Diversity and Ecological Functions of Fungal Communities in Tangchi Hot Spring in Lujiang (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Fungal ITS High-Throughput Sequencing
2.3. Bioinformatics Analysis
2.4. Function Prediction
2.5. Data Accession
3. Results
3.1. Water Sample Parameters of Tangchi Hot Spring
3.2. Sequencing Results of Hot Spring Samples
3.3. Composition of Fungal Communities
3.4. Fungal Alpha Diversity Analysis
3.5. Fungal Function Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, Q.; Zhang, C.L.; Gao, Y.; Hu, C.; Zha, S.X.; Ma, M.G. Status and reliability appraisal of geothermal resources in Hefei city. Geol. Anhui 2015, 25, 222–226. (In Chinese) [Google Scholar] [CrossRef]
- Heinze, B. Sequencing of complete Chloroplast genomes. Methods Mol. Biol. 2021, 2222, 89–105. [Google Scholar] [CrossRef]
- Lu, T.; Zou, X.; Yang, Z.; Lei, F.; Chen, Y.; Liu, G.; Sun, B.; Li, Y. Transcriptome analysis of goat ovaries and follicles based on high-throughput sequencing. J. South China Agric. Univ. 2020, 41, 23–32. [Google Scholar] [CrossRef]
- Won, K.H.; Kim, D.; Shin, D.; Hur, J.; Lee, H.; Heo, J.; Oh, J.D. High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella. J. Anim. Sci. Technol. 2022, 64, 1144–1172. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, P.D.; Qiu, C. Progresses in epigenetic studies of asthma from the perspective of high-throughput analysis technologies: A narrative review. Ann. Transl. Med. 2022, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Mengual, X.; Mayer, C.; Burt, T.O.; Moran, K.M.; Dietz, L.; Nottebrock, G.; Pauli, T.; Young, A.D.; Brasseur, M.V.; Kukowka, S.; et al. Systematics and evolution of predatory flower flies (Diptera: Syrphidae) based on exon-capture sequencing. Syst. Entomol. 2022, 48, 250–277. [Google Scholar] [CrossRef]
- Victorino, Í.M.M.; Berruti, A.; Orgiazzi, A.; Voyron, S.; Bianciotto, V.; Lumini, E. High-Throughput DNA Sequence-Based Analysis of AMF Communities. Methods Mol. Biol. 2020, 2146, 99–116. [Google Scholar] [CrossRef]
- Liu, Z.; Iqbal, M.; Zeng, Z.; Lian, Y.; Zheng, A.; Zhao, M.; Li, Z.; Wang, G.; Li, Z.; Xie, J. Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microb. Pathog. 2020, 142, 104101. [Google Scholar] [CrossRef] [PubMed]
- Sadeepa, D.; Sirisena, K.; Manage, P.M. Diversity of microbial communities in hot springs of Sri Lanka as revealed by 16S rRNA gene high-throughput sequencing analysis. Gene 2022, 812, 146103. [Google Scholar] [CrossRef] [PubMed]
- Kioroglou, D.; Mas, A.; Portillo, M.C. High-throughput sequencing approach to analyze the effect of aging time and barrel usage on the microbial community composition of red wines. Front. Microbiol. 2020, 11, 562560. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Liu, J.; Chen, X.J. Comparative analysis of bacterial diversity in two hot springs in Hefei, China. Sci. Rep. 2023, 13, 5832. [Google Scholar] [CrossRef]
- Katharina, A.S.; Johannes, K.; Joachim, M.; Andreas, L. Effects of Environmental and Nutritional Conditions on Mycelium Growth of Three Basidiomycota. Mycobiology 2024, 52, 124–134. [Google Scholar] [CrossRef]
- Kumar, A.; Suman, R.; Sneha, K.; Anamika, K.; Puja, B.; Pammi, K. Potentials and applications of thermophilic fungi: A general review. Invertis J. Renew. Energy 2021, 11, 39–41. [Google Scholar] [CrossRef]
- Salano, O.A.; Makonde, H.M.; Kasili, R.W.; Wangai, L.N.; Nawiri, M.P.; Boga, H.I. Diversity and distribution of fungal communities within the hot springs of soda lakes in the Kenyan rift valley. Afr. J. Microb. Res. 2017, 11, 764–775. [Google Scholar] [CrossRef]
- Liu, K.H.; Ding, X.W.; Salam, N.; Zhang, B.; Tang, X.F.; Deng, B.W.; Li, W.J. Unexpected fungal communities in the Rehai thermal springs of Tengchong infuenced by abiotic factors. Extremophiles 2018, 22, 525–535. [Google Scholar] [CrossRef]
- Saryono, S.; Novianty, R.; Suraya, N.; Piska, F.; Devi, S.; Pratiwi, N.W.; Ardhi, A. Molecular identification of cellulase-producing thermophilic fungi isolated from Sungai Pinang hot spring, Riau Province, Indonesia. Biodiversitas 2022, 23, 1457–1465. [Google Scholar] [CrossRef]
- Jazmín, L.C.A.; Guadalupe, G.S.; Karina, G.G.; Rafael, O.H.D. Biotechnological insights into extracellular enzyme production by thermotolerant fungi from hot springs and caves: Morphology, pellets formation, and protease production. Biotechnol. Appl. Biochem. 2024, 71, 536–552. [Google Scholar] [CrossRef]
- Yan, K.; Pei, Z.H.; Meng, L.N.; Zheng, Y.; Wang, L.; Feng, R.Z.; Li, Q.Z.; Liu, Y.; Zhao, X.M.; Wei, Q.; et al. Determination of community structure and diversity of seed-vectored endophytic fungi in Alpinia zerumbet. Front. Microb. 2022, 13, 814864. [Google Scholar] [CrossRef]
- Wang, W.; Cai, T.; Yang, Y.T.; Guo, H.; Shang, Z.; Shahid, H.; Zhang, Y.R.; Qiu, S.R.; Zeng, X.N.; Xu, X.L.; et al. Diversity of fungal communities on diseased and healthy cinnamomum burmannii fruits and antibacterial activity of secondary metabolites. Microbiol. Spectr. 2023, 11, e0008023. [Google Scholar] [CrossRef]
- Zhu, A.M.; Wu, Q.; Liu, H.L.; Sun, H.L.; Han, G.D. Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Sci. Rep. 2022, 12, 2707. [Google Scholar] [CrossRef]
- Lu, J.J.; Mao, D.C.; Li, X.; Ma, Y.Q.; Luan, Y.Q.; Cao, Y.; Luan, Y.P. Changes of intestinal microflora diversity in diarrhea model of KM mice and effects of Psidium guajava L. as the treatment agent for diarrhea. J. Infect. Public Health 2020, 13, 16–26. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.W.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schillinge, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Chen, D.Y.; Li, C.W.; Feng, L.; Zhang, Z.Z.; Zhang, H.M.; Cheng, G.Y.; Li, D.S.; Zhang, G.Q.; Wang, H.N.; Chen, Y.X. Analysis of the influence of living environment and age on vaginal fungal microbiome in giant pandas (Ailuropoda melanoleuca) by high throughput sequencing. Microb. Pathog. 2018, 115, 280–286. [Google Scholar] [CrossRef]
- Wilson, M.S.; Siering, P.L.; White, C.L.; Hauser, M.E.; Bartles, A.N. Novel archaea and bacteria dominate stable microbial communities in North America’s largest hot spring. Microb. Ecol. 2008, 56, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Tian, X.Y.; Zhao, H.W. Diversity of fungi and bacteria in hot springs in Haikou, Hainan Province. Acta Microbiol. Sin. 2020, 60, 1999–2011. (In Chinese) [Google Scholar] [CrossRef]
- Mouchacca, J. Heat tolerant fungi and applied research: Addition to the previously treated group of strictly thermotolerant species. World J. Microb. Biot. 2007, 23, 1755–1770. [Google Scholar] [CrossRef]
- Mouchacca, J. Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J. Microb. Biot. 2000, 16, 869–880. [Google Scholar] [CrossRef]
- Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Vandepitte, L.; Hobern, D.; Remsen, D.; Schalk, P.; DeWalt, R.E.; Ma, K.; et al. Catalogue of Life Checklist (Version 2023-01-12); Catalogue of Life: Leiden, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Wanasinghe, D.N.; Nimalrathna, T.S.; Xian, L.Q.; Faraj, T.K.; Xu, J.C.; Mortimer, P.E. Taxonomic novelties and global biogeography of Montagnula (Ascomycota, Didymos- phaeriaceae). MycoKeys 2024, 101, 191–232. [Google Scholar] [CrossRef] [PubMed]
- Manici, L.M.; Caputo, F.; Sabata, D.D.; Fornasier, F. The enzyme patterns of Ascomycota and Basidiomycota fungi reveal their different functions in soil. Appl. Soil. Ecol. 2024, 196, 105323. [Google Scholar] [CrossRef]
- Sum, W.C.; Ebada, S.S.; Matasyoh, J.C.; Stadler, M. Recent progress in the evaluation of secondary metabolites from Basidiomycota. Curr. Res. Biotechnol. 2023, 6, 100155. [Google Scholar] [CrossRef]
- Blaalid, R.; Khomich, M. Current knowledge of Chytridiomycota diversity in Northern Europe and future research needs. Fungal Biol. Rev. 2021, 36, 42–51. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Boguś, M.I. Fungi of entomopathogenic potential in Chytridiomycota and Blastocladiomycota, and in fungal allies of the Oomycota and Microsporidia. IMA Fungus 2021, 12, 29. [Google Scholar] [CrossRef]
- Wang, P.; Jia, S.L.; Liu, G.L.; Chi, Z.; Chi, Z.M. Aureobasidium spp. and their applications in biotechnology. Process Biochem. 2022, 116, 72–83. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, H.L.; Chen, F.; Kang, J.H. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia. Microbiology 2019, 46, 2963–2972. [Google Scholar] [CrossRef]
- Lu, G. Engineering Sclerotinia Sclerotiorum resistance in oilseed crops. Afr. J. Biotechnol. 2003, 2, 6. [Google Scholar] [CrossRef]
- Bueno, E.A.; Oliveira, M.B.; Andrade, R.V.; Petrofeza, L. Effect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection. Genet. Mol. Res GMR 2012, 11, 2171. [Google Scholar] [CrossRef] [PubMed]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 465717–465723. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Jaeger, T.; Anliker, M.D. Rhodotorula mucilaginosa infection in Li-Fraumeni-like syndrome: A new pathogen in folliculitis. Brit. J. Dermatol. 2011, 164, 1120–1122. [Google Scholar] [CrossRef]
- Giovannini, J.; Lee, R.; Zhang, S.X.; Jun, A.S.; Bower, K.S. Rhodotorula keratitis: A rarely encountered ocular pathogen. Case Rep. Ophthalmol. 2014, 5, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.; Hassan, S.; Hagagy, N.; Kraková, L.; Grivalský, T.; Pangallo, D. Assessment of microbial diversity in Saudi springs by culture dependent and independent methods. Geomicrobiol. J. 2016, 34, 443–453. [Google Scholar] [CrossRef]
Barcode | SeqNum | BaseNum | MeanLen | MinLen | MaxLen | |
---|---|---|---|---|---|---|
Raw Data | ACGAGTG | 56,052 | 18,071,057 | 322.4 | 44 | 493 |
Clean Data | ACGAGTG | 56,039 | 15,711,131 | 280.36 | 101 | 451 |
OTU ID | Taxonomy |
---|---|
OTU1 | d__Fungi; p__Chytridiomycota; c__Rhizophydiomycetes; o__Rhizophydiales; f__Rhizophydiaceae; g__Rhizophydium; s__unclassified_Rhizophydium |
OTU4 | d__Fungi; p__Ascomycota; c__Leotiomycetes; o__Helotiales; f__Sclerotiniaceae; g__Sclerotinia; s__Sclerotinia_sclerotiorum_SH1152486.08FU |
OTU6 | d__Fungi; p__Ascomycota; c__Dothideomycetes; o__Dothideales; f__Aureobasidiaceae; g__Aureobasidium; s__unclassified_Aureobasidium |
OTU5 | d__Fungi; p__Basidiomycota; c__Tremellomycetes; o__Cystofilobasidiales; f__Mrakiaceae; g__Tausonia; s__Tausonia_pullulans_SH1650607.08FU |
OTU7 | d__Fungi; p__Olpidiomycota; c__GS17; o__GS17; f__unclassified_GS17;g__unclassified_GS17; s__unclassified_GS17 |
OTU8 | d__Fungi; p__Basidiomycota; c__Microbotryomycetes; o__Sporidiobolales; f__Sporidiobolaceae; g__Rhodotorula; s__Rhodotorula_babjevae_SH2272266.08FU |
OTU9 | d__Fungi; p__Ascomycota; c__Dothideomycetes; o__Pleosporales; f__Phaeosphaeriaceae; g__Sclerostagonospora; s__Sclerostagonospora_lathyri_SH1525096.08FU |
OTU10 | d__Fungi; p__Basidiomycota; c__Microbotryomycetes; o__Sporidiobolales; f__Sporidiobolaceae; g__Rhodotorula; s__Rhodotorula_mucilaginosa_SH1181860.08FU |
OTU61 | d__Fungi; p__Ascomycota; c__Saccharomycetes; o__Saccharomycetales; f__Saccharomycetaceae; g__Saccharomyces; s__Saccharomyces_cerevisiae_SH1613178.08FU |
OTU12 | d__Fungi; p__Ascomycota; c__Dothideomycetes; o__Pleosporales; f__Pleosporaceae; g__Alternaria; s__unclassified_Alternaria |
OTU11 | d__Fungi; p__Ascomycota; c__Dothideomycetes; o__Capnodiales; f__Cladosporiaceae; g__Cladosporium; s__Cladosporium_exasperatum_SH2320217.08FU |
OTU13 | d__Fungi;p__Basidiomycota; c__Tremellomycetes; o__Cystofilobasidiales; f__Mrakiaceae;g__Mrakia; s__unclassified_Mrakia |
OTU33 | d__Fungi; p__Basidiomycota; c__Agaricostilbomycetes; o__Agaricostilbales; f__Ruineniaceae; g__Ruinenia; s__Ruinenia_clavata_SH1575142.08FU |
OTU28 | d__Fungi; p__Ascomycota; c__Dothideomycetes; o__Dothideales; f__Aureobasidiaceae; g__Aureobasidium; s__Aureobasidium_pullulans_SH1515141.08FU |
OTU26 | d__Fungi; p__Chytridiomycota; c__unclassified_Chytridiomycota; o__unclassified_Chytridiomycota; f__unclassified_Chytridiomycota; g__unclassified_Chytridiomycota; s__unclassified_Chytridiomycota |
Sample | Shannon | Chao | Ace | Simpson | Shannoneven | Coverage |
---|---|---|---|---|---|---|
Tangchi | 4.339195 | 541.965517 | 542.70909 | 0.037157 | 0.689481 | 0.99976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.-Q.; Liu, J.; Chen, X.-J. Diversity and Ecological Functions of Fungal Communities in Tangchi Hot Spring in Lujiang (China). Water 2024, 16, 2308. https://doi.org/10.3390/w16162308
Zhang F-Q, Liu J, Chen X-J. Diversity and Ecological Functions of Fungal Communities in Tangchi Hot Spring in Lujiang (China). Water. 2024; 16(16):2308. https://doi.org/10.3390/w16162308
Chicago/Turabian StyleZhang, Feng-Qin, Jun Liu, and Xiao-Ju Chen. 2024. "Diversity and Ecological Functions of Fungal Communities in Tangchi Hot Spring in Lujiang (China)" Water 16, no. 16: 2308. https://doi.org/10.3390/w16162308
APA StyleZhang, F.-Q., Liu, J., & Chen, X.-J. (2024). Diversity and Ecological Functions of Fungal Communities in Tangchi Hot Spring in Lujiang (China). Water, 16(16), 2308. https://doi.org/10.3390/w16162308