Material Activity in Debris Flow Watersheds Pre- and Post-Strong Earthquake: A Case Study from the Wenchuan Earthquake Epicenter
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Remote Sensing Images and Other Data
3.2. Multi-Temporal Inventorying
3.3. Distance Coefficient
3.4. Landslide Connectivity
4. Results
4.1. Multi-Temporal Analysis of Active Material
4.2. Material Transportation
4.3. Supply of Material Sources for Debris Flows
- (1)
- The Relationship Between Active Landslides and Actively Connected Landslides
- (2)
- The Relationship Between Actively Connected Landslides and Active Channel Materials
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslides, earthquakes, and erosion. Earth Planet. Sci. Lett. 2004, 229, 45–59. [Google Scholar] [CrossRef]
- Yanites, B.J.; Tucker, G.E.; Mueller, K.J.; Chen, Y.-G. How rivers react to large earthquakes: Evidence from central Taiwan. Geology 2010, 38, 639–642. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, C.; Cai, Y.; Tang, C.; Chen, M.; Huang, W.; Liu, C. Characteristics of Debris Flow Activities at Different Scales after the Disturbance of Strong Earthquakes—A Case Study of the Wenchuan Earthquake-Affected Area. Water 2023, 15, 698. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, C.; Tang, C.; Chen, M.; Cai, Y.; Bu, X.; Liu, C. Spatial and temporal evolution of long-term debris flow activity and the dynamic influence of condition factors in the Wenchuan earthquake-affected area, Sichuan, China. Geomorphology 2023, 435, 108755. [Google Scholar] [CrossRef]
- Lin, C.-W.; Shieh, C.-L.; Yuan, B.-D.; Shieh, Y.-C.; Liu, S.-H.; Lee, S.-Y. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Simonett, D.S. Landslide distribution and earthquakes in the Bavani and Torricelli mountains, New Guinea. In Landform Studies from Australia and New Guinea; Australian National University Press: Canberra, Australia, 1967; pp. 64–84. Available online: https://cir.nii.ac.jp/crid/1571698600949436032 (accessed on 29 July 2024).
- Hovius, N.; Meunier, P.; Lin, C.-W.; Chen, H.; Chen, Y.-G.; Dadson, S.; Horng, M.-J.; Lines, M. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 2011, 304, 347–355. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Pearce, A.J.; Watson, A. Medium-term effects of two landsliding episodes on channel storage of sediment. Earth Surf. Process. Landf. 1983, 8, 29–39. [Google Scholar] [CrossRef]
- Pearce, A.J.; Watson, A.J. Effects of earthquake-induced landslides on sediment budget and transport over a 50-yr period. Geology 1986, 14, 52–55. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Lin, J.-C.; Hsu, M.-L.; Lin, C.-W.; Horng, M.-J.; Chen, T.-C.; Milliman, J. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 733–736. [Google Scholar] [CrossRef]
- Korup, O.; McSaveney, M.J.; Davies, T.R. Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology 2004, 61, 189–207. [Google Scholar] [CrossRef]
- Tsai, Z.X.; You, G.J.Y.; Lee, H.Y.; Chiu, Y.J. Modeling the sediment yield from landslides in the Shihmen Reservoir watershed, Taiwan. Earth Surf. Process. Landf. 2013, 38, 661–674. [Google Scholar] [CrossRef]
- West, A.; Lin, C.-W.; Lin, T.-C.; Hilton, R.; Liu, S.-H.; Chang, C.-T.; Lin, K.-C.; Galy, A.; Sparkes, R.; Hovius, N. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol. Oceanogr. 2011, 56, 77–85. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area. Geomorphology 2017, 276, 86–103. [Google Scholar] [CrossRef]
- Ferguson, R.I.; Church, M.; Rennie, C.D.; Venditti, J.G. Reconstructing a sediment pulse: Modeling the effect of placer mining on Fraser River, Canada. Earth Surf. 2015, 120, 1436–1454. [Google Scholar] [CrossRef]
- Zhang, N.; Matsushima, T.; Peng, N. Numerical investigation of post-seismic debris flows in the epicentral area of the Wenchuan earthquake. Bull. Eng. Geol. Environ. 2019, 78, 3253–3268. [Google Scholar] [CrossRef]
- Gerolymos, N. Numerical modeling of seismic triggering, evolution, and deposition of rapid landslides: Application to Higashi–Takezawa (2004). Numer. Anal. Methods Geomech. 2010, 34, 383–407. [Google Scholar] [CrossRef]
- Yang, F.; Fan, X.; Wei, Z.; Subramanian, S.S.; Van Asch, T.W.J.; Xu, Q. Modelling the evolution of debris flows after the 2008 Wenchuan earthquake. Eng. Geol. 2023, 321, 107152. [Google Scholar] [CrossRef]
- Fan, X.; Domènech, G.; Scaringi, G.; Huang, R.; Xu, Q.; Hales, T.C.; Dai, L.; Yang, Q.; Francis, O. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides 2018, 15, 2325–2341. [Google Scholar] [CrossRef]
- Meunier, P.; Hovius, N.; Haines, A.J. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Hydrol. Land Surf. Stud. 2007, 34, 121–138. [Google Scholar] [CrossRef]
- Roback, K.; Clark, M.K.; West, A.J.; Zekkos, D.; Li, G.; Gallen, S.F.; Chamlagain, D.; Godt, J.W. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 2018, 301, 121–138. [Google Scholar] [CrossRef]
- Stolle, A.; Schwanghart, W.; Andermann, C.; Bernhardt, A.; Fort, M.; Jansen, J.D.; Wittmann, H.; Merchel, S.; Rugel, G.; Adhikari, B.R.; et al. Protracted river response to medieval earthquakes. Earth Surf. Process. Landf. 2019, 44, 331–341. [Google Scholar] [CrossRef]
- Li, G.; West, A.J.; Densmore, A.L.; Hammond, D.E.; Jin, Z.; Zhang, F.; Wang, J.; Hilton, R.G. Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake. J. Geophys. Res. Earth Surf. 2016, 121, 703–724. [Google Scholar] [CrossRef]
- Yang, F.; Fan, X.; Siva Subramanian, S.; Dou, X.; Xiong, J.; Xia, B.; Yu, Z.; Xu, Q. Catastrophic debris flows triggered by the 20 August 2019 rainfall, a decade since the Wenchuan earthquake, China. Landslides 2021, 18, 3197–3212. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Li, N.; Xiong, J.; Chen, M.; Li, M.; Tang, C. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns. Landslides 2022, 19, 1935–1956. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Zhang, X.; Xiong, J.; Chang, M.; Shi, Q.; Wang, F.; Li, M. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China. Eng. Geol. 2021, 293, 106319. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Li, M.; Xiong, J.; Luo, Y.; Shi, Q.; Zhang, X.; Tie, Y.; Feng, Q. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area. CATENA 2022, 210, 105871. [Google Scholar] [CrossRef]
- Shi, Q.-y.; Tang, C.; Gong, L.-f.; Chen, M.; Li, N.; Zhou, W.; Xiong, J.; Tang, H.; Wang, X.-d.; Li, M.-w. Activity evolution of landslides and debris flows after the Wenchuan earthquake in the Qipan catchment, Southwest China. J. Mt. Sci. 2021, 18, 932–951. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Xiong, J.; Chang, M.; Li, N. Spatio-temporal mapping and long-term evolution of debris flow activity after a high magnitude earthquake. CATENA 2024, 236, 107716. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Xiong, J.; Shi, Q.Y.; Li, N.; Gong, L.F.; Wang, X.D.; Tie, Y. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China. Geomorphology 2020, 367, 107317. [Google Scholar] [CrossRef]
- Tang, C.; Liu, X.; Cai, Y.; Van Westen, C.; Yang, Y.; Tang, H.; Yang, C.; Tang, C. Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards. Nat. Hazards Earth Syst. Sci. 2020, 20, 1163–1186. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef]
- Jin, W.; Cui, P.; Zhang, G.; Wang, J.; Zhang, Y.; Zhang, P. Evaluating the post-earthquake landslides sediment supply capacity for debris flows. CATENA 2023, 220, 106649. [Google Scholar] [CrossRef]
- Tang, C.; Jiang, Z.; Li, W. Seismic Landslide Evolution and Debris Flow Development: A Case Study in the Hongchun Catchment, Wenchuan Area of China. In Engineering Geology for Society and Territory; Springer International Publishing: Cham, Switzerland, 2015; Volume 2, pp. 445–449. [Google Scholar] [CrossRef]
- Shieh, C.-L.; Chen, Y.-S.; Shieh, M.-L.; Tsai, Y.-J. Rainfall criteria variation of debris flow occurring at Mt. Ninety-Nine. In Proceedings of the International Symposium Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Niigata, Japan, 25–29 September 2006; pp. 167–175. Available online: https://www.researchgate.net/publication/285731334 (accessed on 29 July 2024).
- Bonneau, D.A.; Hutchinson, D.J.; McDougall, S.; DiFrancesco, P.-M.; Evans, T. Debris-Flow Channel Headwater Dynamics: Examining Channel Recharge Cycles with Terrestrial Laser Scanning. Front. Earth Sci. 2022, 10, 883259. [Google Scholar] [CrossRef]
- Loye, A.; Jaboyedoff, M.; Theule, J.I.; Liébault, F. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys. Earth Surf. Dynam. 2016, 4, 489–513. [Google Scholar] [CrossRef]
- Yu, B.; Yang, L.; Chang, M.; van Asch, T.W.J. A new prediction model on debris flows caused by runoff mechanism. Environ. Earth Sci. 2021, 80, 26. [Google Scholar] [CrossRef]
- Kanji, M.A.; Cruz, P.T.; Massad, F. Debris flow affecting the Cubatão Oil Refinery, Brazil. Landslides 2008, 5, 71–82. [Google Scholar] [CrossRef]
- Lacerda, W.A. Landslide initiation in saprolite and colluvium in southern Brazil: Field and laboratory observations. Geomorphology 2007, 87, 104–119. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, C.; Chen, M.; Gong, L.; Li, N.; Zhang, X.; Shi, Q. Long-term changes in the landslide sediment supply capacity for debris flow occurrence in Wenchuan County, China. CATENA 2021, 203, 105340. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, J.; Zhao, W.; Chen, J.; Zhang, X.; Ruan, H.; Fang, C.; Gong, L. Catastrophic debris flow triggered by a June 26, 2023 rainstorm suggests the debris flow is still active 15 years after the Wenchuan seismic. Landslides 2024, 21, 1883–1897. [Google Scholar] [CrossRef]
- Shi, Z.; Wei, F.; Chandrasekar, V. Radar-based quantitative precipitation estimation for the identification of debris flow occurrence over earthquake-affected regions in Sichuan, China. Nat. Hazards Earth Syst. Sci. 2018, 18, 765–780. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, H.; Tang, C.; Chen, M.; Chang, M.; Zhang, X.; Gong, L.; Li, N.; Shi, Q.; Li, M. Application of remote sensing monitoring to the spatiotemporal variation in debris flow activity in the catastrophic Wenchuan seismic area. CATENA 2023, 232, 107450. [Google Scholar] [CrossRef]
- Zhang, X.; Tie, Y.; Ning, Z.; Yang, C.; Li, Z.; Li, M.; Liang, J.; Lu, J.; Lu, T.; Li, G.; et al. Characteristics and activity analysis of the catastrophic “6·26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province. Hydrogeol. Eng. Geol. 2023, 50, 134–145. (In Chinese) [Google Scholar] [CrossRef]
Data Types | Source | Acquisition Time | Precision | Application |
---|---|---|---|---|
Landslide interpretation | [34] | 2005, 2007, 2008, 2011, 2013, 2015, 2017, 2018 | vector | Basic data |
Remote sensing image | Spot 5 | 2008.07 | 1 m | Correct and categorize the basic interpretation data and establish a database for interpretation of remobilized, new landslides and active channel material. |
Google Earth | 2011.04 | 0.5 m | ||
Pleiades | 2013.09 | 2 m | ||
Spot 6 | 2015.04 | 1 m | ||
Sentinel-2B | 2019.04 | 10 m | ||
2020.08 | 10 m | |||
DSM | ALOS-PALSAR RTC | / | 30 m | For river network and watershed boundary extraction and topographic reference for interpretation. |
Precipitation | Global Precipitation Climate Center (GPCC) | 2000–2020 (monthly) | 1 mm | To analyze the relationship between material activity and rainfall in the study area. |
Year | New Landslide | Remobilized Landslide | Active Channel Material | ||
---|---|---|---|---|---|
Area (km2) | Number (km2) | Area (km2) | Number (km2) | Area (km2) | |
2005 | 0.21 | 61 | / | / | 0.24 |
2007 | 0.49 | 38 | / | / | 0.01 |
2008 | 64.32 | 4352 | / | / | 4.25 |
2011 | 1.92 | 358 | 13.97 | 1945 | 5.95 |
2013 | 1.00 | 162 | 4.15 | 586 | 3.33 |
2015 | 0.13 | 6 | 0.59 | 92 | 2.42 |
2017 | 0.03 | 2 | 0.12 | 13 | 0.10 |
2018 | 0.01 | 3 | 0.05 | 13 | 0.20 |
2020 | 0.75 | 23 | 7.21 | 202 | 2.61 |
Gully | Active Channel Material Area | Number of Post-Earthquake Events | Occurrence of Events Post-2018 | Gully | Active Channel Material Area | Number of Post-Earthquake Events | Occurrence of Events Post-2018 |
---|---|---|---|---|---|---|---|
DF01 | 0.47 | 3 | No | DF17 | 0.76 | 6 | Yes |
DF02 | 0.12 | 3 | No | DF18 | 3.00 | 4 | Yes |
DF03 | 0.03 | 1 | No | DF19 | 0.33 | 11 | Yes |
DF04 | 0 | 1 | No | DF20 | 0.09 | 2 | No |
DF05 | 0.50 | 1 | Yes | DF21 | 1.01 | 4 | Yes |
DF06 | 0.33 | 6 | No | DF22 | 0.26 | 3 | No |
DF07 | 0.22 | 2 | No | DF23 | 0.31 | 1 | Yes |
DF08 | 0.03 | 1 | No | DF24 | 0.04 | 1 | No |
DF09 | 0.05 | 1 | No | DF25 | 0 | 1 | No |
DF10 | 2.40 | 1 | Yes | DF26 | 0.03 | 1 | No |
DF11 | 0.07 | 1 | No | DF27 | 0.56 | 1 | No |
DF12 | 0.09 | 1 | No | DF28 | 0.49 | 2 | Yes |
DF13 | 0.67 | 2 | No | DF29 | 0.60 | 2 | Yes |
DF14 | 2.33 | 4 | Yes | DF30 | 0.07 | 1 | No |
DF15 | 2.16 | 2 | Yes | DF31 | 0.20 | 2 | Yes |
DF16 | 1.88 | 3 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, M.; Cai, Y.; Tang, C.; Huang, W.; Xia, C. Material Activity in Debris Flow Watersheds Pre- and Post-Strong Earthquake: A Case Study from the Wenchuan Earthquake Epicenter. Water 2024, 16, 2284. https://doi.org/10.3390/w16162284
Yang Y, Chen M, Cai Y, Tang C, Huang W, Xia C. Material Activity in Debris Flow Watersheds Pre- and Post-Strong Earthquake: A Case Study from the Wenchuan Earthquake Epicenter. Water. 2024; 16(16):2284. https://doi.org/10.3390/w16162284
Chicago/Turabian StyleYang, Yu, Ming Chen, Yinghua Cai, Chenxiao Tang, Wenli Huang, and Chenhao Xia. 2024. "Material Activity in Debris Flow Watersheds Pre- and Post-Strong Earthquake: A Case Study from the Wenchuan Earthquake Epicenter" Water 16, no. 16: 2284. https://doi.org/10.3390/w16162284
APA StyleYang, Y., Chen, M., Cai, Y., Tang, C., Huang, W., & Xia, C. (2024). Material Activity in Debris Flow Watersheds Pre- and Post-Strong Earthquake: A Case Study from the Wenchuan Earthquake Epicenter. Water, 16(16), 2284. https://doi.org/10.3390/w16162284