Assessing the Impact of Anthropogenically Modified Land Uses on Wetland Health: Case of Witbank Dam Catchment in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Land Use/Cover and Related Statistics
2.3. Calculating Polluted Runoff Load
2.4. Runoff Flow Direction and the Upslope Contributing Area
2.5. Ranking of Wetlands According to Filtration Capacity
2.6. Data Sources
3. Results and Discussion
3.1. Wetland Typology and Statistics of the Study Area
3.2. Estimating Polluted Runoff Load
3.3. Estimating Polluted Runoff Load Detained by Wetlands
3.4. Level and Impact of Pollution in the Witbank Dam Catchment
3.5. Validation of the Results
3.6. Limitations of the Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nhamo, L.; Magidi, J.; Dickens, C. Determining wetland spatial extent and seasonal variations of the inundated area using multispectral remote sensing. Water 2017, 43, 543–552. [Google Scholar] [CrossRef]
- Ashok, A.; Rani, H.P.; Jayakumar, K. Monitoring of dynamic wetland changes using NDVI and NDWI based Landsat imagery. Remote Sens. Appl. Soc. Environ. 2021, 23, 100547. [Google Scholar] [CrossRef]
- Steven, D.D.; Lowrance, R. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont-Coastal Plain region. Ecol. Appl. 2011, 21, S3–S17. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, B.; Tan, Y.; Costanza, R.; Yang, G. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosyst. Serv. 2018, 33, 19–28. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Singha, P.; Pal, S. Wetland transformation and its impact on the livelihood of the fishing community in a flood plain river basin of India. Sci. Total Environ. 2023, 858, 159547. [Google Scholar] [CrossRef] [PubMed]
- Eller, F.; Arias, C.A.; Sorrell, B.K.; Brix, H. Preface: Wetland ecosystems—Functions and use in a changing climate. Hydrobiologia 2021, 848, 3255–3258. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Kašanin-Grubin, M.; Solomun, M.K.; Sushkova, S.; Minkina, T.; Zhao, W.; Kalantari, Z. Wetlands as nature-based solutions for water management in different environments. Curr. Opin. Environ. Sci. Health 2023, 33, 100476. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Maltby, E. The wetlands paradigm shift in response to changing societal priorities: A reflective review. Land 2022, 11, 1526. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Arias, C.A.; Brix, H. Constructed wetlands for water treatment: New developments. Water 2017, 9, 397. [Google Scholar] [CrossRef]
- Simon, M.; Joshi, H. A review on green technologies for the rejuvenation of polluted surface water bodies: Field-scale feasibility, challenges, and future perspectives. J. Environ. Chem. Eng. 2021, 9, 105763. [Google Scholar] [CrossRef]
- Waly, M.M.; Ahmed, T.; Abunada, Z.; Mickovski, S.B.; Thomson, C. Constructed wetland for sustainable and low-cost wastewater treatment. Land 2022, 11, 1388. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef]
- Hota, A.; Patro, S.G.K.; Obaid, A.J.; Khatak, S.; Kumar, R. Constructed wetland challenges for the treatment of industrial wastewater in smart cities: A sensitive solution. Sustain. Energy Technol. Assess. 2023, 55, 102967. [Google Scholar] [CrossRef]
- Roberts, M.T.; Geris, J.; Hallett, P.D.; Wilkinson, M.E. Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters. Wiley Interdiscip. Rev. Water 2023, 10, e1634. [Google Scholar] [CrossRef]
- Norman, L.M.; Lal, R.; Wohl, E.; Fairfax, E.; Gellis, A.C.; Pollock, M.M. Natural infrastructure in dryland streams (NIDS) can establish regenerative wetland sinks that reverse desertification and strengthen climate resilience. Sci. Total Environ. 2022, 849, 157738. [Google Scholar] [CrossRef] [PubMed]
- Lundholm, J.T. The ecology and evolution of constructed ecosystems as green infrastructure. Front. Ecol. Evol. 2015, 3, 106. [Google Scholar] [CrossRef]
- Martínez-Espinosa, C.; Sauvage, S.; Al Bitar, A.; Green, P.A.; Vörösmarty, C.J.; Sánchez-Pérez, J.M. Denitrification in wetlands: A review towards a quantification at global scale. Sci. Total Environ. 2021, 754, 142398. [Google Scholar] [CrossRef] [PubMed]
- Janse, J.H.; Van Dam, A.A.; Hes, E.M.; de Klein, J.J.; Finlayson, C.M.; Janssen, A.B.; van Wijk, D.; Mooij, W.M.; Verhoeven, J.T. Towards a global model for wetlands ecosystem services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon sequestration by wetlands: A critical review of enhancement measures for climate change mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
- Duku, E.; Mattah, P.A.D.; Angnuureng, D.B. Assessment of wetland ecosystem services and human wellbeing nexus in sub-Saharan Africa: Empirical evidence from a socio-ecological landscape of Ghana. Environ. Sustain. Indic. 2022, 15, 100186. [Google Scholar] [CrossRef]
- Owethu Pantshwa, A.; Buschke, F.T. Ecosystem services and ecological degradation of communal wetlands in a South African biodiversity hotspot. R. Soc. Open Sci. 2019, 6, 181770. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban wetlands: A review on ecological and cultural values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Langensiepen, M.; Opiyo, E.O.; Kaudia, A.A.; Rugege, D.; Richard, K.; Akotsi, E.; Ashitiva, D.; Ningu, J.K.; Munyazikwiye, F.; Ngaboyamahina, T. Reconciling East-African Wetland Conservation with Human Needs: Managing Uncertainties in Environmental Policy Design. Wetlands 2023, 43, 36. [Google Scholar] [CrossRef]
- Zsuffa, I.; Van Dam, A.; Kaggwa, R.; Namaalwa, S.; Mahieu, M.; Cools, J.; Johnston, R. Towards decision support-based integrated management planning of papyrus wetlands: A case study from Uganda. Wetl. Ecol. Manag. 2014, 22, 199–213. [Google Scholar] [CrossRef]
- Zou, Y.; Duan, X.; Xue, Z.; Mingju, E.; Sun, M.; Lu, X.; Jiang, M.; Yu, X. Water use conflict between wetland and agriculture. J. Environ. Manag. 2018, 224, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Seifollahi-Aghmiuni, S.; Nockrach, M.; Kalantari, Z. The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 2019, 11, 609. [Google Scholar] [CrossRef]
- UN. The Sustainable Development Goals Report 2023: Special Edition. Towards a Rescue Plan for People and Planet; UN: New York, NY, USA, 2023; 80p. [Google Scholar]
- Sinthumule, N.I. An analysis of communities’ attitudes towards wetlands and implications for sustainability. Glob. Ecol. Conserv. 2021, 27, e01604. [Google Scholar] [CrossRef]
- Anthonj, C.; Rechenburg, A.; Kistemann, T. Water, sanitation and hygiene in wetlands. A case study from the Ewaso Narok Swamp, Kenya. Int. J. Hyg. Environ. Health 2016, 219, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Riddell, E.S.; Govender, D.; Botha, J.; Sithole, H.; Petersen, R.M.; Shikwambana, P. Pollution impacts on the aquatic ecosystems of the Kruger National Park, South Africa. Science 2019, 6, e00195. [Google Scholar] [CrossRef]
- Lemine, B.J. Developing a strategy for efficient environmental authorisation of activities affecting wetlands in South Africa: Towards a wise-use approach. Obiter 2020, 41, 154–167. [Google Scholar] [CrossRef]
- Joorabian Shooshtari, S.; Jahanishakib, F. Estimating the severity of landscape degradation in future management scenarios based on modeling the dynamics of Hoor Al-Azim International Wetland in Iran-Iraq border. Sci. Rep. 2024, 14, 11877. [Google Scholar] [CrossRef] [PubMed]
- Johnes, P.J.; Gooddy, D.C.; Heaton, T.H.; Binley, A.; Kennedy, M.P.; Shand, P.; Prior, H. Determining the impact of riparian wetlands on nutrient cycling, storage and export in permeable agricultural catchments. Water 2020, 12, 167. [Google Scholar] [CrossRef]
- Piñeyro, M.; Chalar, G.; Quintans, F. Constructed wetland scale model: Organic matter and nutrients removal from the effluent of a fish processing plant. Int. J. Environ. Sci. Technol. 2019, 16, 4181–4192. [Google Scholar] [CrossRef]
- Mereta, S.T.; De Meester, L.; Lemmens, P.; Legesse, W.; Goethals, P.L.; Boets, P. Sediment and nutrient retention capacity of natural riverine wetlands in Southwest Ethiopia. Front. Environ. Sci. 2020, 8, 122. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Peng, K.; Wu, Z.; Ling, Z.; Li, Z. Assessment of the impact of wetland changes on carbon storage in coastal urban agglomerations from 1990 to 2035 in support of SDG15. 1. Sci. Total Environ. 2023, 877, 162824. [Google Scholar] [CrossRef]
- Silan, G.; Buosi, A.; Bertolini, C.; Sfriso, A. Dynamics and drivers of carbon sequestration and storage capacity in Phragmites australis-dominated wetlands. Estuar. Coast. Shelf Sci. 2024, 298, 108640. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Rousseau, A.N.; Xu, Y.J.; Foulon, É. On how wetlands can provide flood resilience in a large river basin: A case study in Nenjiang River Basin, China. J. Hydrol. 2020, 587, 125012. [Google Scholar] [CrossRef]
- Kadykalo, A.N.; Findlay, C.S. The flow regulation services of wetlands. Ecosyst. Serv. 2016, 20, 91–103. [Google Scholar] [CrossRef]
- Abraham, T.; Muluneh, A.; Girma, R.; Hartmann, A.; Tekleab, S. Quantifying sensitivity of groundwater recharge to land use and land cover changes by improving model performance on the wetland dominated Tikur Wuha watershed, Ethiopia. Water Cycle 2022, 3, 112–125. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Marnewick, A. Water quality in a mining and water-stressed region. J. Clean. Prod. 2018, 171, 446–456. [Google Scholar]
- Nkosi, M.; Mathivha, F.I.; Odiyo, J.O. Impact of Land Management on Water Resources, a South African Context. Sustainability 2021, 13, 701. [Google Scholar] [CrossRef]
- Walsh, G.W.; Wepener, V. The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water 2009, 35, 579–594. [Google Scholar] [CrossRef]
- Dabrowski, J.M.; De Klerk, L. An assessment of the impact of different land use activities on water quality in the upper Olifants River catchment. Water 2013, 39, 231–244. [Google Scholar] [CrossRef]
- Genthe, B.; Kapwata, T.; Le Roux, W.; Chamier, J.; Wright, C.Y. The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere 2018, 199, 1–9. [Google Scholar] [CrossRef]
- Göbel, P.; Dierkes, C.; Coldewey, W. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 2007, 91, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xiao, Y.; Liang, D.; Tang, H.; Yuan, S.; Luan, B. Rainfall runoff and dissolved pollutant transport processes over idealized urban catchments. Front. Earth Sci. 2020, 8, 305. [Google Scholar] [CrossRef]
- van Deventer, H.; van Niekerk, L.; Adams, J.; Dinala, M.K.; Gangat, R.; Lamberth, S.J.; Lötter, M.; Mbona, N.; MacKay, F.; Nel, J.L. National Wetland Map 5: An improved spatial extent and representation of inland aquatic and estuarine ecosystems in South Africa. Water 2020, 46, 66–79. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the random forest classifier to map irrigated areas using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, P.; Oelofse, S.H.; Rascher, J. Management of environmental impacts from coal mining in the upper Olifants River catchment as a function of age and scale. Int. J. Water Resour. Dev. 2008, 24, 417–431. [Google Scholar] [CrossRef]
- Barnes, M.; Vermeulen, P. Guide to groundwater monitoring for the coal industry. Water 2012, 38, 831–836. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; Mendonça-Santos, M.D.L. Digital soil map of the world. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Magidi, J.; van Koppen, B.; Nhamo, L.; Mpandeli, S.; Slotow, R.; Mabhaudhi, T. Informing Equitable Water and Food Policies through Accurate Spatial Information on Irrigated Areas in Smallholder Farming Systems. Water 2021, 13, 3627. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H.-T. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. Res. 2022, 29, 56887–56907. [Google Scholar] [CrossRef] [PubMed]
- Feris, L.; Kotze, L.J. The regulation of acid mine drainage in South Africa: Law and governance perspectives. Potchefstroom Electron. Law J. 2014, 17, 2105–2163. [Google Scholar]
- Atangana, E. An indices-based water quality model to evaluate surface water quality: A case study in Vaalwaterspruit, Mpumalanga, South Africa. J. Afr. Earth Sci. 2023, 205, 105001. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Abdullah, A.F.B. Impact of land uses on water quality in Malaysia: A review. Ecol. Process. 2019, 8, 10. [Google Scholar] [CrossRef]
- Kotze, D.; Marneweck, G.; Batchelor, A.; Lindley, D.; Collins, N. WET-EcoServices: A Technique for Rapidly Assessing Ecosystem Services Supplied by Wetlands; Water Research Commission (WRC): Pretoria, South Africa, 2009; 80p. [Google Scholar]
- Lloyd, C.; Johnes, P.; Freer, J.; Carswell, A.; Jones, J.; Stirling, M.; Hodgkinson, R.; Richmond, C.; Collins, A. Determining the sources of nutrient flux to water in headwater catchments: Examining the speciation balance to inform the targeting of mitigation measures. Sci. Total Environ. 2019, 648, 1179–1200. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Jian, S.; Wu, Q.; Zhang, L.; Hu, C. Exploring the dominant runoff processes in two typical basins of the Yellow River, china. Water 2020, 12, 3055. [Google Scholar] [CrossRef]
- de Jong, K.; Panja, D.; Karssenberg, D.; van Kreveld, M. Scalability and composability of flow accumulation algorithms based on asynchronous many-tasks. Comput. Geosci. 2022, 162, 105083. [Google Scholar] [CrossRef]
- Sileshi, A.; Awoke, A.; Beyene, A.; Stiers, I.; Triest, L. Water purifying capacity of natural riverine wetlands in relation to their ecological quality. Front. Environ. Sci. 2020, 8, 39. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Rousseau, A.N. Quantitative assessment on basin-scale hydrological services of wetlands. Sci. China Earth Sci. 2020, 63, 279–291. [Google Scholar] [CrossRef]
- Schück, M.; Greger, M. Chloride removal capacity and salinity tolerance in wetland plants. J. Environ. Manag. 2022, 308, 114553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ji, Z.; Pei, Y. Nutrient removal and microbial community structure in an artificial-natural coupled wetland system. Process Saf. Environ. Prot. 2021, 147, 1160–1170. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting–Biomass and load matter the most. Ecol. Eng. 2020, 155, 105962. [Google Scholar] [CrossRef]
- Díaz, F.J.; Anthony, T.; Dahlgren, R.A. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agric. Water Manag. 2012, 104, 171–183. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Myburgh, J.; Ashton, P.; Botha, A.-M. Responses of phytoplankton upon exposure to a mixture of acid mine drainage and high levels of nutrient pollution in Lake Loskop, South Africa. Ecotoxicol. Environ. Saf. 2010, 73, 326–335. [Google Scholar] [CrossRef]
- Addo-Bediako, A. Comparative spatial assessment of trace metal (loid) pollution in the sediments of the lower Olifants River Basin in South Africa. Front. Environ. Sci. 2022, 10, 882393. [Google Scholar] [CrossRef]
- Wenning, R.J.; Ingersoll, C.G. (Eds.) Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments; SETAC: Lake Arrowhead, CA, USA, 2005; 48p. [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Matej-Łukowicz, K.; Walkusz-Miotk, J.; Pazdro, K. Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: A case study of Strzyza Stream. Environ. Geochem. Health 2020, 42, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Zuzolo, D.; Cicchella, D.; Catani, V.; Giaccio, L.; Guagliardi, I.; Esposito, L.; De Vivo, B. Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environ. Geochem. Health 2017, 39, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Silva, Y.J.A.B.d.; Cantalice, J.R.B.; Singh, V.P.; Nascimento, C.W.A.d.; Wilcox, B.P.; Silva, Y.J.A.B.d. Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed. Acta Sci. Agron. 2019, 41, e42620. [Google Scholar] [CrossRef]
Wetland Type | Phosphates | Nitrates | Toxicants |
---|---|---|---|
Channelled valley bottom | 2 | 2 | 2 |
Flat | 1 | 2 | 2 |
Seep | 1 | 3 | 2 |
Valley-head seep | 1 | 3 | 3 |
Depression | 1 | 2 | 2 |
Floodplain | 3 | 2 | 2 |
Unchannelled valley bottom | 2 | 2 | 2 |
Quaternary Basin | Area (km2) | Runoff (103 m3/km2/Year) | Polluted Runoff Volume from Each Land Use/Cover (103 m3/Year) | Total Polluted Runoff (103 m3/Year) | ||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Improved Grassland | Mining | Urban | ||||
B11A | 946.05 | 38.89 | 15,410.62 | 177.76 | 117.92 | 0.00 | 23.86 | 15,730.2 |
B11B | 435.43 | 36.16 | 7218.41 | 71.93 | 8.96 | 927.66 | 195.13 | 8422.1 |
B11C | 387.07 | 33.11 | 5340.34 | 9.77 | 0.00 | 0.00 | 0.04 | 5350.2 |
B11D | 551.20 | 30.08 | 5823.63 | 35.78 | 43.14 | 872.24 | 320.37 | 7095.2 |
B11E | 466.03 | 32.24 | 6221.80 | 102.98 | 69.70 | 1125.53 | 65.88 | 7585.9 |
B11F | 430.34 | 34.26 | 5340.15 | 248.98 | 134.02 | 1486.07 | 94.10 | 7303.3 |
B11G | 367.77 | 35.84 | 2655.54 | 350.31 | 194.11 | 1763.38 | 615.17 | 5578.5 |
Total | 3583.9 | 48,010.5 | 997.5 | 567.8 | 6174.9 | 1314.6 | 57,065.3 |
Wetland Type | N- and P-Polluted Runoff Detained by Wetland Types (103 m3/Year) | Total (WDC) | ||||||
---|---|---|---|---|---|---|---|---|
B11A | B11B | B11C | B11D | B11E | B11F | B11G | ||
Channelled valley bottom | 5267.01 | 1395.06 | 251.05 | 1087.36 | 3527.45 | 3194.71 | 418.13 | 15,140.77 |
Depression | 677.05 | 391.52 | 50.74 | 157.20 | 333.77 | 450.05 | 550.75 | 2611.08 |
Flat | 1515.88 | 805.06 | 606.41 | 563.47 | 554.15 | 686.10 | 360.16 | 5091.25 |
Floodplain wetland | 5221.65 | 3427.14 | 3727.96 | 3052.29 | 401.37 | 599.57 | 1475.57 | 17,905.55 |
Seep | 2915.11 | 1054.23 | 667.15 | 888.99 | 1399.28 | 660.56 | 318.92 | 7904.24 |
Unchanneled valley bottom | 49.13 | 213.01 | 12.65 | 90.84 | 166.13 | 108.25 | 74.73 | 714.74 |
Valleyhead seep | 60.42 | 12.82 | 34.03 | 62.15 | 12.48 | 23.85 | 1.96 | 207.72 |
Total | 15,706.26 | 7298.84 | 5350.00 | 5902.31 | 6394.63 | 5723.09 | 3200.22 | 49,575.35 |
Wetland Type | Toxicant-Polluted Runoff Detained by Wetland Types (103 m3/Year) | Total (WDC) | ||||||
---|---|---|---|---|---|---|---|---|
B11A | B11B | B11C | B11D | B11E | B11F | B11G | ||
Channelled valley bottom | 8.00 | 214.59 | 0.00 | 219.70 | 657.23 | 882.06 | 310.80 | 2292.39 |
Depression | 1.03 | 60.22 | 0.00 | 31.76 | 62.19 | 124.26 | 409.37 | 688.84 |
Flat | 2.30 | 123.84 | 0.00 | 113.85 | 103.25 | 189.43 | 267.71 | 800.39 |
Floodplain wetland | 7.93 | 527.17 | 0.03 | 616.72 | 74.78 | 165.54 | 1096.80 | 2488.97 |
Seep | 4.43 | 162.16 | 0.00 | 179.62 | 260.71 | 182.38 | 237.05 | 1026.36 |
Unchanneled valley bottom | 0.07 | 32.77 | 0.00 | 18.35 | 30.95 | 29.89 | 55.55 | 167.58 |
Valleyhead seep | 0.09 | 1.97 | 0.00 | 12.56 | 2.33 | 6.59 | 1.46 | 24.99 |
Total | 23.86 | 1122.72 | 0.04 | 1192.56 | 1191.44 | 1580.15 | 2378.74 | 7489.52 |
Phosphates | Nitrates | Toxicants | ||||||
---|---|---|---|---|---|---|---|---|
Wetland Type | Total P and N Runoff | Rank | Polluted Outflow | Rank | Polluted Outflow | Total Tox Runoff | Rank | Polluted Outflow |
Channelled valley bottom | 5275.01 | 2 | 2637.51 | 2 | 2637.51 | 8.00 | 2 | 4 |
Depression | 678.08 | 1 | 678.08 | 2 | 339.04 | 1.03 | 2 | 0.51 |
Flat | 1518.19 | 1 | 1518.19 | 2 | 759.10 | 2.30 | 2 | 1.15 |
Floodplain wetland | 5229.59 | 3 | 0.00 | 2 | 2614.80 | 7.93 | 2 | 3.97 |
Seep | 2919.54 | 1 | 2919.54 | 3 | 0.00 | 4.43 | 2 | 2.22 |
Unchanneled valley bottom | 49.21 | 2 | 24.61 | 2 | 24.61 | 0.07 | 2 | 0.04 |
Valleyhead seep | 60.51 | 1 | 60.51 | 3 | 0.00 | 0.09 | 3 | 0 |
Total polluted outflow | 15,730.12 | 7838.44 | 6375.06 | 23.86 | 11.89 |
Quaternary Basin | Type of Pollutant Runoff (103 m3/Year) | ||
---|---|---|---|
Phosphate Runoff | Nitrate Runoff | Toxicant Runoff | |
B11A | 7838.44 | 6375.06 | 11.89 |
B11B | 3068.67 | 3115.9 | 560.39 |
B11C | 1490.19 | 2324.47 | 0.02 |
B11D | 2260.91 | 2455.59 | 584.81 |
B11E | 4146.48 | 2491.46 | 594.62 |
B11F | 3472.1 | 2518.91 | 786.79 |
B11G | 1478.23 | 1439.69 | 1288.66 |
Total (WDC) | 23,755.02 | 20,721.08 | 3827.18 |
Percentage (%) of total polluted runoff | 42% | 36% | 7% |
Sampling Point | AS | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
BL1 | 50.8 | 41.5 | 63.6 | 25,333.0 | 685.3 | 109.9 | 7.5 | 42.8 |
BL2 | 51.0 | 80.4 | 74.0 | 28,108.8 | 949.8 | 115.1 | 7.2 | 48.3 |
BL3 | 45.0 | 108.0 | 63.4 | 46,210.0 | 1299.0 | 281.7 | 7.4 | 38.6 |
MH1 | 6.6 | 260.5 | 21.7 | 12,001.5 | 567.8 | 64.7 | 5.9 | 16.2 |
MH2 | 8.0 | 245.0 | 16.4 | 74,664.5 | 2581.5 | 49.2 | 8.5 | 20.3 |
MH3 | 4.8 | 416.3 | 20.3 | 34,761.0 | 682.3 | 72.0 | 10.0 | 54.5 |
SL1 | 3.8 | 61.8 | 0.0 | 14,400.0 | 254.5 | 79.5 | 0.0 | 11.0 |
SL2 | 2.0 | 52.5 | 0.0 | 15,000.0 | 270.5 | 144.7 | 0.0 | 29.5 |
SL3 | 1.7 | 46.8 | 0.0 | 12,700.0 | 209.0 | 88.3 | 0.0 | 29.0 |
ST1 | 0.9 | 106.3 | 25.3 | 177,173.8 | 1167.8 | 16.6 | 5.4 | 89.1 |
ST2 | 0.4 | 2252.8 | 13.7 | 133,291.8 | 1560.8 | 92.0 | 4.1 | 47.5 |
ST3 | 1.9 | 1096.3 | 21.2 | 135,981.5 | 1783.8 | 119.5 | 17.0 | 92.0 |
Av. Shale value * | 13.0 | 90.0 | 45.0 | 47,200.0 | 850.0 | 68.0 | 20.0 | 95.0 |
SQG * | 5.9 | 37.3 | 35.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpandeli, S.; Liphadzi, S.; Mabhaudhi, C.; Mabhaudhi, T.; Nhamo, L. Assessing the Impact of Anthropogenically Modified Land Uses on Wetland Health: Case of Witbank Dam Catchment in South Africa. Water 2024, 16, 2287. https://doi.org/10.3390/w16162287
Mpandeli S, Liphadzi S, Mabhaudhi C, Mabhaudhi T, Nhamo L. Assessing the Impact of Anthropogenically Modified Land Uses on Wetland Health: Case of Witbank Dam Catchment in South Africa. Water. 2024; 16(16):2287. https://doi.org/10.3390/w16162287
Chicago/Turabian StyleMpandeli, Sylvester, Stanley Liphadzi, Chengetanai Mabhaudhi, Tafadzwanashe Mabhaudhi, and Luxon Nhamo. 2024. "Assessing the Impact of Anthropogenically Modified Land Uses on Wetland Health: Case of Witbank Dam Catchment in South Africa" Water 16, no. 16: 2287. https://doi.org/10.3390/w16162287
APA StyleMpandeli, S., Liphadzi, S., Mabhaudhi, C., Mabhaudhi, T., & Nhamo, L. (2024). Assessing the Impact of Anthropogenically Modified Land Uses on Wetland Health: Case of Witbank Dam Catchment in South Africa. Water, 16(16), 2287. https://doi.org/10.3390/w16162287