Spatial Variation of Asymmetry in Velocity and Sediment Flux along the Artificial Aam Tidal Channel
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experiments and Data Collection
2.3. Data Processing and Analysis
2.4. Tidal Asymmetry, Eddy Viscosity, and Eddy Diffusivity
2.5. Estimation of Shear Stress and Settling Velocity
2.6. Sediment Flux Decomposition
3. Results
3.1. Estimation of Shear Velocity and Settling Velocity
3.2. Flow, Shear Velocity, SSC, and Sediment Flux
3.3. Tidal Asymmetry for Tide, Current Velocity, and Sediment Flux
3.4. Vertical Profiles of Current Velocity, Sediment Flux, Eddy Viscosity, and Eddy Diffusivity
4. Discussion
4.1. Asymmetry of Sediment Transport along the Artificial Tidal Channel
4.2. Rainfall Effect on Sediment Concentration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koh, C.-H.; Khim, J.S. The Korean Tidal Flat of the Yellow Sea: Physical Setting, Ecosystem and Management. Ocean. Coast. Manag. 2014, 102, 398–414. [Google Scholar] [CrossRef]
- Xie, C.; Cui, B.; Xie, T.; Yu, S.; Liu, Z.; Wang, Q.; Ning, Z. Reclamation Shifts the Evolutionary Paradigms of Tidal Channel Networks in the Yellow River Delta, China. Sci. Total Environ. 2020, 742, 140585. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.W.; Lee, G.; Dellapenna, T.M.; Jung, Y.; Jo, T.; Chang, J.; Figueroa, S.M. Economic Development Drives Massive Global Estuarine Loss in the Anthropocene. Earths Future 2024, 12, e2023EF003691. [Google Scholar] [CrossRef]
- Choi, Y.R. Modernization, Development and Underdevelopment: Reclamation of Korean Tidal Flats, 1950s–2000s. Ocean. Coast. Manag. 2014, 102, 426–436. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; Van Kessel, T. Siltation by Sediment-Induced Density Currents. Ocean. Dyn. 2003, 53, 186–196. [Google Scholar] [CrossRef]
- Lee, G.; Shin, H.-J.; Kim, Y.T.; Dellapenna, T.M.; Kim, K.J.; Williams, J.; Kim, S.-Y.; Figueroa, S.M. Field Investigation of Siltation at a Tidal Harbor: North Port of Incheon, Korea. Ocean. Dyn. 2019, 69, 1101–1120. [Google Scholar] [CrossRef]
- Figueroa, S.M.; Lee, G.; Chang, J.; Schieder, N.W.; Kim, K.; Kim, S.-Y. Evaluation of Along-Channel Sediment Flux Gradients in an Anthropocene Estuary with an Estuarine Dam. Mar. Geol. 2020, 429, 106318. [Google Scholar] [CrossRef]
- Figueroa, S.M.; Lee, G.; Shin, H.-J. Effects of an Estuarine Dam on Sediment Flux Mechanisms in a Shallow, Macrotidal Estuary. Estuar. Coast. Shelf Sci. 2020, 238, 106718. [Google Scholar] [CrossRef]
- Chang, J.; Lee, G.; Harris, C.K.; Song, Y.; Figueroa, S.M.; Schieder, N.W.; Lagamayo, K.D. Sediment Transport Mechanisms in Altered Depositional Environments of the Anthropocene Nakdong Estuary: A Numerical Modeling Study. Mar. Geol. 2020, 430, 106364. [Google Scholar] [CrossRef]
- Wang, Y.P.; Gao, S.; Jia, J.; Thompson, C.E.L.; Gao, J.; Yang, Y. Sediment Transport over an Accretional Intertidal Flat with Influences of Reclamation, Jiangsu Coast, China. Mar. Geol. 2012, 291–294, 147–161. [Google Scholar] [CrossRef]
- Eidam, E.F.; Sutherland, D.A.; Ralston, D.K.; Conroy, T.; Dye, B. Shifting Sediment Dynamics in the Coos Bay Estuary in Response to 150 Years of Modification. J. Geophys. Res. Ocean. 2021, 126, e2020JC016771. [Google Scholar] [CrossRef]
- van der Spek, A.J.F.; Elias, E.P.L. Half a Century of Morphological Change in the Haringvliet and Grevelingen Ebb-Tidal Deltas (SW Netherlands)—Impacts of Large-Scale Engineering 1964–2015. Mar. Geol. 2021, 432, 106404. [Google Scholar] [CrossRef]
- Cox, J.R.; Leuven, J.R.F.W.; Pierik, H.J.; van Egmond, M.; Kleinhans, M.G. Sediment Deficit and Morphological Change of the Rhine–Meuse River Mouth Attributed to Multi-Millennial Anthropogenic Impacts. Cont. Shelf Res. 2022, 244, 104766. [Google Scholar] [CrossRef]
- Nidzieko, N.J.; Ralston, D.K. Tidal Asymmetry and Velocity Skew over Tidal Flats and Shallow Channels within a Macrotidal River Delta. J. Geophys. Res. Ocean. 2012, 117, C03001. [Google Scholar] [CrossRef]
- Bolle, A.; Bing Wang, Z.; Amos, C.; De Ronde, J. The Influence of Changes in Tidal Asymmetry on Residual Sediment Transport in the Western Scheldt. Cont. Shelf Res. 2010, 30, 871–882. [Google Scholar] [CrossRef]
- Lee, G.; Kang, K. Wave-Induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-Tidal Flat, Gangwha Island, Korea. Ocean. Sci. J. 2018, 53, 583–594. [Google Scholar] [CrossRef]
- IROOF. Report on the Changes of Hydraulic State at Incheon and Kyeongin Harbors; Incheon Regional Office of Oceans and Fisheries: Incheon, Republic of Korea, 2013; p. 838. [Google Scholar]
- Park, H.-B.; Lee, G. Evaluation of ADCP Backscatter Inversion to Suspended Sediment Concentration in Estuarine Environments. Ocean. Sci. J. 2016, 51, 109–125. [Google Scholar] [CrossRef]
- Nidzieko, N.J. Tidal Asymmetry in Estuaries with Mixed Semidiurnal/Diurnal Tides. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Geyer, W.R.; Woodruff, J.D.; Traykovski, P. Sediment Transport and Trapping in the Hudson River Estuary. Estuaries 2001, 24, 670. [Google Scholar] [CrossRef]
- Scully, M.E.; Friedrichs, C.T. The Importance of Tidal and Lateral Asymmetries in Stratification to Residual Circulation in Partially Mixed Estuaries. J. Phys. Ocean. 2007, 37, 1496–1511. [Google Scholar] [CrossRef]
- Kim, S.-C.; Friedrichs, C.T.; Maa, J.P.-Y.; Wright, L.D. Estimating Bottom Stress in Tidal Boundary Layer from Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2000, 126, 399–406. [Google Scholar] [CrossRef]
- Fugate, D.C.; Friedrichs, C.T. Determining Concentration and Fall Velocity of Estuarine Particle Populations Using ADV, OBS and LISST. Cont. Shelf Res. 2002, 22, 1867–1886. [Google Scholar] [CrossRef]
- Figueroa, S.M.; Lee, G.; Shin, H.-J. The Effect of Periodic Stratification on Floc Size Distribution and Its Tidal and Vertical Variability: Geum Estuary, South Korea. Mar. Geol. 2019, 412, 187–198. [Google Scholar] [CrossRef]
- Lee, G.; Dade, W.B.; Friedrichs, C.T.; Vincent, C.E. Spectral Estimates of Bed Shear Stress Using Suspended-sediment Concentrations in a Wave-current Boundary Layer. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Green, M.O.; Coco, G. Review of Wave Driven Sediment Resuspension and Transport in Estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Friedrichs, C.T. Barotropic Tides in Channelized Estuaries. In Contemporary Issues in Estuarine Physics; Cambridge University Press: Cambridge, MA, USA, 2010; pp. 27–61. [Google Scholar]
- Postma, H. Transport and Accumulation of Suspended Matter in the Dutch Wadden Sea. Neth. J. Sea Res. 1961, 1, 148–190. [Google Scholar] [CrossRef]
- van Maren, D.S.; Winterwerp, J.C. The Role of Flow Asymmetry and Mud Properties on Tidal Flat Sedimentation. Cont. Shelf Res. 2013, 60, S71–S84. [Google Scholar] [CrossRef]
- Murphy, S.; Voulgaris, G. Identifying the Role of Tides, Rainfall and Seasonality in Marsh Sedimentation Using Long-Term Suspended Sediment Concentration Data. Mar. Geol. 2006, 227, 31–50. [Google Scholar] [CrossRef]
- Mwamba, M.J.; Torres, R. Rainfall Effects on Marsh Sediment Redistribution, North Inlet, South Carolina, USA. Mar. Geol. 2002, 189, 267–287. [Google Scholar] [CrossRef]
- Kim, D.; Jo, J.; Choi, K. Role of Rainfall-Induced Runoff Discharge and Human Disturbance on the Morphodynamics and Sedimentation in the Semienclosed Macrotidal Flats (Shinsi Tidal Flats, Korea). Mar. Geol. 2021, 438, 106522. [Google Scholar] [CrossRef]
Station | Coordinate | Depth (m) | Instrument | Sensor Height (m) | Sampling Rate (Hz) | Sampling per Burst (#) | Burst Interval (min) | Blanking Distance (m) | Bin Size (m) |
---|---|---|---|---|---|---|---|---|---|
S19 | 37°25′42.06″ N 126°36′49.68″ E | 8.5 | Signature 1 MHz | 0.37 | 8 | 4096 | 30 | 0.1 | 0.5 |
V19 | 37°25′12.54″ N 126°38′9.66″ E | 2.3 | Vector | 0.55 | 8 | 4096 | 30 | - | - |
S21 | 37°25′46.29″ N 126°37′40.44″ E | 3.4 | Signature 1 MHz | 0.37 | 8 | 4096 | 30 | 0.1 | 0.5 |
X21 | 37°24′55.40″ N 126°38′13.71″ E | 2.0 | Aquadopp Profiler 1 MHz | 0.20 | 2 | 1024 | 30 | 0.23 | 0.25 |
V21 | 37°25′45.24″ N 126°36′28.82″ E | 3.3 | Vector | 0.55 | 8 | 4096 | 30 | - | - |
Station | OBS | S19 | V19 | S21 | X21 | V21 | |
---|---|---|---|---|---|---|---|
SSC calibration | No. of samples | 55 | 13 | 12 | 18 | 16 | - |
Slope of regression eq. | 0.87 | 1.23 | 1.32 | 1.38 | 1.07 | - | |
Correlation | 0.84 | 0.80 | 0.74 | 0.76 | 0.84 | - | |
Shear velocity | No. of samples | - | 165 | 190 | 161 | 69 | 58 |
Slope of regression eq. | - | 1.10 | 1.06 | 0.85 | 1.14 | 0.86 | |
Correlation | - | 0.97 | 0.92 | 0.88 | 0.86 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-h.; Chang, J.; Li, W.; Ajama, O.D. Spatial Variation of Asymmetry in Velocity and Sediment Flux along the Artificial Aam Tidal Channel. Water 2024, 16, 2323. https://doi.org/10.3390/w16162323
Lee G-h, Chang J, Li W, Ajama OD. Spatial Variation of Asymmetry in Velocity and Sediment Flux along the Artificial Aam Tidal Channel. Water. 2024; 16(16):2323. https://doi.org/10.3390/w16162323
Chicago/Turabian StyleLee, Guan-hong, Jongwi Chang, Wenjian Li, and Ojudoo Darius Ajama. 2024. "Spatial Variation of Asymmetry in Velocity and Sediment Flux along the Artificial Aam Tidal Channel" Water 16, no. 16: 2323. https://doi.org/10.3390/w16162323
APA StyleLee, G.-h., Chang, J., Li, W., & Ajama, O. D. (2024). Spatial Variation of Asymmetry in Velocity and Sediment Flux along the Artificial Aam Tidal Channel. Water, 16(16), 2323. https://doi.org/10.3390/w16162323