Research on the Relationship between Eukaryotic Phytoplankton Community Structure and Key Physiochemical Properties of Water in the Western Half of the Chaohu Lake Using High-Throughput Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Test of Physicochemical Factors and Chlorophyll a Concentration
2.4. DNA Extraction and Sequencing of Plankton
2.5. Sequencing Control and Data Analysis
3. Results
3.1. Spatial and Temporal Differences in Physiochemical Factors of Water
3.2. Structure of the Eukaryotic Phytoplankton Community
3.3. Effects of the Physiochemical Properties of Water on the Eukaryotic Phytoplankton Community
3.4. Variance Partitioning Analysis of the Eukaryotic Phytoplankton Community
3.5. Co-Occurrence Network Analysis
4. Discussion
4.1. Structural Features and Changes in Eukaryotic Phytoplankton in the Chaohu Lake
4.2. Water Quality Conditions and Water Quality Evaluation of Chaohu Lake
4.3. Eukaryotic Phytoplankton in the Western Half of Chaohu Lake and the Influencing Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liu, G.; Zhu, S.; Hu, W.; Zhang, H.; Zhou, X.; Peng, Z. Assessment of impacts of water transfer on lake flow and water quality in Lake Chaohu using a three-dimensional hydrodynamic-ecological model. J. Hydrol. Reg. Stud. 2023, 46, 101333. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Xue, K.; Loiselle, S. Drivers to spatial and temporal dynamics of column integrated phytoplankton biomass in the shallow lake of Chaohu, China. Ecol. Indic. 2020, 109, 105812. [Google Scholar] [CrossRef]
- Du, Y.; An, S.; He, H.; Wen, S.; Xing, P.; Duan, H. Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. Water Res. 2022, 219, 118560. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Hu, W.; Zhang, Y.; Liu, G.; Zhang, H.; Gao, R. Modelling the effects of joint operations of water transfer project and lake sluice on circulation and water quality of a large shallow lake. J. Hydrol. 2021, 593, 125881. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, C.; Chen, N. Multivariable integrated risk assessment for cyanobacterial blooms in eutrophic lakes and its spatiotemporal characteristics. Water Res. 2023, 228, 119367. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Li, B.-B.; Yang, Z.-C.; Cheng, Y.-Y.; Liu, D.-F.; Yu, H.-Q. Mediation of functional gene and bacterial community profiles in the sediments of eutrophic Chaohu Lake by total nitrogen and season. Environ. Pollut. 2019, 250, 233–240. [Google Scholar] [CrossRef] [PubMed]
- McNabney, D.W.G.; Mangal, V.; Kirkwood, A.E.; Simmons, D.D.B. Phytoplankton metabolite profiles from two Lake Ontario Areas of Concern reveal differences associated with taxonomic community composition. Sci. Total Environ. 2023, 871, 162042. [Google Scholar] [CrossRef]
- Nwe, L.W.; Yokoyama, K.; Azhikodan, G. Phytoplankton habitats and size distribution during a neap-spring transition in the highly turbid macrotidal Chikugo River estuary. Sci. Total Environ. 2022, 850, 157810. [Google Scholar] [CrossRef]
- Yan, G.; Yin, X.; Huang, M.; Wang, X.; Huang, D.; Li, D. Dynamics of phytoplankton functional groups in river-connected lakes and the major influencing factors: A case study of Dongting Lake, China. Ecol. Indic. 2023, 149, 110177. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Liu, X.; Huang, T.; Ma, B.; Li, N.; Yang, W.; Li, H.; Zhao, K. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological model. Sci. Total Environ. 2023, 857, 159160. [Google Scholar] [CrossRef]
- Tang, C.; Yi, Y.; Yang, Z.; Zhou, Y.; Zerizghi, T.; Wang, X.; Cui, X.; Duan, P. Planktonic indicators of trophic states for a shallow lake (Baiyangdian Lake, China). Limnologica 2019, 78, 125712. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Ottmann, D.; Cao, P.; Yang, J.; Yu, J.; Lv, Z. Seasonal variability of phytoplankton community response to thermal discharge from nuclear power plant in temperate coastal area. Environ. Pollut. 2023, 318, 120898. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-J.; He, W.; Liu, W.-X.; Qin, N.; Ouyang, H.-L.; Wang, Q.-M.; Kong, X.-Z.; He, Q.-S.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Lu, X.; Yu, W.; Chen, B.; Ma, Z.; Chen, G.; Ge, F.; An, S.; Han, W. Imbalanced phytoplankton C, N, P and its relationship with seawater nutrients in Xiamen Bay, China. Mar. Pollut. Bull. 2023, 187, 114566. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Niu, X. Effect of water temperature on the dynamic behavior of phytoplankton–zooplankton model. Appl. Math. Comput. 2020, 378, 125211. [Google Scholar] [CrossRef]
- Amadei Martínez, L.; Sabbe, K.; Dasseville, R.; Daveloose, I.; Verstraete, T.; D’Hondt, S.; Azémar, F.; Sossou, A.C.; Tackx, M.; Maris, T.; et al. Long-term phytoplankton dynamics in the Zeeschelde estuary (Belgium) are driven by the interactive effects of de-eutrophication, altered hydrodynamics and extreme weather events. Sci. Total Environ. 2023, 860, 160402. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Severiano, J.; dos Santos Almeida-Melo, V.L.; Bittencourt-Oliveira, M.D.C.; Chia, M.A.; do Nascimento Moura, A. Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: A tropical mesocosm study. Harmful Algae 2018, 71, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Abirhire, O.; Davies, J.-M.; Imtiazy, N.; Hunter, K.; Emmons, S.; Beadle, J.; Hudson, J. Response of phytoplankton community composition to physicochemical and meteorological factors under different hydrological conditions in Lake Diefenbaker. Sci. Total Environ. 2023, 856, 159210. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Gao, L.; Wei, J.; Ma, N.; He, Q.; Pan, B.; Li, M. Spatial and environmental factors contributing to phytoplankton biogeography and biodiversity in mountain ponds across a large geographic area. Aquat. Ecol. 2021, 55, 721–735. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, J.; Zhang, G.; Wang, X.; Wang, F. Environmental factors controlling the dynamics of phytoplankton communities during spring and fall seasons in the southern Sunda Shelf. Environ. Sci. Pollut. Res. 2020, 27, 23222–23233. [Google Scholar] [CrossRef]
- Rao, K.; Zhang, X.; Wang, M.; Liu, J.; Guo, W.; Huang, G.; Xu, J. The relative importance of environmental factors in predicting phytoplankton shifting and cyanobacteria abundance in regulated shallow lakes. Environ. Pollut. 2021, 286, 117555. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhang, M.; Yang, Z.; Shi, X.; Zhao, X. Intra-annual variation and correlations of functional traits in Microcystis and Dolichospermum in Lake Chaohu. Ecol. Indic. 2020, 111, 106052. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, M.; Fan, F.; Yang, J.; Yang, Z.; Chen, K.; Li, Y.C.; Shi, X. Difference in temporal and spatial distribution pattern of cyanobacteria between the sediment and water column in Lake Chaohu. Environ. Pollut. 2021, 291, 118163. [Google Scholar] [CrossRef]
- Simon, M.; López-García, P.; Deschamps, P.; Moreira, D.; Restoux, G.; Bertolino, P.; Jardillier, L. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015, 9, 1941–1953. [Google Scholar] [CrossRef]
- Wei, C.; Bao, S.; Zhu, X.; Huang, X. Spatio-temporal variations of the bacterioplankton community composition in Chaohu Lake, China. Prog. Nat. Sci. 2008, 18, 1115–1122. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, H. Methods for Water and Wastewater Monitoring and Analysis, 4th ed.; (Supplemental Edition) Environmental Science[M]; China Environment Publishing Group: Beijing, China, 2002; pp. 722–724. [Google Scholar]
- HJ 897-2017; Chinese Standard. Water Quality—Determination of Chlorophyll a—Spectrophotometric Method. National Environmental Protection Standards of the People’s Republic of China. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2017.
- Ding, Y.; Pan, B.; Zhao, G.; Sun, C.; Han, X.; Li, M. Geo-climatic factors weaken the effectiveness of phytoplankton diversity as a water quality indicator in a large sediment-laden river. Sci. Total Environ. 2021, 792, 148346. [Google Scholar] [CrossRef]
- Xu, Y.; Li, A.J.; Qin, J.; Li, Q.; Ho, J.G.; Li, H. Seasonal patterns of water quality and phytoplankton dynamics in surface waters in Guangzhou and Foshan, China. Sci. Total Environ. 2017, 590, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhang, K.; Deng, D.; Qi, H.; Li, J.; Cao, Y.; Jin, Q.; Zhao, Y.; Wang, Y.; Wu, Z.; et al. Environmental heterogeneity affecting spatial distribution of phytoplankton community structure and functional groups in a large eutrophic lake, Lake Chaohu, China. Environ. Sci. Pollut. Res. 2023, 30, 79001–79014. [Google Scholar] [CrossRef]
- An, R.; Liu, Y.; Pan, C.; Da, Z.; Zhang, P.; Qiao, N.; Zhao, F.; Ba, S. Water quality determines protist taxonomic and functional group composition in a high-altitude wetland of international importance. Sci. Total Environ. 2023, 880, 163308. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Deng, D.; Zhao, X.; Zhou, Z. Temporal and spatial variations in phytoplankton: Correlations with environmental factors in Shengjin Lake, China. Environ. Sci. Pollut. Res. 2015, 22, 14144–14156. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Su, Y.; Zhang, D.; She, C.; Chen, N.; Chen, J.; Yang, H.; Balaji-Prasath, B. The spatiotemporal variations in microalgae communities in vertical waters of a subtropical reservoir. J. Environ. Manag. 2022, 317, 115379. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Fan, F.; Zhang, M.; Yang, Z.; Yang, Y. Mychonastes dominates the photosynthetic picoeukaryotes in Lake Poyang, a river-connected lake. FEMS Microbiol. Ecol. 2018, 95, fiy211. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Zhang, M.; Liu, C.; Wu, Q. Temperature mainly determines the temporal succession of the photosynthetic picoeukaryote community in Lake Chaohu, a highly eutrophic shallow lake. Sci. Total Environ. 2020, 702, 134803. [Google Scholar] [CrossRef]
- GB 3838-2002; Chinese Standard. Environmental Quality Standards for Surface Water. National Standards of the People’s Republic of China. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Yang, X.; Cui, H.; Liu, X.; Wu, Q.; Zhang, H. Water pollution characteristics and analysis of Chaohu Lake basin by using different assessment methods. Environ. Sci. Pollut. Res. 2020, 27, 18168–18181. [Google Scholar] [CrossRef] [PubMed]
- Spatharis, S.; Tsirtsis, G. Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean. Ecol. Indic. 2010, 10, 840–847. [Google Scholar] [CrossRef]
- Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C.; Jackson, S.T.; Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. USA 2013, 110, 9374–9379. [Google Scholar] [CrossRef] [PubMed]
- Borics, G.; Görgényi, J.; Grigorszky, I.; László-Nagy, Z.; Tóthmérész, B.; Krasznai, E.; Várbíró, G. The role of phytoplankton diversity metrics in shallow lake and river quality assessment. Ecol. Indic. 2014, 45, 28–36. [Google Scholar] [CrossRef]
- Hernando, M.; Varela, D.E.; Malanga, G.; Almandoz, G.O.; Schloss, I.R. Effects of climate-induced changes in temperature and salinity on phytoplankton physiology and stress responses in coastal Antarctica. J. Exp. Mar. Biol. Ecol. 2020, 530, 151400. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Lv, J.; Liu, Q.; Nan, F.; Liu, X.; Xu, L.; Xie, S.; Feng, J. Interactive effects of temperature and nutrients on the phytoplankton community in an urban river in China. Environ. Monit. Assess. 2019, 191, 688. [Google Scholar] [CrossRef]
- Kim, H.; Spivack, A.J.; Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae 2013, 26, 1–11. [Google Scholar] [CrossRef]
- Jakobsen, H.H.; Blanda, E.; Staehr, P.A.; Højgård, J.K.; Rayner, T.A.; Pedersen, M.F.; Jepsen, P.M.; Hansen, B.W. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production. J. Exp. Mar. Biol. Ecol. 2015, 473, 81–89. [Google Scholar] [CrossRef]
- Unrein, F.; O’Farrell, I.; Izaguirre, I.; Sinistro, R.; dos Santos Afonso, M.; Tell, G. Phytoplankton response to pH rise in a N-limited floodplain lake: Relevance of N2-fixing heterocystous cyanobacteria. Aquat. Sci. 2009, 72, 179–190. [Google Scholar] [CrossRef]
- Paerl, H.W. Controlling Eutrophication along the Freshwater–Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries Coasts 2009, 32, 593–601. [Google Scholar] [CrossRef]
- Li, Y.; Waite, A.M.; Gal, G.; Hipsey, M.R. An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment. Ecol. Model. 2013, 252, 196–213. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Han, B.-P.; Naselli-Flores, L. The effects of absolute and relative nutrient concentrations (N/P) on phytoplankton in a subtropical reservoir. Ecol. Indic. 2020, 115, 106466. [Google Scholar] [CrossRef]
- Jiang, M.; Nakano, S.-I. The crucial influence of trophic status on the relative requirement of nitrogen to phosphorus for phytoplankton growth. Water Res. 2022, 222, 118868. [Google Scholar] [CrossRef]
- Zou, W.; Zhu, G.; Xu, H.; Zhu, M.; Qin, B.; Zhang, Y.; Bi, Y.; Liu, M.; Wu, T. Elucidating phytoplankton limiting factors in lakes and reservoirs of the Chinese Eastern Plains ecoregion. J. Environ. Manag. 2022, 318, 115542. [Google Scholar] [CrossRef] [PubMed]
Shannon Index | Pielou Index | Water Quality |
---|---|---|
>3 | 0.8~1 | no pollution |
2~3 | 0.5~0.8 | light pollution |
1~2 | 0.3~0.5 | moderate pollution |
0~1 | 0~0.3 | heavy pollution |
Season | Diversity Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Summer | Shannon | 2.33 | 2.52 | 1.99 | 1.99 | 1.04 | 1.95 | 1.2 | 1.59 | 2.13 | 2.27 |
Pielou | 0.91 | 0.83 | 0.8 | 0.83 | 0.53 | 0.76 | 0.62 | 0.89 | 0.72 | 0.8 | |
Winter | Shannon | 1.86 | 1.65 | 1.94 | 2.04 | 1.92 | 1.94 | 2.28 | 1.67 | 1.74 | 1.76 |
Pielou | 0.84 | 0.85 | 0.88 | 0.85 | 0.8 | 0.84 | 0.89 | 0.76 | 0.79 | 0.84 |
Phylum | Genus | Summer A | Summer A | Winter A | Winter B |
---|---|---|---|---|---|
Chlorophyta | Chlamydomonas | 0.199 | 0.331 | - | - |
Chlorophyta | unclassified_Chlorophyceae | 0.040 | 0.069 | 0.096 | 0.096 |
Chlorophyta | unclassified_Mamiellophyceae | 0.001 | 0.028 | - | - |
Chlorophyta | Mychonastes | 0.000 | 0.002 | 0.323 | 0.323 |
Chlorophyta | unclassified_Selenastraceae | 0.000 | 0.001 | 0.090 | 0.090 |
Chlorophyta | Picochlorum | - | - | - | 0.023 |
Diatomea | Aulacoseira | 0.294 | 0.003 | - | - |
Diatomea | Cyclotella | 0.030 | 0.009 | 0.104 | 0.077 |
Diatomea | Chaetoceros | 0.045 | 0.141 | - | - |
Diatomea | Anomoeoneis | 0.013 | 0.032 | - | - |
Diatomea | Odontella | - | - | 0.124 | 0.100 |
Diatomea | unclassified_Mediophyceae | 0.001 | 0.001 | 0.034 | 0.035 |
Diatomea | unclassified_Diatomea | 0.007 | 0.011 | 0.049 | 0.017 |
Cryptophyta | Cryptomonas | 0.088 | 0.025 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Peng, W.; Zhu, X.; Zhang, H.; Zhuang, X.; Wang, J.; Xi, S.; Luo, T. Research on the Relationship between Eukaryotic Phytoplankton Community Structure and Key Physiochemical Properties of Water in the Western Half of the Chaohu Lake Using High-Throughput Sequencing. Water 2024, 16, 2318. https://doi.org/10.3390/w16162318
Zhao B, Peng W, Zhu X, Zhang H, Zhuang X, Wang J, Xi S, Luo T. Research on the Relationship between Eukaryotic Phytoplankton Community Structure and Key Physiochemical Properties of Water in the Western Half of the Chaohu Lake Using High-Throughput Sequencing. Water. 2024; 16(16):2318. https://doi.org/10.3390/w16162318
Chicago/Turabian StyleZhao, Bingbing, Wei Peng, Xinhao Zhu, Hua Zhang, Xingmei Zhuang, Jinhua Wang, Shanshan Xi, and Tao Luo. 2024. "Research on the Relationship between Eukaryotic Phytoplankton Community Structure and Key Physiochemical Properties of Water in the Western Half of the Chaohu Lake Using High-Throughput Sequencing" Water 16, no. 16: 2318. https://doi.org/10.3390/w16162318
APA StyleZhao, B., Peng, W., Zhu, X., Zhang, H., Zhuang, X., Wang, J., Xi, S., & Luo, T. (2024). Research on the Relationship between Eukaryotic Phytoplankton Community Structure and Key Physiochemical Properties of Water in the Western Half of the Chaohu Lake Using High-Throughput Sequencing. Water, 16(16), 2318. https://doi.org/10.3390/w16162318