Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. General Description of the MBBR Treatment Plant in Case Studies
2.2.1. Description of the Treatment Plant in Pilot 1
2.2.2. Description of the Treatment Plant in Pilot 2
2.2.3. Description of the Treatment Plant in Pilot 3
2.3. Sampling
2.4. Analytical Procedures
3. Results and Discussion
3.1. Treatment Plant in Pilot 1
Criteria | Germany | Australia | Jordan | Spain |
---|---|---|---|---|
Types of water | Treated graywater | Treated graywater | Treated wastewater | Treated wastewater |
pH | NR | NR | 6.5–9 | NR |
Turbidity | <2 NTU | NR | NR | NR |
TSS | NR | <10 mg/L | <50 mg/L | <10 mg/L |
BOD5 | <5 mg/L | <10 mg/L | <30 mg/L | NR |
COD | NR | NR | <100 mg/L | NR |
E. coli | <10.000/100 mL | NR | <10.000/100 mL | 0/100 mL |
Parameters/Sample | CODt [mg/L] | CODs. [mg/L] | BOD5 mg/L | TSS 0.45 µm Original [mg/L] | Phosphate/Ortho/ PO43-P [mg/L] | Turbidity [FNU] | Ammonium NH4+-N [mg/L] | Nitrate NO3−-N [mg/L] | Temperature (°C) | Dissolved Oxygen [mg/L] | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
Graywater | 122.4 | 76 | 69 | 29.3 | 0.1 | 31.9 | 2.3 | 0.75 | 25.4 | 4.1 | 8 |
Graywater Tank | 104.3 | 63 | 51.8 | 24.4 | 0.3 | 73.9 | 8.3 | 0.3 | 24.2 | 1.03 | 7.3 |
MBBR2 | 41.7 | 19.4 | 15.2 | 18.8 | 0.2 | 16.2 | 0.6 | 6.9 | 24.1 | 5.5 | 8.2 |
Treated water | 19.8 | 17.9 | 3.6 | 0.25 | 0.21 | 1.4 | 0.1 | 7.1 | 22.2 | 6.9 | 7.8 |
3.2. Treatment Plant in Pilot 2
3.3. Treatment Plant in Pilot 3
4. General Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogardi, J.J.; Gupta, J.; Nandalal, K.D.W.; Salamé, L.; van Nooijen, R.R.P.; Kumar, N.; Tingsanchali, T.; Bhaduri, A.; Kolechkina, A.G. Handbook of Water Resources Management: Discourses, Concepts and Examples; Springer Nature: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-60147-8. [Google Scholar]
- Penserini, L.; Moretti, A.; Mainardis, M.; Cantoni, B.; Antonelli, M. Tackling climate change through wastewater reuse in agriculture: A prioritization methodology. Sci. Total Environ. 2024, 914, 169862. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, M.; Webster, M.; Vairavamoorthy, K. The Future of Water in African Cities: Why Waste Water? World Bank Publications: Washington, DC, USA, 2012; ISBN 978-0-8213-9722-0. [Google Scholar]
- Akpan, V.E. Assessing the public perceptions of treated wastewater reuse: Opportunities and implications for urban communities in developing countries. Heliyon 2020, 6, e05246. [Google Scholar] [CrossRef]
- Holcomb, F.H.; Deliman, P.N.; Ringelberg, D.B. Sustainability-Related Publications Calendar Years 2015–2016; Technical Report; Construction Engineering Research Laboratory (CERL): Champaign, IL, USA, 2017. [Google Scholar]
- Shaikh, I.N.; Ahammed, M.M. Quantity and quality characteristics of greywater from an Indian household. Environ. Monit. Assess. 2022, 194, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Delhiraja, K.; Philip, L. Characterization of segregated greywater from Indian households: Part A—Physico-chemical and microbial parameters. Environ. Monit. Assess. 2020, 192, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, A.; Rahman, E.; Hassanien, R.; Mahmoud, N.; Ibrahim, M.; Mostafa, E.; Kassem, M.; Hatem, M. Overview of Biological Treatment Technologies for Greywater Reuse. Adn. Environ. Waste Manag. Recycl. 2021, 4, 165–191. [Google Scholar]
- Hellman, J. Re-Sourcing Soil Fertility. Available online: https://stud.epsilon.slu.se/15313/ (accessed on 8 February 2024).
- Cecconet, D.; Bolognesi, S.; Piacentini, L.; Callegari, A.; Capodaglio, A. Bioelectrochemical Greywater Treatment for Non-Potable Reuse and Energy Recovery. Water 2021, 13, 295. [Google Scholar] [CrossRef]
- Ferreira, A.; Santos, C.; Imteaz, M.A.; Matos, C. Hybrid Decentralized Systems of Non-potable Water Supply: Performance and Effectiveness Analysis. Water Resour. Manag. 2023, 37, 3897–3919. [Google Scholar] [CrossRef]
- Qadir, G.; Pino, V.; Brambilla, A.; Alonso-Marroquin, F. Staircase Wetlands for the Treatment of Greywater and the Effect of Greywater on Soil Microbes. Sustainability 2023, 15, 6102. [Google Scholar] [CrossRef]
- Drangert, J.-O.; Kjerstadius, H. Recycling—The future urban sink for wastewater and organic waste. City Environ. Interact. 2023, 19, 100104. [Google Scholar] [CrossRef]
- Pasciucco, F.; Pecorini, I.; Iannelli, R. Planning the centralization level in wastewater collection and treatment: A review of assessment methods. J. Clean. Prod. 2022, 375, 134092. [Google Scholar] [CrossRef]
- Meney, K.A.; Pantelic, L. Decentralized Water and Wastewater Systems for Resilient Societies: A Shift towards a Green Infrastructure-Based Alternate Economy. In The Palgrave Handbook of Climate Resilient Societies; Brears, R.C., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 157–184. ISBN 978-3-030-42461-9. [Google Scholar]
- Schwetschenau, S.E.; Kovankaya, Y.; Elliott, M.A.; Allaire, M.; White, K.D.; Lall, U. Optimizing Scale for Decentralized Wastewater Treatment: A Tool to Address Failing Wastewater Infrastructure in the United States. ACS Environ. Sci. Technol. Eng. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Buller, L.S.; Sganzerla, W.G.; Berni, M.D.; Brignoli, S.C.; Forster-Carneiro, T. Design and techno-economic analysis of a hybrid system for energy supply in a wastewater treatment plant: A decentralized energy strategy. J. Environ. Manag. 2022, 305, 114389. [Google Scholar] [CrossRef] [PubMed]
- Albalawneh, A.; Perilli, N. The Efficiency of Natural Decentralized Greywater Treatment Systems in Resolving the Wastewater Problems in the Rural Areas of Developing Countries. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2nd ed.; Ksibi, M., Ghorbal, A., Chakraborty, S., Chaminé, H.I., Barbieri, M., Guerriero, G., Hentati, O., Negm, A., Lehmann, A., Römbke, J., et al., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 147–151. [Google Scholar]
- Rodríguez, C.; Sánchez, R.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water 2020, 12, 3468. [Google Scholar] [CrossRef]
- Awasthi, A.; Gandhi, K.; Rayalu, S. Greywater treatment technologies: A comprehensive review. Int. J. Environ. Sci. Technol. 2024, 21, 1053–1082. [Google Scholar] [CrossRef]
- Greywater Reuse as a Key Enabler for Improving Urban Wastewater Management—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S266649842300042X (accessed on 8 February 2024).
- Aldris, B.; Farhoud, N. Wastewater treatment efficiency of an experimental MBBR system under different influent concentrations. DYSONA-Appl. Sci. 2020, 1, 20–28. [Google Scholar] [CrossRef]
- Kawan, J.A.; Suja’, F.; Pramanik, S.K.; Yusof, A.; Abdul Rahman, R.; Abu Hasan, H. Effect of Hydraulic Retention Time on the Performance of a Compact Moving Bed Biofilm Reactor for Effluent Polishing of Treated Sewage. Water 2022, 14, 81. [Google Scholar] [CrossRef]
- Wohnungsbestand Steigt Kontinuierlich. Available online: https://www.statistik-berlin-brandenburg.de/142-2022 (accessed on 12 February 2024).
- Saidi, A.; Masmoudi, K.; Nolde, E.; El Amrani, B.; Amraoui, F. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR). Water Sci. Technol. 2017, 76, 3328–3339. [Google Scholar] [CrossRef]
- Nolde, E. Grey Water Reuse Systems for Toilet Flushing in Multi-Storey Buildings—Over Ten Years Experience in Berlin. Urban Water 2000, 1, 275–284. [Google Scholar] [CrossRef]
- Masmoudi Jabri, K.; Nolde, E.; Ciroth, A.; Bousselmi, L. Life cycle assessment of a decentralized greywater treatment alternative for non-potable reuse application. Int. J. Environ. Sci. Technol. 2020, 17, 433–444. [Google Scholar] [CrossRef]
- Sievers, J.C.; Londong, J.; Albold, A.; Oldenburg, M.; Lohaus, J. Characterisation of Greywater—Estimation of Design Values. In Proceedings of the 17th International EWA Symposium “WatEnergyResources—Water, Energy and Resources: Innovative Options and Sustainable Solutions” during IFAT, Munich, Germany, 5–9 May 2014; pp. 5–9. [Google Scholar]
- Labrador-Rached, C.J.; Browning, R.T.; Braydich-Stolle, L.K.; Comfort, K.K. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J. Toxicol. 2018, 2018, e1367801. [Google Scholar] [CrossRef]
- DIN EN ISO 5667-1:2019-09; Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programs and Sampling Techniques (ISO/DIS 5667-1:2019); German and English Version prEN ISO 5667-1:2019. ISO: Geneva, Switzerland, 2019.
- Sievers, J.C.; Londong, J. Characterization of domestic graywater and graywater solids. Water Sci. Technol. 2017, 77, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jiang, Q.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Price, W.E.; Wang, J.; Guo, W. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system. Bioresour. Technol. 2015, 191, 355–359. [Google Scholar] [CrossRef]
- Recent Technologies for Nutrient Removal and Recovery from Wastewaters: A Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0045653521007980 (accessed on 15 April 2024).
- Noutsopoulos, C.; Andreadakis, A.; Kouris, N.; Charchousi, D.; Mendrinou, P.; Galani, A.; Mantziaras, I.; Koumaki, E. Greywater characterization and loadings—Physicochemical treatment to promote onsite reuse. J. Environ. Manag. 2018, 216, 337–346. [Google Scholar] [CrossRef]
- fbr-Hinweisblatt H 202|Presse|FBR.de. Available online: https://www.fbr.de/presse/fbr-hinweisblatt-h-202/index.html (accessed on 3 June 2024).
- Filali, H.; Barsan, N.; Souguir, D.; Nedeff, V.; Tomozei, C.; Hachicha, M. Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. Sustainability 2022, 14, 665. [Google Scholar] [CrossRef]
- Enhancing Anaerobic Treatment of Domestic Wastewater: State of the Art, Innovative Technologies and Future Perspectives—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S004896971831235X (accessed on 15 April 2024).
- Shi, C.; Yan, B.; Zuo, X.; Wang, C.; Li, Z.; Zhu, L. The effect of aeration mode on the operational effectiveness and membrane bioreactors for greywater treatment and membrane fouling. Environ. Eng. Res. 2022, 28, 210637. [Google Scholar] [CrossRef]
- Ajit, K. A Review on Grey Water Treatment and Reuse. Int. Res. J. Eng. Technol. 2016, 3, 2665–2668. [Google Scholar]
- Oron, G.; Adel, M.; Agmon, V.; Friedler, E.; Halperin, R.; Leshem, E.; Weinberg, D. Greywater use in Israel and worldwide: Standards and prospects. Water Res. 2014, 58, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Peprah, M.; Acheampong, M.A.; deVries, N.K. Greywater Characteristics, Treatment Systems, Reuse Strategies and User Perception—A Review. Water Air Soil Pollut. 2018, 229, 255. [Google Scholar] [CrossRef] [PubMed]
- Nolde, E.; Partner, N. Greywater Recycling in Buildings. In Water Efficiency in Buildings; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 169–189. ISBN 978-1-118-45661-3. [Google Scholar]
- Ultrafiltration as Tertiary Treatment for Municipal Wastewater Reuse—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1383586621006328?casa_token=6FZmF6nW1moAAAAA:MjYdRlTgR7EW01-eI5FTsQR09-Gl7AB-SctNzGjKgbU6fbx1lPIHygVHF6h5Si2LrpjLJfDUZ6Q (accessed on 28 March 2024).
- Zhou, Y.; Li, R.; Guo, B.; Zhang, L.; Zou, X.; Xia, S.; Liu, Y. Greywater treatment using an oxygen-based membrane biofilm reactor: Formation of dynamic multifunctional biofilm for organics and nitrogen removal. Chem. Eng. J. 2020, 386, 123989. [Google Scholar] [CrossRef]
- Albalawneh, A. Review of the greywater and proposed greywater recycling scheme for agricultural irrigation reuses. Int. J. Res. Int. J. Res. Granthaalayah 2015, 3, 16–35. [Google Scholar] [CrossRef]
Graywater Treatment System | Graywater Characteristics | ||
---|---|---|---|
Aerobic MBR (pilot-scale) | Parameter | Feed (mg/L) | Permeate (mg/L) |
CODt | 99–200 | 15–20 | |
BOD5 | 40–60 | 3–4 | |
Ammonia | 21–4 | 0.3–0.5 | |
Nitrate | 1–7 | 8.5–9.3 | |
Aerobic membrane sequencing batch reactor (pilot-scale) | CODt | 310 | NR |
BOD5 | 117 | <5 | |
Ammonia | 1.9 | 0.2 | |
Nitrate | 7.6 | NR | |
SBR + Ultrafiltration (pilot-scale) | CODt | 543 | 37 |
BOD5 | 212 | 4 | |
Ammonia | NR | NR | |
Nitrate | 0.6 | 6.5 | |
Aerobic MBBR (pilot-scale) | CODt | 246.63 | 23.86 |
TN | 2.81 | 4.17 | |
Total P | 6.59 | 0.8 | |
BOD5 | 44.37 | 2 |
Pilot 2 | Storage tank | MBBR2 | MBBR3 | MBBR5 | Treated water storage tank | 02.02.23—17.02.23 |
Pilot 1 | After the sieve (pipe) | Graywater tank | MBBR2 | Treated water tank | 06.06.23—15.06.23 | |
Pilot 3 | Sieve 2 | MBBR 2 | MBBR 8 | After sedimentation tank | Treated water storage tank | 01.11.23—14.11.23 |
Sampling method | 24-h systematic sampling volume proportional | Random sampling |
average concentration values | Parameters/Sample | CODt [mg/L] | CODs. [mg/L] | BOD5 mg/L | TSS 0.45 µm original [mg/L] | Phosphate/ortho/ PO43-P [mg/L] | Turbidity [FNU] | Ammonium NH4+-N [mg/L] | Nitrate NO3−-N [mg/L] | Temperature (°C) | Dissolved Oxygen [mg/L] | pH |
Graywater | 359.6 | 243.2 | 126.9 | 80 | 1.1 | 76.5 | 4.1 | 0.5 | 22.6 | 4.1 | 7.6 | |
MBBR2 | 521.2 | 133.8 | 125.3 | 328.3 | 1.8 | 405.8 | 4.9 | 0.4 | 20.6 | 4.2 | 7.9 | |
MBBR3 | 480.1 | 107 | 103.5 | 303 | 0.2 | 441.3 | 4.1 | 0.6 | 20.3 | 7.9 | 8.1 | |
MBBR5 | 420.7 | 86 | 74.1 | 295.5 | 0.1 | 373.2 | 0.1 | 5 | 19.9 | 8.7 | 8.2 | |
Treated water | 37.2 | 35.1 | 2.1 | 1.7 | 0.2 | 2.3 | <0.01 | 4.6 | 17.3 | 5.6 | 7.9 | |
Drink Water | 10.2 | 10.8 | 0.7 | <0.01 | 0.1 | 0.5 | <0.01 | 0.9 | 12.2 | 8.3 | 7.3 |
average concentration values | Parameters/Sample | CODt [mg/L] | CODs. [mg/L] | BOD5 mg/L | TSS 0.45 µm original [mg/L] | Phosphate/ortho/ PO43-P [mg/L] | Turbidity [FNU] | Ammonium NH4+-N [mg/L] | Nitrate NO3−-N [mg/L] | Temperature (°C) | Dissolved Oxygen [mg/L] | pH |
Graywater | 492.5 | 218 | 248.7 | 167.7 | 0.08 | 126.8 | 5.5 | 0.3 | 22.6 | 4.1 | 7.6 | |
MBBR2 | 416.2 | 115.4 | 213.5 | 185.2 | 0.261 | 624.8 | 5 | 0.2 | 20 | 0.8 | 9.1 | |
MBBR8 | 123.8 | 37.9 | 36.4 | 71.7 | 0.6 | 77.5 | 0.1 | 8.0 | 21.1 | 7.6 | 8 | |
After Sedimentation Tank | 46.7 | 32.2 | 7.2 | 10.3 | 0.5 | 14.8 | <0.01 | 7.9 | 20.9 | 8.3 | 8 | |
Treated water | 29.1 | 28.5 | 2.7 | 1.1 | 0.6 | 1.5 | <0.01 | 8.1 | 20.7 | 5.4 | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nourredine, H.; Barjenbruch, M. Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review. Water 2024, 16, 2330. https://doi.org/10.3390/w16162330
Nourredine H, Barjenbruch M. Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review. Water. 2024; 16(16):2330. https://doi.org/10.3390/w16162330
Chicago/Turabian StyleNourredine, Hajar, and Matthias Barjenbruch. 2024. "Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review" Water 16, no. 16: 2330. https://doi.org/10.3390/w16162330
APA StyleNourredine, H., & Barjenbruch, M. (2024). Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review. Water, 16(16), 2330. https://doi.org/10.3390/w16162330