Estimating and Reducing Leakages in the Water Distribution Networks of Small Settlements: The Case of Agios Germanos in the Prespes Municipality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Hydraulic Modeling of a Water Distribution Network
2.4. Pressure Sensor Positioning
2.5. Minimum Night Flow Analysis
3. Results
3.1. Installing Measurement Equipment
3.2. MNF and Leakage Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IWA. Best Practice Water Balance. Available online: https://www.leakssuitelibrary.com/iwa-water-balance/ (accessed on 23 May 2024).
- Lambert, A.O. International report: Water losses management and techniques. Water Supply 2002, 2, 1–20. [Google Scholar] [CrossRef]
- Arregui, F.J.; Gavara, F.J.; Soriano, J.; Pastor-Jabaloyes, L. Performance analysis of ageing single-jet water meters for measuring residential water consumption. Water 2018, 10, 612. [Google Scholar] [CrossRef]
- Karim, M.R.; Abbaszadegan, M.; Le Chevallier, M. Potential for Pathogen Intrusion during Pressure Transients. J. AWWA 2003, 95, 134–146. [Google Scholar] [CrossRef]
- Boulos, P.F.; Aboujaoude, A.S. Managing leaks using flow step-testing, network modeling, and field measurement. J. AWWA 2011, 103, 90–97. [Google Scholar] [CrossRef]
- Colombo, A.F.; Karney, B.W. Impacts of Leaks on Energy Consumption in Pumped Systems with Storage. J. Water Resour. Plan. Manag. 2005, 131, 146–155. [Google Scholar] [CrossRef]
- Cabrera, E.; Pardo, M.A.; Cobacho, R.; Cabrera, E., Jr. Energy Audit of Water Networks. J. Water Resour. Plan. Manag. 2010, 136, 669–677. [Google Scholar] [CrossRef]
- Mutikanga, H.E. Waterloss Management: Tools and Methods for Developing Countries. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Jowitt, P.W.; Xu, C. Optimal Valve Control in Water-Distribution Networks. J. Water Resour. Plan. Manag. 1990, 116, 455–472. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S. Integrated Management of Urban Water Distribution Networks; Kallipos Open Academic Publications: Athens, Greece, 2015; p. 323. Available online: https://repository.kallipos.gr/handle/11419/3415 (accessed on 5 February 2024). (In Greek)
- Farley, M.; Trow, S. Losses in Water Distribution Networks—A practitioner’s Guide to Assessment, Monitoring and Control; IWA Publishing: London, UK, 2003; p. 273. [Google Scholar]
- Marzola, I.; Alvisi, S.; Franchini, M. Analysis of MNF and FAVAD model for leakage characterization by exploiting smart-metered data: The case of the Gorino Ferrarese (FE-Italy) district. Water 2021, 13, 643. [Google Scholar] [CrossRef]
- Savic, D.A.; Walters, G.A. An Evolution Program for Optimal Pressure Regulation in Water Distribution Networks. Eng. Optim. 1995, 24, 197–219. [Google Scholar] [CrossRef]
- Ulanicki, B.; Bounds, P.L.M.; Rance, J.P.; Reynolds, L. Open and Closed Loop Pressure Control for Leakage Reduction. Urban Water 2000, 2, 105–114. [Google Scholar] [CrossRef]
- Thornton, J.; Sturm, R.; Kunkel, G. Water Loss Control Manual, 2nd ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Fanner, P.; Sturm, R.; Thornton, J.; Liemberger, R. Leakage Management Technologies; AWWA Research Foundation: Denver, CO, USA, 2007; p. 345. [Google Scholar]
- Nazif, S.; Karamouz, M.; Tabesh, M.; Moridi, A. Pressure management model for urban water distribution networks. Water Resour. Manag. 2010, 24, 437–458. [Google Scholar] [CrossRef]
- Gomes, R.; Marques, A.S.; Sousa, J. Estimation of the benefits yielded by pressure management in water distribution systems. Urban Water J. 2011, 8, 65–77. [Google Scholar] [CrossRef]
- Karadirek, I.E.; Kara, S.; Yilmaz, G.; Muhammetoglu, A.; Muhammetoglu, H. Implementation of hydraulic modelling for water-loss reduction through pressure management. Water Resour. Manag. 2012, 26, 2555–2568. [Google Scholar] [CrossRef]
- Martínez-Codina, A.; Castillo, M.; González-Zeas, D.; Garrote, L. Pressure as a predictor of occurrence of pipe breaks in water distribution networks. Urban Water J. 2016, 13, 676–686. [Google Scholar] [CrossRef]
- Vicente, D.J.; Garrote, L.; Sánchez, R.; Santillán, D. Pressure management in water distribution systems: Current status, proposals, and future trends. J. Water Resour. Plan. Manag. 2016, 142, 1–13. [Google Scholar] [CrossRef]
- Creaco, E.; Walski, T. Economic analysis of pressure control for leakage and pipe burst reduction. J. Water Resour. Plan. Manag. 2017, 143, 04017074. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Real-time control of pressure for leakage reduction in water distribution network: Field experiments. J. Water Resour. Plan. Manag. 2018, 144, 04017096. [Google Scholar] [CrossRef]
- Trow, S.W.; Payne, A. Intelligent Pressure Management—A New Development for Monitoring and Control of Water Distribution Systems. In Proceedings of the 5th IWA Water Loss Reduction Specialist Conference, Cape Town, South Africa, 26–30 April 2009; pp. 302–314. [Google Scholar]
- Giustolisi, O.; Ugarelli, R.; Berardi, L.; Laucelli, D. Strategies for the electric regulation of pressure control valves. J. Hydroinform. 2017, 19, 621–639. [Google Scholar] [CrossRef]
- Butler, D. Leakage Detection and Management; Palmer Environmental: Cwmbran, UK, 2009. [Google Scholar]
- Hamilton, S.; McKenzie, R. Water Management and Water Loss; IWA Publishing: London, UK, 2014. [Google Scholar]
- Alkasseh, J.M.; Adlan, M.N.; Abustan, I.; Aziz, H.A.; Hanif, A.B.M. Applying minimum night flow to estimate water loss using statistical modeling: A case study in Kinta Valley, Malaysia. Water Resour. Manag. 2013, 27, 1439–1455. [Google Scholar] [CrossRef]
- Deyi, M.; Van Zyl, J.; Shepherd, M. Applying the FAVAD concept and leakage number to real networks: A case study in Kwadabeka, South Africa. Procedia Eng. 2014, 89, 1537–1544. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Fırat, M.; Yılmaz, S.; Usluer, M. Analysis of the effect of pressure control on leakages in distribution systems by FAVAD equation and field applications. Water Pract. Technol. 2021, 16, 320–332. [Google Scholar] [CrossRef]
- Fan, L.; Wang, F.; Liu, G.; Yang, X.; Qin, W. Public perception of water consumption and its effects on water conservation behavior. Water 2014, 6, 1771–1784. [Google Scholar] [CrossRef]
- Byeon, S.; Choi, G.; Maeng, S.; Gourbesville, P. Sustainable water distribution strategy with smart water grid. Sustainability 2015, 7, 4240–4259. [Google Scholar] [CrossRef]
- Gorev, N.B.; Kodzhespirova, I.F. Noniterative implementation of pressure-dependent demands using the hydraulic analysis engine of EPANET 2. Water Resour. Manag. 2013, 27, 3623–3630. [Google Scholar] [CrossRef]
- Muranho, J.; Ferreira, A.; Sousa, J.; Gomes, A.J.; Marques, A.S. Pressure-dependent demand and leakage modelling with an EPANET extension—WaterNetGen. Procedia Eng. 2014, 89, 632–639. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S. Using the bimonthly water balance of a non-fully monitored water distribution network with seasonal water demand peaks to define its actual NRW level: The case of Kos town, Greece. Urban Water J. 2013, 11, 348–360. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Gonelas, K. Analysis and calculation of the short and long run economic leakage level in a water distribution system. Water Util. J. 2016, 12, 57–66. [Google Scholar]
- Sarrate, R.; Nejjari, F.; Rosich, A. Sensor placement for fault diagnosis performance maximization in distribution networks. In Proceedings of the 20th Mediterranean Conference on Control & Automation, Barcelona, Spain, 3–6 July 2012; pp. 110–115. [Google Scholar]
- Li, C.; Du, K.; Tu, J.-P.; Dong, W.-X. Optimal placement of pressure sensors in water distribution system based on clustering analysis of pressure sensitive matrix. Procedia Eng. 2017, 186, 405–411. [Google Scholar]
- Puleo, V.; Freni, G.; La Loggia, G. Pressure sensors positioning for leakages detection under uncertain demands. In Proceedings of the 13th International Conference on Hydroinformatics, Palermo, Italy, 1–6 July 2018; pp. 1713–1717. [Google Scholar]
- Soroush, F.; Abedini, M.J. Optimal selection of number and location of pressure sensors in water distribution systems using geostatistical tools coupled with genetic algorithm. J. Hydroinform. 2019, 21, 1030–1047. [Google Scholar] [CrossRef]
- Francés-Chust, J.; Brentan, B.M.; Carpitella, S.; Izquierdo, J.; Montalvo, I. Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence. Water 2020, 12, 493. [Google Scholar] [CrossRef]
- Peng, S.; Cheng, J.; Wu, X.; Fang, X.; Wu, Q. Pressure sensor placement in water supply network based on graph neural network clustering method. Water 2022, 14, 150. [Google Scholar] [CrossRef]
- Hunaidi, O.; Brothers, K. Night flow analysis of pilot DMAs in Ottawa. In Proceedings of the Water Loss Specialist Conference, Bucharest, Romania, 23–26 September 2007; pp. 32–46. [Google Scholar]
- Tabesh, M.; Yekta, A.A.; Burrows, R. An integrated model to evaluate losses in water distribution systems. Water Resour. Manag. 2009, 23, 477–492. [Google Scholar] [CrossRef]
- Childs, C. Interpolating Surfaces in ArcGIS Spatial Analyst, ESRI Education Services 2004. Available online: https://www.esri.com/news/arcuser/0704/files/interpolating.pdf (accessed on 31 May 2024).
- Murayama, Y.; Estoque, R.C. Creating a Digital Elevation Model (DEM): A GIS Lecture Tutorial; Division of Spatial Information Science, Graduate School of Life and Environmental Sciences, National University of Tsukuba: Tsukuba, Japan, 2011; Available online: http://giswin.geo.tsukuba.ac.jp/sis/tutorial/Creating%20a%20DEM%20from%20a%20Topographic%20Map_RCEstoque.pdf (accessed on 31 May 2024).
- Annan, M.; Gooda, E.A. Effect of minor losses during steady flow in transmission pipelines–Case study “water transmission system upgrade in northern Saudi Arabia”. Alex. Eng. J. 2018, 57, 4299–4305. [Google Scholar] [CrossRef]
- AL-Washali, T.M.; Elkhider, M.E.; Sharma, S.K.; Kennedy, M.D. A review of nonrevenue water assessment software tools. WIREs Water 2020, 7, e1413. [Google Scholar] [CrossRef] [PubMed]
- OpenFlows WaterGEMs. Water Distribution Analysis and Design Software. Available online: https://www.bentley.com/software/openflows-watergems/ (accessed on 31 May 2024).
- Rossman, L.A. EPANET 2: Users’ Manual; EPA/600/R-00/057; National Risk Management Research Laboratory, Office of Research and Development, United Sates Environmental Protection Agency (EPA): Cincinnati, OH, USA, 2000.
- Hou, Y.-K.; Zhao, C.-H.; Huang, Y.-C. A GIS-based water distribution model for Zhengzhou city, China. Water Supply 2011, 11, 497–503. [Google Scholar]
- Świtnicka, K.; Suchorab, P.; Kowalska, B. The optimisation of a water distribution system using Bentley WaterGEMS software. In Proceedings of the 2nd International Conference of Computational Methods in Engineering Science (CMES’17), ITM Web of Conferences, EDP Sciences, Lublin, Poland, 23–25 November 2017; p. 03009. [Google Scholar]
- Chatzivasili, S.; Papadimitriou, K.; Kanakoudis, V. Optimizing the formation of DMAs in a Water Distribution Network through Advanced Modelling. Water 2019, 11, 278. [Google Scholar] [CrossRef]
- Mentes, A.; Galiatsatou, P.; Spyrou, D.; Samaras, A.; Stournara, P. Hydraulic simulation and analysis of an urban center’s aqueducts using emergency scenarios for network operation: The case of Thessaloniki City in Greece. Water 2020, 12, 1627. [Google Scholar] [CrossRef]
- Kang, D.; Lansey, K. Demand and roughness estimation in water distribution systems. J. Water Resour. Plan. Manag. 2011, 137, 20–30. [Google Scholar] [CrossRef]
- Do, N.C.; Simpson, A.R.; Deuerlein, J.W.; Piller, O. Calibration of water demand multipliers in water distribution systems using genetic algorithms. J. Water Resour. Plan. Manag. 2016, 142, 04016044. [Google Scholar] [CrossRef]
- Bhave, P.R. Calibrating water distribution network models. J. Hydraul. Eng. 1988, 114, 120–136. [Google Scholar] [CrossRef]
- Boulos, P.F.; Wood, D.J. Explicit calculation of pipe-network parameters. J. Hydraul. Eng. 1990, 116, 1329–1344. [Google Scholar] [CrossRef]
- Ormsbee, L.E. Implicit network calibration. J. Water Resour. Plan. Manag. 1989, 115, 243–257. [Google Scholar] [CrossRef]
- Kapelan, Z.S.; Savic, D.A.; Walters, G.A. Calibration of water distribution hydraulic models using a Bayesian-type procedure. J. Hydraul. Eng. 2007, 133, 927–936. [Google Scholar] [CrossRef]
- Koppel, T.; Vassiljev, A. Calibration of a model of an operational water distribution system containing pipes of different age. Adv. Eng. Softw. 2009, 40, 659–664. [Google Scholar] [CrossRef]
- Dini, M.; Tabesh, M. A new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients in water distribution systems. Water Resour. Manag. 2014, 28, 2021–2034. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, F.; Duan, H.F.; Jia, Y.; Zhang, T.; Guo, X. Efficient numerical approach for simultaneous calibration of pipe roughness coefficients and nodal demands for water distribution systems. J. Water Resour. Plan. Manag. 2018, 144, 04018063. [Google Scholar] [CrossRef]
- Tsakiris, G.; Charalambous, P. Management of Water Networks. In Hydraulic Works—Design and Management; Tsakiris, G., Ed.; Symmetry: Athens, Greece, 2010; Volume I: Urban Hydraulic Works, pp. 445–482. (In Greek) [Google Scholar]
- Pérez, R.; Puig, V.; Pascual, J.; Quevedo, J.; Landeros, E.; Peralta, A. Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Eng. Pract. 2011, 19, 1157–1167. [Google Scholar] [CrossRef]
- Blesa, J.; Nejjari, F.; Sarrate, R. Robustness analysis of sensor placement for leak detection and location under uncertain operating conditions. Procedia Eng. 2014, 89, 1553–1560. [Google Scholar] [CrossRef]
- May, J. Pressure Dependent Leakage. World Water Environ. Eng. 1994, 10, 15–19. [Google Scholar]
- van Zyl, J.E.; Cassa, A.M. Modeling elastically deforming leaks in water distribution pipes. J. Hydraul. Eng. 2014, 140, 182–189. [Google Scholar] [CrossRef]
- Lambert, A.O.; Fantozzi, M. Recent Developments in Pressure Management. In Proceedings of the 6th IWA Water Loss reduction Specialist Conference, Sao Paulo, Brazil, 6–9 June 2010. [Google Scholar]
- Thornton, J.; Lambert, A. Managing pressures to reduce new breaks. Water 2006, 21, 24–26. [Google Scholar]
- Xu, Q.; Chen, Q.; Ma, J.; Blanckaert, K.; Wan, Z. Water saving and energy reduction through pressure management in urban water distribution networks. Water Resour. Manag. 2014, 28, 3715–3726. [Google Scholar] [CrossRef]
- Savic, D.A.; Kapelan, Z.S.; Jonkergouw, P.M. Quo vadis water distribution model calibration? Urban Water J. 2009, 6, 3–22. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Santopietro, S.; Righetti, M. Calibration procedure for water distribution systems: Comparison among hydraulic models. Water 2020, 12, 1421. [Google Scholar] [CrossRef]
- Chu, S.; Zhang, T.; Yu, T.; Wang, Q.J.; Shao, Y. A noise adaptive approach for nodal water demand estimation in water distribution systems. Water Res. 2021, 192, 116837. [Google Scholar] [CrossRef]
- Marlim, M.S.; Kang, D. Contaminant flushing in water distribution networks incorporating customer faucet control. Sustainability 2022, 14, 2249. [Google Scholar] [CrossRef]
- Hossain, S.; Hewa, G.A.; Chow, C.W.; Cook, D. Modelling and incorporating the variable demand patterns to the calibration of water distribution system hydraulic model. Water 2021, 13, 2890. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and air emission effects of water supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef]
Ranking | Node ID | Ranking | Node ID | ||
---|---|---|---|---|---|
1 | J-69 | 2.394 | 5 | J-72 | 2.214 |
2 | J-74 | 2.327 | 6 | J-68 | 2.186 |
3 | J-76 | 2.316 | 7 | J-67 | 2.184 |
4 | J-73 | 2.25 | 8 | J-65 | 2.174 |
WDN Operation | MNF (m3/h) | MNF (m3/year) |
---|---|---|
(a) Without PRV | 5.36 | 46,953.60 |
(b) With PRV | 4.13 | 36,178.80 |
(c) With PRVPM and pressure management | 3.42 | 29,959.20 |
Pressure–Leakage Coefficient | Equation Used | Estimated Value |
---|---|---|
N1 | Equation (12) | 1.220 |
LN | Equation (11) | 2.571 |
Equation (14) | 1.288 | |
Equation (14) | 1.098 |
WDN Operation | Energy Consumption | Energy Saving | ||
---|---|---|---|---|
MJ/h | GJ/year | MJ/h | GJ/year | |
(b) With PRV upstream of the low-elevation area | 74.34 | 651.22 | 22.14 | 193.95 |
(c) With PRVPM and pressure management | 61.56 | 539.27 | 34.92 | 309.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiatsatou, P.; Ganoulis, P.; Malamataris, D.; Prinos, P. Estimating and Reducing Leakages in the Water Distribution Networks of Small Settlements: The Case of Agios Germanos in the Prespes Municipality. Water 2024, 16, 2127. https://doi.org/10.3390/w16152127
Galiatsatou P, Ganoulis P, Malamataris D, Prinos P. Estimating and Reducing Leakages in the Water Distribution Networks of Small Settlements: The Case of Agios Germanos in the Prespes Municipality. Water. 2024; 16(15):2127. https://doi.org/10.3390/w16152127
Chicago/Turabian StyleGaliatsatou, Panagiota, Philipos Ganoulis, Dimitrios Malamataris, and Panagiotis Prinos. 2024. "Estimating and Reducing Leakages in the Water Distribution Networks of Small Settlements: The Case of Agios Germanos in the Prespes Municipality" Water 16, no. 15: 2127. https://doi.org/10.3390/w16152127
APA StyleGaliatsatou, P., Ganoulis, P., Malamataris, D., & Prinos, P. (2024). Estimating and Reducing Leakages in the Water Distribution Networks of Small Settlements: The Case of Agios Germanos in the Prespes Municipality. Water, 16(15), 2127. https://doi.org/10.3390/w16152127