 | 25.82 | 12.42 | 12 |
The Black Sea | Amplitude (m) | 0.0048 | - | 0.0089 | 0.0387 | 0.0805 | 0.0833 |
Phase (°) | 116.30 | 92.20 | 94.91 | 60.26 | 73.29 | ||
The Sea of Marmara | Amplitude (m) | 0.031 | 0.0092 | 0.0098 | 0.0076 | 0.0065 | 0.0044 |
Phase (°) | 358.17 | 105.29 | 129.82 | 95.47 | 267.82 | 291.01 |
The Black Sea Entrance | The Sea of Marmara | |||||
---|---|---|---|---|---|---|
Predictors | t-Test | p-Value | Significance | t-Test | p-Value | Significance |
MSLP | −3.16 × | 1.44 × | ✓ | −1.08 × | 0.00 | ✓ |
U | −1.77 × | 2.82 × | ✓ | 2.67 × | 1.62 × | ✓ |
V | −3.75 × | 2.80 × | ✓ | 2.03 × | 2.48 × | ✓ |
−2.05 × | 3.13 × | ✓ | 1.49 × | 1.55 × | ✓ | |
−4.25 × | 0.00 | ✓ | 5.57 | 2.56 × | ✓ | |
−3.69 × | 8.89 × | ✓ | 7.91 | 2.99 × | ✓ | |
W | 4.12 | 3.88 × | ✓ | −9.89 | 6.19 × | ✓ |
Q | 9.28 × | 0.00 | ✓ | 3.01 × | 2.19 × | ✓ |
6.02 × | 0.00 | ✓ | 3.69 × | 3.64 × | ✓ | |
Tide (T) | −8.49 × | 3.96 × | ✗ | 9.31 × | 3.52 × | ✗ |
Predictors | The Black Sea Entrance | The Sea of Marmara | Rank | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | Black Sea | Sea of Marmara | |
(m) | (m) | |||||||||
MSLP | 0.18 | 0.069 | 0.007 | 0.086 | 0.60 | 0.051 | 0.004 | 0.067 | 2 | 1 |
U | 0.06 | 0.077 | 0.009 | 0.092 | 0.11 | 0.078 | 0.01 | 0.1 | 4 | 3 |
V | 0.15 | 0.072 | 0.008 | 0.088 | 0.06 | 0.081 | 0.01 | 0.1 | - | 4 |
0.04 | 0.077 | 0.009 | 0.093 | 0.05 | 0.081 | 0.011 | 0.103 | - | - | |
0.18 | 0.071 | 0.007 | 0.086 | 0.02 | 0.082 | 0.011 | 0.104 | 3 | - | |
0.18 | 0.071 | 0.007 | 0.086 | 0.02 | 0.082 | 0.011 | 0.104 | - | - | |
W | 0.14 | 0.072 | 0.008 | 0.088 | 0.05 | 0.081 | 0.011 | 0.103 | - | - |
Q | 0.52 | 0.049 | 0.004 | 0.066 | 0.29 | 0.065 | 0.008 | 0.089 | - | - |
0.6 | 0.045 | 0.004 | 0.06 | 0.37 | 0.062 | 0.007 | 0.084 | 1 | 2 |
Predictors | Validation | Test | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE (m) | MSE (m2) | RMSE (m) | R2 | MAE (m) | MSE (m2) | RMSE (m) | |
1 | 0.6 | 0.045 | 0.004 | 0.06 | 0.6 | 0.046 | 0.004 | 0.06 |
1, 2 | 0.81 | 0.027 | 0.002 | 0.041 | 0.84 | 0.026 | 0.001 | 0.039 |
1, 2, 3 | 0.88 | 0.023 | 0.001 | 0.033 | 0.87 | 0.023 | 0.001 | 0.035 |
1, 2, 3, 4 | 0.9 | 0.023 | 0.001 | 0.031 | 0.91 | 0.021 | 0.001 | 0.028 |
1, 2, 3, 4 optimised | 0.93 | 0.018 | 0.001 | 0.025 | 0.94 | 0.017 | 0.0005 | 0.023 |
Predictors | Validation | Test | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE (m) | MSE (m2) | RMSE (m) | R2 | MAE (m) | MSE (m2) | RMSE (m) | |
1 | 0.6 | 0.051 | 0.004 | 0.067 | 0.57 | 0.052 | 0.005 | 0.068 |
1, 2 | 0.81 | 0.034 | 0.002 | 0.046 | 0.81 | 0.033 | 0.002 | 0.046 |
1, 2, 3 | 0.84 | 0.028 | 0.002 | 0.042 | 0.84 | 0.026 | 0.002 | 0.041 |
1, 2, 3, 4 | 0.84 | 0.027 | 0.002 | 0.042 | 0.86 | 0.024 | 0.001 | 0.039 |
1, 2, 3, 4 optimised | 0.9 | 0.024 | 0.001 | 0.034 | 0.89 | 0.023 | 0.001 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaş, F.; Öztürk, M. Water Level Predictions at Both Entrances of a Sea Strait by Using Machine Learning. Water 2024, 16, 2335. https://doi.org/10.3390/w16162335
Altaş F, Öztürk M. Water Level Predictions at Both Entrances of a Sea Strait by Using Machine Learning. Water. 2024; 16(16):2335. https://doi.org/10.3390/w16162335
Chicago/Turabian StyleAltaş, Furkan, and Mehmet Öztürk. 2024. "Water Level Predictions at Both Entrances of a Sea Strait by Using Machine Learning" Water 16, no. 16: 2335. https://doi.org/10.3390/w16162335
APA StyleAltaş, F., & Öztürk, M. (2024). Water Level Predictions at Both Entrances of a Sea Strait by Using Machine Learning. Water, 16(16), 2335. https://doi.org/10.3390/w16162335