Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Testing
2.3. Data Processing
- (1)
- Drinking pathway
- (2)
- Dermal contact pathway
- (3)
- Total health risk assessment model
3. Results and Discussion
3.1. Heavy Metal Concentrations and Distribution Characteristics in Water
3.2. Multivariate Statistical Analysis of Heavy Metals in Water
3.2.1. Correlation Analysis
3.2.2. Cluster Analysis
3.3. Health Risk Assessment of Heavy Metals in Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van den Doel, A.; Van Kollenburg, G.H.; Van Remmen, T.D.N.; de Jonge, J.A.; Postma, G.J.; Tinnevelt, G.H.; Stroomberg, G.J.; Buydens, L.M.C.; Jansen, J.J. Calculating required purification effort to turn source water into drinking water using an adapted CCME water quality index. Water Resour. Res. 2023, 59, e2020WR027925. [Google Scholar] [CrossRef]
- Thanh, N.N.; Chotpantarat, S.; Ngu, N.H.; Thunyawatcharakul, P.; Kaewdum, N. Integrating machine learning models with cross-validation and bootstrapping for evaluating groundwater quality in Kanchanaburi province, Thailand. Environ. Res. 2024, 252, 118952. [Google Scholar] [CrossRef] [PubMed]
- Krupnova, T.; Rakova, O.; Simakhina, V. Rare-earth elements in the topsoils of a Russian industrial city: Sources and human health risk assessment. Chemosphere 2024, 357, 142059. [Google Scholar] [CrossRef]
- Le, T.V.; Nguyen, B.T. Heavy metal pollution in surface water bodies in provincial Khanh Hoa, Vietnam: Pollution and human health risk assessment, source quantification, and implications for sustainable management and development. Environ. Pollut. 2024, 343, 123216. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Pandey, H.; Rana, R.; Kumar, A.; Herojeet, R.; Lata, R.; Mukhopadhyay, R.; Mukherjee, S.; Sarkar, B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa river of Indian Himalayas. Environ. Pollut. 2024, 347, 123668–123681. [Google Scholar] [CrossRef] [PubMed]
- Saxena, G.; Bharagava, R.N. Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In Environmental Pollutants and Their Bioremediation Approaches; Bharagava, R.N., Ed.; CRC (Chemical & Rubber & Company) Press, Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 23–56. [Google Scholar]
- Li, X.Z.; Wang, M.E.; Jiang, R.; Zheng, L.; Chen, W. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J. Environ. Sci. 2020, 94, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.G.; Zhu, L.L.; Liu, J.N.; Cheng, Y.X.; Waiho, K.; Chen, A.; Wang, Y.J. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis. Sci. Total Environ. 2022, 829, 154586. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.L.; Yu, Z.L.; Yu, H.L.; Xiang, M.D.; Wang, C.H. Heavy metal pollution characteristics and risk assessment of golden snub-nosed monkey (Rhinopithecus roxellana) habitat in Shennongjia mountains. Environ. Sci. 2022, 43, 3288–3298. [Google Scholar]
- Zhou, J.M.; Jiang, Z.C.; Xu, G.L.; Qin, X.Q.; Huang, Q.B.; Zhang, L.K. Water quality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo. Environ. Sci. 2019, 40, 2675–2685. [Google Scholar]
- Xie, H.; Liang, Y.P.; Li, J.; Zou, S.Z.; Shen, H.Y.; Zhao, C.H.; Wang, Z.H. Distribution characteristics and health risk assessment of metal elements in groundwater of Longzici Spring Area. Environ. Sci. 2021, 42, 4257–4266. [Google Scholar]
- Qin, W.J.; Han, D.M.; Song, X.F.; Liu, S.H. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb-Zn mine, Southwest China. Environ. Pollut. 2021, 227, 116774. [Google Scholar] [CrossRef]
- Liu, Z.W.; Fan, S.K.; Zhang, M. Environmental risk analysis of soils and ground water in a typical Pb-Zn mine. Nonferrous Met. (Extr. Metall.) 2023, 88–91. [Google Scholar]
- Chi, F.M.; Hou, R.; Bai, Y.; Liu, Y.; Zhang, B.T. Analysis of groundwater environmental impact evaluation of lead—Zinc mining. China Met. Bull. 2022, 25–27. [Google Scholar]
- Zhang, C. Theory of karst dynamics and development of modern karst science. Carsologica Sin. 2022, 41, 378–383. [Google Scholar]
- Lu, L.; Chen, Y.D.; Zou, S.Z.; Fan, L.J.; Lin, Y.S.; Wang, Z. Hydrochemical characteristics and water quality evaluation of karst groundwater in typical industrial cities. Carsologica Sin. 2022, 41, 588–598. [Google Scholar]
- Liu, Y.; Xue, X.C.; He, Y. Application of gray correlation analysis in the lead-zinc zone of heavy metal contamination of surface water evaluation. Energy Environ. Prot. 2009, 23, 55–59. [Google Scholar]
- Qin, C.K.; Nong, Z.X.; Huang, W.; He, N.; Liu, J.J. Investigation and treatment strategy of heavy metals pollution in a disused lead-zinc mine in Guangxi. Nonferrous Met. Eng. 2016, 6, 87–92. [Google Scholar]
- Liu, P.Y.; Zhang, L.K.; Qin, X.Q.; Huang, Q.B. Status and bioremediation potential of heavy metal pollution in Daxin lead-zinc mine, Guangxi. In Proceedings of the 2018 Annual Conference of China Society for Sand Control and Sand Industry, Golmud, Qinghai, China, 1 August 2018; pp. 110–123. [Google Scholar]
- Xiao, X.Y.; Liang, W.S.; Tang, M.F.; Yu, Q. Analysis on evolution of water environment quality in a lead-zinc mining area in Guangxi. Miner. Resour. Geol. 2021, 35, 775–780. [Google Scholar]
- Yu, L.; Hu, D.Y.; Wang, X.Y. Study on the status of soil and water heavy metal pollution in typical areas of lead-zinc mines in Hezhang County. China Resour. Compr. Util. 2022, 40, 148–151. [Google Scholar]
- Ma, X.J.; Lu, F.; Chen, L.L.; Feng, Q.W.; Jiang, Z.H.; Chen, S. Accumulation characteristics and risk assessment for heavy metals in soil and vegetables in typical lead-zinc mining region of Shuicheng Guizhou. Environ. Pollut. Control 2019, 41, 1227–1232. [Google Scholar]
- Zhang, H.; Wang, H.; Tang, H.Y.; Wen, J.W.; Xu, R.K. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond. Acta Sci. Circumstantiae 2020, 40, 1085–1094. [Google Scholar]
- Zhou, Y.; Wan, J.Z.; Li, Q.; Huang, J.B.; Zhang, S.T.; Long, T.; Deng, S.P. Heavy metal contamination and health risk assessment of corn grains from a Pb-Zn mining area. Environ. Sci. 2020, 41, 4733–4739. [Google Scholar]
- Wang, Y.J.; Zhang, Y.Y.; Cui, S.S.; Wang, Y.C.; Cheng, G.K.; Meng, B.B. Heavy metal enrichment characteristics and health risk assessment of crops in typical abandoned lead-zinc mining areas. Environ. Sci. Surv. 2022, 41, 62–68. [Google Scholar]
- Qiang, Y.; Li, Y.J.; Luo, Q.; Chen, M.F.; Li, H.Y.; Huang, X.F.; Qin, F.X. Relationship characteristics and risk assessment of heavy metal contents in soil aggregates and in crops around a typical Pb-Zn mining area. Environ. Sci. 2021, 42, 5967–5976. [Google Scholar]
- Liu, F.T.; Wang, X.Q.; Chi, Q.H. Spatial variation and health risk assessment of thallium in floodplain soil in “Three Rivers” regions of southwest China. China Environ. Sci. 2021, 41, 1765–1777. [Google Scholar]
- Niu, T.Y.; Cheng, Y.C.; Li, C.L.; Chen, J.Y. Health risk assessment and source analysis of soil heavy metal pollution in an abandoned lead and zinc concentrator. Nonferrous Met. Eng. 2022, 12, 145–152. [Google Scholar]
- Zhang, Z.; Lu, R.; Wu, S.Y.; Jia, Z.B.; Wang, N. Heavy metal pollution and health risk assessment of mine soil in Yangtze river economic belt. Environ. Sci. 2022, 43, 3763–3772. [Google Scholar]
- Lv, J.J. Research on the Impact of a Lead-Zinc Mining Area in Daxin, Guangxi Province on Its Surrounding Environment and Population Health; Guangxi Teachers Education University: Naning, China, 2014. [Google Scholar]
- Zhang, L.K.; Qin, X.Q.; Huang, Q.B.; Liu, P.Y.; Shan, X.J. Aquatic plants bioremediation to groundwater contaminated by mines in karst areas. Carsologica Sin. 2017, 36, 743–750. [Google Scholar]
- He, N.; Sun, W.; Huang, W.; Qin, C.K. Measures and effect evaluation of heavy metal pollution control measures in an abandoned lead-zinc mine. Environ. Sci. Manag. 2022, 47, 71–75. [Google Scholar]
- GB/T 5750.6-2023; The National Standard of the People’s Republic of China: Standard Examination Methods for Drinking Water, Part 6, Metal and Metalloid Indices. State Administration for Market Regulation, Standardization Administration of China: Beijing, China, 2023.
- Sun, Y.M. Analysis of the correlation between variables using SPSS software. J. Xinjiang Educ. Inst. 2007, 23, 121–123. [Google Scholar]
- Zhang, Y.H.; Yu, C.G.; Tang, Y.H.; Sun, K.X.; Shi, H. Spatial distribution characteristics and sources analysis of heavy metal(loid)s in a water-soil system of Longtoushan area around the Fuhe River. Environ. Chem. 2023, 42, 1922–1932. [Google Scholar]
- Panseriya, H.Z.; Gosai, H.B.; Gavali, D.J.; Dave, B.P. Assessment of surface water quality during different tides and an anthropogenic impact on coastal water at Gulf of Kachchh, West Coast of India. Environ. Sci. Pollut. Res. 2023, 30, 28053–28065. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Guidelines for Human Exposure Assessment; Office of Health and Environmental Assessment, US EPA: Washington, DC, USA, 2019. [Google Scholar]
- Giri, S.; Singh, A.K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. J. Hazard. Mater. 2014, 265, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection. Exposure Factors Handbook of Chinese Population (Adults); China Environmental Press: Beijing, China, 2013. [Google Scholar]
- Duan, X.L.; Wang, Z.S.; Li, Q.; Zhang, W.J.; Huang, N.; Wang, B.B.; Zhang, J.L. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people. Environ. Sci. 2011, 32, 1329–1339. [Google Scholar]
- Zhou, J.M.; Jiang, Z.C.; Xu, G.L.; Qin, X.Q.; Huang, Q.B.; Zhang, L.K. Distribution and health risk assessment of metals in groundwater around iron mine. China Environ. Sci. 2019, 39, 1934–1944. [Google Scholar]
- Wang, X.D.; Tian, W.; Zhang, X.Y. Distribution characteristics and health risk assessment of metal elements for groundwater in the Ningxia region of China. Environ. Sci. 2022, 43, 329–338. [Google Scholar]
- Cao, J.H.; Jiang, Z.C.; Yuan, D.X.; Xia, R.Y.; Zhang, C. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geol. China 2017, 44, 874–900. [Google Scholar]
- GB/T 14848-2017; The National Standard of the People’s Republic of China: Standard for Groundwater Quality. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China: Beijing, China, 2017.
- Huang, G.X.; Sun, J.C.; Zhang, Y.; Liu, J.T.; Zhang, Y.X.; Jing, J.H. Content and relationship of heavy metals in groundwater of sewage irrigation area in pearl river delt. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41, 228–234. [Google Scholar]
- GB/T 3838-2002; The National Standard of the People’s Republic of China: Standard for Surface Water Quality. State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2002.
- Zhang, R.Q.; Liang, X.; Jin, M.G.; Wang, L.; Yu, Q.C. Fundamentals of Hydrogeology, 7th ed.; China University of Geosciences Press: Beijing, China, 2018. [Google Scholar]
- Zhang, Q.J. Karst area groundwater source area survey and evaluation for Daxin County of Guangxi. GX Water RisourcesHydropower Eng. 2011, 6, 9–12. [Google Scholar]
- Hou, Y.F.; Liu, H.L.; Zheng, H.H.; Wang, J. Sorption and precipitation of cadmium on magnesium carbonate. Ind. Saf. Environ. Prot. 2018, 44, 78–82. [Google Scholar]
- Zhang, J.Y.; Wang, L.C.; Su, W.C.; Zeng, C.F.; Zhou, Z.X. Status and prospect of the hydrological effects of human activities in the Karst area. Prog. Geogr. 2014, 33, 1125–1135. [Google Scholar]
- Bai, R.Y.; Wu, X.R. Enrichment characteristics and economic significance of mineral processing of key metal minerals sssociated with lead-zinc. Metall. Mater. 2023, 43, 181–183. [Google Scholar]
- Lu, J.H. Geological characteristics, metallogenic regularities and prospecting direction of Nongtun Pb-Zn deposit in Daxin of Guangxi. Miner. Resour. Geol. 2014, 28, 487–491. [Google Scholar]
- Cheng, Z.B.; Yang, Z.; Liu, Y.J.; Guo, Q.Y.; Zhu, M.H.; Zhong, Z.Y.; Li, J.F.; Shan, Y.F.; Zhang, P.Q.; Liu, T. Subchronic exposure to gasoline vehicle exhaust induced lung injury in mice. Asian J. Ecotoxicol. 2019, 14, 298–310. [Google Scholar]
- Li, X.P. Evaluation of Heavy Metal Pollution in Gas Station Dust in Xi’an City; Shaanxi Normal University: Xi’an, China, 2016. [Google Scholar]
- Wu, H.Y.; Li, T.F.; Cheng, R.R.; Huang, Q.B.; Pan, X.D. Causes and characteristics of the pollution of karst groundwater in China. China Min. Mag. 2021, 30, 101–104. [Google Scholar]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Real, K.H.; Varol, M.; Rahman, M.S.; Islam, A.R.M.T. Pollution status and ecological risks of metals in surface water of a coastal estuary and health risk assessment for recreational users. Chemosphere 2024, 348, 140768–140778. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.J.; Xin, C.L.; Yu, S.; Li, X. Analysis of heavy metal sources in groundwater and assessment of health risks: An example from the southwest sub-basin of the Shiqi river. Environ. Sci. 2023, 44, 796–806. [Google Scholar]
- RAO, Z.; Chu, X.D.; Wu, D.S.; Yan, C.; Chen, T.; He, J.Y. Health risk assessment of groundwater heavy metal pollution in the Poyang Lake Plain. Hydrogeol. Eng. Geol. 2019, 46, 31–37. [Google Scholar]
- Han, Y.; Liu, Y.; Wei, S.; Wang, M.; Ding, G.; Song, X.; Shen, D.; Gao, S.; Tang, C.; Ma, G. Source apportionment and health risk assessment of heavy metals in karst water from abandoned mines in Zhangqiu, China. Water 2023, 15, 3440–3456. [Google Scholar] [CrossRef]
- Wang, B.; Li, K.; Ye, H.; Gao, C.; Jin, W.; Xie, G. Distribution Characteristics, Source Analysis of Heavy Metal(oid)s, and Ecological and Health Risk Assessment around Shale Gas Extraction Platform in Sichuan, China. Water Air Soil Pollut. 2024, 235, 234.1–234.24. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Zou, S.-Z.; Lan, F.-N.; Fan, L.-J.; Xie, H.; Qin, Y.; Zhu, D.-N. Metal pollutions and human health risks in groundwater from wet, normal, and dry periods in the Huixian karst wetland, China. Environ. Sci. 2021, 42, 184–194. [Google Scholar]
- Al-Asad, H.; Moniruzzaman, M.; Sarker, A.K.; Bhuiyan, A.Q.; Ahsan, A. Hydrogeochemical evaluation, groundwater contamination and associated health risk in southern Tangail, Bangladesh. Chemosphere 2023, 332, 138806. [Google Scholar] [CrossRef] [PubMed]
Heavy Metal | Pc (cm/h) | Sf [kg·d/mg] | RfD [mg/(kg·d)] | |||
---|---|---|---|---|---|---|
Sfw | Sfd | RfDw | RfDd | |||
Carcinogenic heavy metal | As | 0.0018 | 1.5 | 3.66 | — | — |
Cd | 0.001 | 6.1 | 6.1 | — | — | |
Cr | 0.002 | 41 | 41 | — | — | |
Non-carcinogenic heavy metal | Cu | 0.0006 | — | — | 0.04 | 0.012 |
Hg | 0.0018 | — | — | 0.0003 | 0.0003 | |
Ni | 0.0001 | — | — | 0.02 | 0.0054 | |
Pb | 0.000004 | — | — | 0.0014 | 0.00042 | |
Zn | 0.0006 | — | — | 0.3 | 0.01 | |
Fe | 0.0001 | — | — | 0.3 | 0.045 | |
Al | 0.01 | — | — | 0.14 | 0.14 | |
Mn | 0.0001 | — | — | 0.046 | 0.0018 | |
Co | 0.01 | — | — | 0.0003 | 0.0003 |
Heavy Metal | Cu | Pb | Zn | Cr | Co | Cd | Mn | As | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.95 | 12.00 | 7020.84 | 6.49 | 7.51 | 31.99 | 151.59 | 0.30 | 41.00 | 13.02 |
Maximum | 12.50 | 103.00 | 48,600.00 | 8.70 | 51.00 | 225.00 | 395.00 | 0.44 | 200.00 | 34.00 |
Minimum | 0.08 | n.d. (2) | 39.00 | 1.56 | 0.13 | 0.08 | 3.26 | 0.16 | n.d. (2) | 2.50 |
Standard deviation | 3.78 | 32.26 | 14,888.11 | 2.59 | 15.65 | 69.81 | 153.67 | 0.12 | 81.30 | 10.75 |
Variation coefficient (%) | 128.19 | 268.81 | 212.06 | 39.94 | 208.33 | 218.20 | 101.38 | 39.58 | 198.30 | 82.58 |
Standard limit (1) | 1000.00 | 10.00 | 1000.00 | 50.00 | 50.00 | 5.00 | 100.00 | 10.00 | 300.00 | 20.00 |
Exceeding standard rate (%) | 0.00 | 20.00 | 50.00 | 0.00 | 10.00 | 40.00 | 50.00 | 0.00 | 0.00 | 20.00 |
Pollution index (3) | 0.00 | 1.20 | 7.02 | 0.13 | 0.15 | 6.40 | 1.52 | 0.03 | 0.14 | 0.65 |
Heavy Metal | Cu | Pb | Zn | Cr | Co | Cd | Mn | As | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 1.75 | 5.82 | 585.10 | 4.40 | 1.49 | 2.62 | 24.95 | 0.50 | 11.20 | 6.52 |
Maximum | 4.30 | 26.00 | 1635.00 | 8.20 | 3.70 | 12.00 | 80.30 | 1.30 | 56.00 | 12.20 |
Minimum | n.d. (2) | n.d. (2) | 4.80 | n.d. (2) | 0.08 | n.d. (2) | 1.30 | 0.07 | n.d. (2) | 1.20 |
Standard deviation | 1.69 | 11.34 | 797.58 | 3.58 | 1.83 | 5.25 | 34.37 | 0.49 | 25.04 | 6.09 |
Variation coefficient (%) | 96.85 | 195.04 | 136.31 | 81.48 | 122.98 | 200.72 | 137.77 | 97.10 | 223.61 | 93.31 |
Standard limit (1) | 1000.00 | 50.00 | 1000.00 | 50.00 | 1000.00 | 5.00 | 100.00 | 50.00 | 300.00 | 20.00 |
Exceeding standard rate (%) | 0.00 | 0.00 | 40.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Pollution index (3) | 0.00 | 0.12 | 0.59 | 0.09 | 0.00 | 0.52 | 0.25 | 0.01 | 0.04 | 0.33 |
Heavy Metal | Cu | Pb | Zn | Cr | Co | Cd | Mn | As | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Cu | 1.000 | 0.926 ** | 0.902 ** | 0.471 | 0.917 ** | 0.926 ** | 0.481 | −0.474 | 0.865 ** | 0.307 |
Pb | 1.000 | 0.964 ** | 0.271 | 0.970 ** | 0966 ** | 0.433 | −0.368 | 0.731 ** | 0.140 | |
Zn | 1.000 | 0.241 | 0.996 ** | 0.997 ** | 0.566 * | −0.327 | 0.799 ** | 0.217 | ||
Cr | 1.000 | 0.250 | 0.265 | 0.167 | −0.258 | 0.200 | 0.177 | |||
Co | 1.000 | 0.997 ** | 0.575 * | −0.339 | 0.792 ** | 0.245 | ||||
Cd | 1.000 | 0.575 * | −0.333 | 0.811 ** | 0.246 | |||||
Mn | 1.000 | −0.294 | 0.499 | 0.813 ** | ||||||
As | 1.000 | −0.386 | −0.353 | |||||||
Fe | 1.000 | 0.105 | ||||||||
Ni | 1.000 |
Heavy Metal | Groundwater | Surface Water | ||
---|---|---|---|---|
Adults | Children | Adults | Children | |
As | 2.37 × 10−7 | 2.59 × 10−7 | 3.94 × 10−7 | 4.30 × 10−7 |
Cd | 1.02 × 10−4 | 1.12 × 10−4 | 8.37 × 10−6 | 9.13 × 10−6 |
Cr | 1.41 × 10−4 | 1.54 × 10−4 | 9.44 × 10−5 | 1.03 × 10−4 |
Cu | 3.86 × 10−11 | 4.21 × 10−11 | 2.29 × 10−11 | 2.50 × 10−11 |
Ni | 3.41 × 10−10 | 3.72 × 10−10 | 1.71 × 10−10 | 1.86 × 10−10 |
Pb | 4.49 × 10−9 | 4.90 × 10−9 | 2.18 × 10−9 | 2.37 × 10−9 |
Zn | 1.23 × 10−8 | 1.34 × 10−8 | 1.02 × 10−9 | 1.11 × 10−9 |
Mn | 1.73 × 10−9 | 1.88 × 10−9 | 2.94 × 10−10 | 3.10 × 10−10 |
Co | 1.31 × 10−8 | 1.43 × 10−8 | 2.59 × 10−9 | 2.83 × 10−9 |
Fe | 7.16 × 10−11 | 7.81 × 10−11 | 1.96 × 10−11 | 2.13 × 10−11 |
Total risk | 2.34 × 10−4 | 2.65 × 10−4 | 1.03 × 10−4 | 1.13 × 10−4 |
Heavy Metal | Groundwater | Surface Water | ||
---|---|---|---|---|
Adults | Children | Adults | Children | |
As | 5.40 × 10−9 | 3.79 × 10−9 | 8.98 × 10−9 | 6.30 × 10−9 |
Cd | 5.30 × 10−7 | 3.72 × 10−7 | 4.33 × 10−8 | 3.04 × 10−8 |
Cr | 1.46 × 10−6 | 1.02 × 10−6 | 9.78 × 10−7 | 6.87 × 10−7 |
Cu | 4.00 × 10−13 | 2.81 × 10−13 | 2.37 × 10−13 | 1.67 × 10−13 |
Ni | 6.54 × 10−13 | 4.59 × 10−13 | 3.28 × 10−13 | 2.30 × 10−13 |
Pb | 3.10 × 10−13 | 2.18 × 10−13 | 1.50 × 10−13 | 1.06 × 10−13 |
Zn | 1.14 × 10−9 | 8.02 × 10−10 | 9.53 × 10−11 | 6.69 × 10−11 |
Mn | 2.29 × 10−11 | 1.60 × 10−11 | 3.76 × 10−12 | 2.64 × 10−12 |
Co | 6.79 × 10−10 | 4.77 × 10−10 | 1.34 × 10−10 | 9.44 × 10−11 |
Fe | 2.47 × 10−13 | 1.74 × 10−13 | 6.76 × 10−14 | 4.74 × 10−14 |
Total risk | 2.00 × 10−6 | 1.40 × 10−6 | 1.03 × 10−6 | 7.24 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Jiang, Z.; Qin, X.; Zhang, L. Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine. Water 2024, 16, 2179. https://doi.org/10.3390/w16152179
Zhou J, Jiang Z, Qin X, Zhang L. Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine. Water. 2024; 16(15):2179. https://doi.org/10.3390/w16152179
Chicago/Turabian StyleZhou, Jinmei, Zhongcheng Jiang, Xiaoqun Qin, and Liankai Zhang. 2024. "Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine" Water 16, no. 15: 2179. https://doi.org/10.3390/w16152179
APA StyleZhou, J., Jiang, Z., Qin, X., & Zhang, L. (2024). Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine. Water, 16(15), 2179. https://doi.org/10.3390/w16152179