New Insights into Changes in DOM Fractions in a Crab Farming Park and Key Factors in the Removal Process Using Fluorescence Spectra with MW-2DCOS and SEM
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Collection and Measurement for Physico-Chemical Analysis
2.2. Spectroscopy Measurements and Optical Indices
2.3. Analysis Methods
2.3.1. Parallel Factor Analysis
2.3.2. Two-Dimensional Correlation Spectroscopy
2.3.3. Structural Equation Modeling
3. Results and Discussion
3.1. Characterizing Water Quality and Pollutant Removal
3.2. Characterization of Spectroscopies
3.2.1. Characterizing Fluorescence Spectra
3.2.2. Characterizing UV-Visible Spectra
3.3. Assessing Removal of DOM Fractions
3.3.1. Extracting PARAFAC Components
3.3.2. Assessing Removal of Fluorescent Components
3.4. Identifying Changes in Components and Functional Groups of DOMs
3.4.1. Changes in Fluorescent Components in the Crab Farming Park
3.4.2. Changes of Functional Groups in the Crab Farming Park
3.5. Tracing Latent Factors and Identifying Their Contributions to DOM Removal
3.5.1. Tracing Latent Factors of DOM Removal
3.5.2. Identifying Contributions to DOM Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Blanchard, J.L.; Watson, R.A.; Fulton, E.A.; Cottrell, R.S.; Nash, K.L.; Bryndum-Buchholz, A.; Büchner, M.; Carozza, D.A.; Cheung, W.W.; Elliott, J. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 2017, 1, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Little, D.C.; Newton, R.; Beveridge, M. Aquaculture: A rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 2016, 75, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Suyamud, B.; Chen, Y.; Dong, Z.; Zhao, C.; Hu, J. Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia. Sci. Total Environ. 2023, 907, 167942. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, H.; Wang, Y.; Liu, Y.; Zhu, H.; Li, Z.; Shan, P.; Yuan, Z. Comparative assessment of Chinese mitten crab aquaculture in China: Spatiotemporal changes and trade-offs. Environ. Pollut. 2023, 337, 122544. [Google Scholar] [CrossRef] [PubMed]
- Araujo, G.S.; Silva, J.W.A.d.; Cotas, J.; Pereira, L. Engineering. Fish farming techniques: Current situation and trends. J. Mar. Sci. 2022, 10, 1598. [Google Scholar]
- Zeng, Q.; Gu, X.; Chen, X.; Mao, Z. The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake. Fish Sci. 2013, 79, 689–697. [Google Scholar] [CrossRef]
- Ariel, E. Turcios and Jutta Papenbrock. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar]
- China Academy of Industrial Research. Annual Research and Consultation Report of Panorama Survey and Investment Strategy on China Crab Aquaculture Industry; China Academy of Industrial Research: Beijing, China, 2022; p. 1828543. [Google Scholar]
- Pati, S.G.; Paital, B.; Panda, F.; Jena, S.; Sahoo, D.K. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: A comprehensive review. Water Air Soil Pollut. 2023, 15, 2029. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.; Zhao, Z.; Luo, L.; Zhang, R.; Guo, K.; Zhang, L.; Yang, Y. Effects of alkalinity on the antioxidant capacity, nonspecific immune response and tissue structure of Chinese Mitten Crab Eriocheir sinensis. Fishes 2022, 7, 206. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, B.; Liu, X.; Wang, F. Important but ignored: Research progress on crab foraging behaviour and its implications for aquaculture. Rev. Aquac. 2024; early view. [Google Scholar] [CrossRef]
- Song, C.; Fang, L.; Hao, G.; Xing, L.; Fan, L.; Hu, G.; Qiu, L.; Song, J.; Meng, S.; Xie, Y. Assessment of the benefits of essential fatty acids and risks associated with antimicrobial residues in aquatic products: A case study of Chinese mitten crab (Eriocheir sinensis). J. Hazard. Mater. 2023, 451, 131162. [Google Scholar] [CrossRef]
- De Cock, A.; Forio, M.A.E.; Croubels, S.; Dominguez-Granda, L.; Jacxsens, L.; Lachat, C.; Roa-López, H.; Ruales, J.; Scheyvaerts, V.; Hidalgo, M.C.S. Health risk-benefit assessment of the commercial red mangrove crab: Implications for a cultural delicacy. Sci. Total Environ. 2023, 862, 160737. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Gouveia, L.; Gonçalves, M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. J. Environ. Manag. 2021, 286, 112187. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Chin, J.Y.; Harun, M.H.Z.M.; Low, S.C. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process Eng. 2022, 46, 102553. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Waiho, K.; Azwar, E.; Fazhan, H.; Peng, W.; Ishak, S.D.; Tabatabaei, M.; Yek, P.N.Y.; Almomani, F.; Aghbashlo, M. A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 2022, 288, 132559. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz, J.; Filipkowska, U.; Janczukowicz, W. Application of rotating biological contactor for treatment of wastewater from fish breeding. Rocz. Ochr. Srodowiska 2011, 13, 1233–1244. [Google Scholar]
- Li, Z.; Yu, E.; Zhang, K.; Gong, W.; Xie, J. Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system. Front. Microbiol. 2020, 11, 930. [Google Scholar] [CrossRef] [PubMed]
- Nizam, N.U.M.; Hanafiah, M.M.; Noor, I.M.; Karim, H.I.A. Efficiency of Five Selected Aquatic Plants in Phytoremediation of AquacultureWastewater. Appl. Sci. 2020, 10, 2712. [Google Scholar] [CrossRef]
- Chen, L.N.; Ling, H.; Tan, J.Y.; Shao, X.H. Removing Nutrients from Crab-Breeding Wastewater by a Floating Plant–Effective Microorganism Bed. Water 2020, 12, 3384. [Google Scholar] [CrossRef]
- Shao, Y.L.; Zhong, H.; Mao, X.Y.; Zhang, H.W. Biochar-immobilized Sphingomonas sp. and Acinetobacter sp. isolates to enhance nutrient removal: Potential application in crab aquaculture. Aquac. Environ. Inter. 2020, 12, 251–262. [Google Scholar] [CrossRef]
- State Environment Protection Administration of China (SEPA). Methods for Water and Wastewater Monitoring and Analysis in China, 4th ed.; China Environmental Science: Beijing, China, 2002. [Google Scholar]
- Lu, K.T.; Gao, H.J.; Yu, H.B.; Liu, D.P.; Zhu, N.M.; Wan, K.L. Insight into variations of DOM fractions in different latitudinal rural black-odor waterbodies of eastern China using fluorescence spectros-copy coupled with structure equation model. Sci. Total Environ. 2022, 816, 11. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Meth. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- He, W.; Lee, J.H.; Hur, J. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment. Chemosphere 2016, 150, 184–193. [Google Scholar] [CrossRef]
- Guo, X.J.; He, X.S.; Li, C.W.; Li, N.X. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis. J. Hazard. Mater. 2019, 365, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Noda, I. Generlized 2-dimensional correlation method applicable to infrared, Ramen, and other types of spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Chen, W.; Habibul, N.; Liu, X.Y.; Sheng, G.P.; Yu, H.Q. FTIR and Synchronous Fluorescence Heterospectral Two-Dimensional Correlation Analyses on the Binding Characteristics of Copper onto Dissolved Organic Matter. Environ. Sci. Technol. 2015, 49, 2052–2058. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, R.M. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Schmidt, T.S.; Van Metre, P.C.; Carlisle, D.M. Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling. Environ. Sci. Technol. 2019, 53, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Baker, A.; Murphy, K.R.; Hamblya, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res. 2009, 43, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Gao, X.; Yang, F.; Gao, H.; Yan, X.; Yu, H. Driving mechanism of water replenishment on DOM composition and eutrophic status changes of lake in arid and semi-arid regions of loess area. Sci. Total Environ. 2023, 899, 165609. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Clark, C.D.; De Bruyn, W.J.; Brahm, B.; Aiona, P. Optical properties of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) levels in constructed water treatment wetland systems in southern California, USA. Chemosphere 2020, 247, 9. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Liu, D.; Yu, H.; Gao, H.; Feng, H.; Zhang, G. Applying synchronous fluorescence and UV-vis spectra combined with two-dimensional correlation to characterize structural composition of DOM from urban black and stinky rivers. Environ. Sci. Pollut. Res. Int. 2021, 28, 19400–19411. [Google Scholar] [CrossRef] [PubMed]
- Lambert, T.; Bouillon, S.; Darchambeau, F.; Morana, C.; Roland, F.A.E.; Descy, J.P.; Borges, A.V. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium). Biogeochemistry 2017, 136, 191–211. [Google Scholar] [CrossRef]
- Rodriguez-Vidal, F.J.; Garcia-Valverde, M.; Ortega-Azabache, B.; Gonzalez-Martinez, A.; Bellido-Fernandez, A. Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: Searching for specific fingerprints. J. Environ. Manag. 2020, 263, 10. [Google Scholar] [CrossRef]
- Lutz, B.D.; Bernhardt, E.S.; Roberts, B.J.; Cory, R.M.; Mulholland, P.J. Distinguishing dynamics of dissolved organic matter components in a forested stream using kinetic enrichments. Limnol. Oceanogr. 2012, 57, 76–89. [Google Scholar] [CrossRef]
- Hou, J.; Wu, F.; Xi, B.; Li, Z. Applying fluorescence spectroscopy and DNA pyrosequencing with 2D-COS and co-occurrence network to deconstruct dynamical DOM degradation of air-land-water sources in an urban river. Sci. Total Environ. 2023, 904, 166794. [Google Scholar] [CrossRef]
- Berto, S.; De Laurentiis, E.; Scapuzzi, C.; Chiavazza, E.; Corazzari, I.; Turci, F.; Minella, M.; Buscaino, R.; Daniele, P.G.; Vione, D. Phototransformation of L-tryptophan and formation of humic substances in water. Environ. Chem. Lett. 2018, 16, 1035–1041. [Google Scholar] [CrossRef]
- Chen, W.; Teng, C.-Y.; Qian, C.; Yu, H.-Q. Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis. Environ. Sci. Technol. 2019, 53, 4683–4694. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Hao, Y.; Yu, B.; Hou, J.; Lu, K.; Yang, F.; Li, Q. New Insights into Changes in DOM Fractions in a Crab Farming Park and Key Factors in the Removal Process Using Fluorescence Spectra with MW-2DCOS and SEM. Water 2024, 16, 2249. https://doi.org/10.3390/w16162249
Zhou R, Hao Y, Yu B, Hou J, Lu K, Yang F, Li Q. New Insights into Changes in DOM Fractions in a Crab Farming Park and Key Factors in the Removal Process Using Fluorescence Spectra with MW-2DCOS and SEM. Water. 2024; 16(16):2249. https://doi.org/10.3390/w16162249
Chicago/Turabian StyleZhou, Ruijuan, Yan Hao, Benxin Yu, Junwen Hou, Kuotian Lu, Fang Yang, and Qingqian Li. 2024. "New Insights into Changes in DOM Fractions in a Crab Farming Park and Key Factors in the Removal Process Using Fluorescence Spectra with MW-2DCOS and SEM" Water 16, no. 16: 2249. https://doi.org/10.3390/w16162249
APA StyleZhou, R., Hao, Y., Yu, B., Hou, J., Lu, K., Yang, F., & Li, Q. (2024). New Insights into Changes in DOM Fractions in a Crab Farming Park and Key Factors in the Removal Process Using Fluorescence Spectra with MW-2DCOS and SEM. Water, 16(16), 2249. https://doi.org/10.3390/w16162249