Targeting Macrophytes: Optimizing Vegetation Density to Enhance Water Quality within Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Targeting Macrophyte Method Framework
2.2. Lab-Scale Constructed Wetland
2.3. Vegetations and Planting
2.4. Water Samples
2.5. Water Quality Analysis
2.6. Statistical Analysis for Phase I and Phase II Studies
3. Results and Discussion
3.1. Phase I Results
3.1.1. Control Group
3.1.2. Experimental Group
3.1.3. Control Group vs. Experimental Group
3.1.4. Determination of Targeting Macrophyte
3.2. Phase II Results
3.3. Validity of Targeting Macrophyte Method
3.4. Applicability to Wetland Design
3.5. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridges, T.S.; Burks-Copes, K.A.; Bates, M.E.; Collier, Z.A.; Fischenich, J.C.; Piercy, C.D.; Russo, E.J.; Shafer, D.J.; Suedel, B.C.; Gailani, J.Z.; et al. Use of Natural and Nature-Based Features (NNBF) for Coastal Resilience; Report No. ERDC SR-15-1; The US Army Engineer Research and Development Center (ERDC): Vicksburg, MI, USA, 2015. [Google Scholar]
- European Commission. Directorate-General for Research and Innovation. In Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’: (Full Version); European Commission Publications Office: Luxembourg, 2015. Available online: https://data.europa.eu/doi/10.2777/479582 (accessed on 7 August 2024).
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000261424 (accessed on 7 August 2024).
- Hanafiah, Z.M.; Azmi, A.R.; Wan-Mohtar, W.A.A.Q.I.; Olivito, F.; Golemme, G.; Ilham, Z.; Jamaludin, A.A.; Razali, N.; Halim-Lim, S.A.; Wan Mohtar, W.H.M. Water quality assessment and decolourisation of contaminated ex-mining lake water using bioreactor dye-eating fungus (BioDeF) system: A real case study. Toxics 2024, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Mooralitharan, S.; Mohd Hanafiah, Z.; Abd Manan, T.S.B.; Muhammad-Sukki, F.; Wan-Mohtar, W.A.A.Q.I.; Wan Mohtar, W.H.M. Vital conditions to remove pollutants from synthetic wastewater using Malaysian Ganoderma lucidum. Sustainability 2023, 15, 3819. [Google Scholar] [CrossRef]
- Plummer Associates, Inc. Mitchell Lake Wetlands Quality Treatment Initiative—Phase I: Final Pilot Wetland Study Report; Plummer Associates, Inc.: Fort Worth, TX, USA, 2020. [Google Scholar]
- Hall, J. Impact of Contrasting Root Systems on Phosphorous Reduction in a Constructed Wetland. Master’s Thesis, Illinois State University, Normal, IL, USA, 2020. [Google Scholar]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: A review. In Proceedings of the Taal2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; Sengupta, M., Dalwani, R., Eds.; pp. 965–980. [Google Scholar]
- García-Ávila, F.; Avilés-Añazco, A.; Cabello-Torres, R.; Guanuchi-Quito, A.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; Alva-rez-Ochoa, R.; Zhindón-Arévalo, C. Application of ornamental plants in constructed wetlands for wastewater treatment: A scientometric analysis. Case Stud. Chem. Environ. Eng. 2023, 7, 100307. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; CRC Lewis Publishers: Boca Raton, FL, USA, 1996. [Google Scholar]
- Liu, S.; Zhang, Y.; Feng, X.; Pyo, S. Current problems and countermeasures of constructed wetland for wastewater treatment: A review. J. Water Process Eng. 2024, 57, 104569. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Gurevitch, J.; Scheiner, S.M.; Fox, G.A. The Ecology of Plants, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2006. [Google Scholar]
- Wahl, S.; Ryser, P. Root tissue structure is linked to ecological strategies of grasses. New Phytol. 2000, 148, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.B.; Peng LI, U.; Yang, Y.S.; Chen, W.R. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J. Environ. Sci. 2007, 19, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.; Hench, K.; Garbutt, K.; Sexstone, A.; Bissonnette, G.; Skousen, J. Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut. 2021, 128, 283–295. [Google Scholar] [CrossRef]
- Weisner, S.E.B.; Eriksson, P.G.; Wilhelm, G.; Leonardson, L. Influence of Macrophytes on Nitrate Removal in Wetlands. Amibo J. Hum. Environ. 1994, 23, 363–366. [Google Scholar]
- Brix, H. Functions of macrophytes in constructed wetlands. Water Sci. Technol. 1994, 29, 71–78. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Chen, Y.; Bracy, R.P.; Owings, A.D.; Merhaut, D.J. Nitrogen and phosphorus removal by ornamental and wetland plants in a greenhouse recirculation research system. HortScience 2009, 44, 1704–1711. [Google Scholar] [CrossRef]
- Poff, N.L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc. 1997, 16, 391–409. [Google Scholar] [CrossRef]
- van der Valk, A.G. Succession in wetlands: A Gleasonian approach. Ecology 1981, 62, 688–696. [Google Scholar] [CrossRef]
- Weiher, E.; Keddy, P.A. The Assembly of Experimental Wetland Plant Communities. Oikos 1995, 73, 323–335. [Google Scholar] [CrossRef]
- McBrady, A. Targeting Macrophytes: Increased Water Quality through Optimized Vegetation Considerations for Constructed Wetlands. Master’s Thesis, Texas A&M University-San Antonio, San Antonio, TX, USA, 2023. Available online: https://digitalcommons.tamusa.edu/masters_theses/5 (accessed on 7 August 2024).
- Schoenoplectus Bulrushes (Genus Schoenoplectus). iNaturalist. 1 September 2023. Available online: https://www.inaturalist.org/taxa/47160-Schoenoplectus (accessed on 7 August 2024).
- Plummer Associates, Inc. Construction Plans for Mitchell Lake Constructed Wetland—Phase I; San Antonio Water System: San Antonio, TX, USA, 2018. [Google Scholar]
- Woodier, O. How to Create a Mini-Wetland. National Wildlife. 1 August 1997. Available online: https://www.nwf.org/Magazines/National-Wildlife/1997/How-to-Create-a-Mini-Wetland (accessed on 7 August 2024).
- Mishra, P.; Singh, U.; Pandey, C.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Plummer Associates, Inc. Mitchell Lake Constructed Wetlands: Lake and Constructed Wetland Operational Plan; Texas Commission on Environmental Quality: Austin, TX, USA, 2020. [Google Scholar]
- Vymazal, J. Do laboratory scale experiments improve constructed wetland treatment technology? Environ. Sci. Technol. 2018, 52, 12956–12957. [Google Scholar] [CrossRef]
- Zurita, F.; de Anda, J.; Belmont, M.A. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. 2006, 41, 410–417. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). J. Environ. Manag. 2021, 283, 111986. [Google Scholar] [CrossRef]
- Báldi, A. Microclimate and vegetation edge effects in a reedbed in Hungary. Biodivers. Conserv. 1999, 8, 1697–1707. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Tanner, C.; Hally, V.; Gibbs, M. Nitrogen spiraling in subsurface-flow constructed wetlands: Implications for treatment response. Ecol. Eng. 2005, 25, 365–381. [Google Scholar] [CrossRef]
- Manson, S.M. Simplifying complexity: A review of complexity theory. Geoforum 2001, 32, 405–414. [Google Scholar] [CrossRef]
Phase I | Phase II | |
---|---|---|
Turbidity (NTU) | 3.87 | 28.2 |
Conductivity (μS/cm) | 3779 | 3616 |
pH | 7.32 | 6.99 |
Temperature (°C) | 20.1 | 28.4 |
DO (mg/L) | 16 | 0.6 |
COD (mg/L) | 49.2 | 97 |
E. coli * | ND | ND |
Total Coliform * | ND | ND |
Ammonia | UR | 10.415 |
Control Group | ||||
Species Parameter | Olney | Hardstem | Giant | Effect size |
Turbidity (NTU) | X | X | X | X |
Conductivity (μS/cm) | X | X | X | X |
pH | 1 | 2 | 3 | 0.751 |
Temperature (°C) | X | X | X | X |
DO (%) | 3 | 2 | 1 | 0.885 |
COD (mg/L) | 2 | 3 | 1 | 0.691 |
Experimental Group | ||||
Species Parameter | Olney | Hardstem | Giant | Effect size |
Turbidity (NTU) | X | X | X | X |
Conductivity (μS/cm) | X | X | X | X |
pH | 1 | 2 | 3 | 0.323 |
Temperature (°C) | 2 | 1 | 3 | 0.274 |
DO (%) | 3 | 2 | 1 | 0.625 |
COD (mg/L) | 2 | 3 | 1 | 0.581 |
PHASE I * | |||||||
Water quality parameter | Influent | Bin #4 | #4 % Removal | Bin #5 | #5 % Removal | Bin #6 | #6 % Removal |
Turbidity (NTU) | 3.87 | 1.22 | 68.44 | 2.39 | 38.37 | 2.46 | 36.43 |
Conductivity (μS/cm) | 3779 | 4499.25 | −19.06 | 4026.63 | −6.55 | 3827.25 | −1.28 |
pH | 7.32 | 7.51 | NA | 7.59 | NA | 7.71 | NA |
Temperature (°C) | 20.1 | 19.90 | NA | 20.18 | NA | 20.65 | NA |
DO (mg/L) | 16 | 68.03 | 325.16 | 74.09 | 363.05 | 89.89 | 461.80 |
COD (mg/L) | 49.2 | 196.88 | −300.15 | 218.50 | −344.11 | 192.25 | −290.75 |
E. coli | ND | ND | NA | ND | NA | ND | NA |
Total Coliform | ND | ND | NA | ND | NA | ND | NA |
Ammonia | UR | UR | NA | UR | NA | UR | NA |
PHASE II * | |||||||
Influent | Bin #7 | #7 % Removal | Bin #8 | #8 % Removal | Bin #9 | #9 % Removal | |
Turbidity (NTU) | 28.2 | 1.11 | 96.06 | 1.00 | 96.45 | 1.13 | 96.00 |
Conductivity (μS/cm) | 3616 | 3549.44 | 1.84 | 5010.88 | −38.58 | 3904.13 | −7.97 |
pH | 6.99 | 7.55 | NA | 7.50 | NA | 7.37 | NA |
Temperature (°C) | 28.4 | 20.04 | NA | 19.55 | NA | 19.91 | NA |
DO (mg/L) | 0.6 | 76.26 | 12,610.42 | 71.03 | 11,737.50 | 52.78 | 8695.83 |
COD (mg/L) | 97 | 287.13 | −196.01 | 260.13 | −168.17 | 259.00 | −167.01 |
E. coli | ND | ND | NA | ND | NA | ND | NA |
Total Coliform | ND | ND | NA | ND | NA | ND | NA |
Ammonia | 10.415 | UR | NA | UR | NA | UR | NA |
PILOT COMPARISON ** | |||||||
Pilot Effluent (mean) | #7 mean difference | % Diff | #8 mean difference | % Diff | #9 mean difference | % Diff | |
Turbidity (NTU) | NA | NA | NA | NA | NA | NA | NA |
Conductivity (μS/cm) | 5364.76 | 1815.32 | 33.84 | 353.89 | 6.60 | 1460.64 | 27.23 |
pH | 7.42 | −0.13 | −1.74 | −0.08 | −1.05 | 0.06 | 0.79 |
Temperature (°C) | 21.00 | 0.96 | 4.58 | 1.45 | 6.90 | 1.09 | 5.18 |
DO (mg/L) | 2.00 | 74.26 | 3713.13 | 69.03 | 3451.25 | 50.78 | 2538.75 |
COD (mg/L) | NA | NA | NA | NA | NA | NA | NA |
E. coli | NA | NA | NA | NA | NA | NA | NA |
Total Coliform | NA | NA | NA | NA | NA | NA | NA |
Ammonia | NA | NA | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McBrady, A.J.; Den, W. Targeting Macrophytes: Optimizing Vegetation Density to Enhance Water Quality within Constructed Wetlands. Water 2024, 16, 2278. https://doi.org/10.3390/w16162278
McBrady AJ, Den W. Targeting Macrophytes: Optimizing Vegetation Density to Enhance Water Quality within Constructed Wetlands. Water. 2024; 16(16):2278. https://doi.org/10.3390/w16162278
Chicago/Turabian StyleMcBrady, Austin Johnathon, and Walter Den. 2024. "Targeting Macrophytes: Optimizing Vegetation Density to Enhance Water Quality within Constructed Wetlands" Water 16, no. 16: 2278. https://doi.org/10.3390/w16162278
APA StyleMcBrady, A. J., & Den, W. (2024). Targeting Macrophytes: Optimizing Vegetation Density to Enhance Water Quality within Constructed Wetlands. Water, 16(16), 2278. https://doi.org/10.3390/w16162278