Hydra for 21st Century—A Fine Model in Freshwater Research
Abstract
:1. Introduction
2. Hydra: A Model Organism for Biological and Ecological Research
3. Hydra in Morphological Studies
4. Hydra as a Model Organism in Ecotoxicological Research
5. Hydra as a Test Organism for More Successful Environmental Decision-Making
6. Hydra as a Holobiont
7. Hydra in Tumorigenesis Research
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nykolay, A.; Shahid, A. Immortal Hydra as a Model Organism for Metal Toxicity Studies. Sci. McMaster Undergrad. Sci. J. 2019, 1, 2–8. [Google Scholar] [CrossRef]
- Barve, A.; Galande, A.A.; Ghaskadbi, S.S.; Ghaskadbi, S. DNA Repair Repertoire of the Enigmatic Hydra. Front. Genet. 2021, 12, 670695. [Google Scholar] [CrossRef]
- Kovačević, G.; Gračan, R.; Gottstein, S. Ecotoxicological Effects of Sodium Metasilicate on Two Hydra Species, Hydra viridissima Pallas, 1766 and Hydra oligactis Pallas, 1766. Water 2023, 15, 4228. [Google Scholar] [CrossRef]
- Kovačević, G.; Matijević, A.; Korać, P.; Želježić, D.; Reipert, S.; Caput Mihalić, K.; Sirovina, D.; Peharec Štefanić, P.; Ivšić, M. Effects of Norflurazon and UV Radiation on Symbiotic and Free-Living Hydra. Water 2024, 16, 645. [Google Scholar] [CrossRef]
- Ivšić, M.; Kovačević, G. Evaluation of algae farming using the Chlorella bioassay. Croat. J. Fish. 2018, 76, 99–106. [Google Scholar] [CrossRef]
- Kević, N.; Radić Brkanac, S.; Vincek, N.; Peharec Štefanić, P.; Faraguna, F.; Kovačević, G.; Kalafatić, M.; Franjević, D. Endosymbiotic green algae in European Hydra strains show quantitative difference on morphological and isoenzyme level. Symbiosis 2019, 77, 161–175. [Google Scholar] [CrossRef]
- Kovačević, G.; Kalafatić, M.; LJubešić, N. New Observations on Green Hydra Symbiosis. Folia Biol. 2007, 55, 77–79. [Google Scholar] [CrossRef]
- Kovačević, G.; Franjević, D.; Jelenčić, B.; Kalafatić, M. Isolation and Cultivation of Endosymbiotic Algae from Green Hydra and Phylogenetic Analysis of 18S rDNA Sequences. Folia Biol. 2010, 58, 135–143. [Google Scholar] [CrossRef]
- Kovačević, G.; Kalafatić, M.; Jelenčić, B.; Franjević, D. Endosymbiotic alga as the stronger evolutionary partner in green hydra symbiosis. J. Endocyt. Cell Res. 2010, 20, 13–15. [Google Scholar]
- Kovačević, G.; Radić, S.; Jelenčić, B.; Kalafatić, M.; Posilović, H.; Pevalek-Kozlina, B. Morphological features and isoenzyme characterization of endosymbiotic algae from green hydra. Plant Syst. Evol. 2010, 284, 33–39. [Google Scholar] [CrossRef]
- Kovačević, G.; Sirovina, D.; Karin, M.; Bartol, V.; Vujčić, V.; Ruščić, M. The Effect of Flavonoids on Hydra—Alga Symbiosis and Implementation of the Given Experiment in Schools. Croat. J. Educ. 2018, 20, 1173–1192. [Google Scholar] [CrossRef]
- Kovačević, G.; Petrinec, D.; Tramontana Ljubičić, P.; Reipert, S.; Sirovina, D.; Špoljar, M.; Peharec Štefanić, P.; Želježić, D. Formation of Microalgal Hunting Nets in Freshwater Microcosm Food Web: Microscopic Evidence. Water 2023, 15, 3448. [Google Scholar] [CrossRef]
- Kovačević, G.; Tramontana Ljubičić, P.; Petrinec, D.; Sirovina, D.; Novosel, M.; Želježić, D. How Daphnia magna Defends Itself against Predators: Mechanisms and Adaptations in a Freshwater Microcosm. Water 2024, 16, 398. [Google Scholar] [CrossRef]
- Engel, U.; Ozbek, S.; Engel, R.; Petri, B.; Lottspeich, F.; Holstein, T.W. NOWA, a novel protein with minicollagen Cys-rich domains involved in nematocyst formation in Hydra. J. Cell Sci. 2002, 115, 3923–3934. [Google Scholar] [CrossRef] [PubMed]
- Holstein, T. The morphogenesis of nematocytes in Hydra and Forskalia: An ultrastructural study. J. Ultrastruct. Res. 1981, 75, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.B.; Tilney, L.G. Cytological studies of the nematocysts of Hydra. II. The stenoteles. J. Biophys. Biochem. Cytol. 1959, 5, 79–84. [Google Scholar] [CrossRef]
- Beckmann, A.; Özbek, S. The Nematocyst: A molecular map of the Cnidarian stinging organelle. Int. J. Dev. Biol. 2012, 56, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.A.; Hyland, C.; Steele, R.E.; Collins, E.M. Dynamics of Mouth Opening in Hydra. Biophys. J. 2016, 110, 1191–1201. [Google Scholar] [CrossRef]
- Wood, R.L. Intercellular attachment in the epithelium of Hydra as revealed by electron microscopy. J. Biophys. Biochem. Cytol. 1959, 6, 343–352. [Google Scholar] [CrossRef]
- Epp, L.; Smid, I.; Tardent, P. Synthesis of the Mesoglea by Ectoderm and Endoderm in Reassembled Hydra. J. Morphol. 1986, 189, 271–279. [Google Scholar] [CrossRef]
- Sarras, M.P., Jr.; Deutzmann, R. Hydra and Niccolo Paganini (1782–1840)—Two peas in a pod? The molecular basis of extracel-lular matrix structure in the invertebrate, Hydra. Bioessays 2001, 23, 716–724. [Google Scholar] [CrossRef]
- Aufschnaiter, R.; Zamir, E.A.; Little, C.D.; Özbek, S.; Münder, S.; David, C.N.; Li, L.; Sarras, M.P., Jr.; Zhang, X. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps. J. Cell Sci. 2011, 124 Pt 23, 4027–4038. [Google Scholar] [CrossRef]
- Deutzmann, R.; Fowler, S.; Zhang, X.; Boone, K.; Dexter, S.; Boot-Handford, R.; Rachel, R.; Sarras, M. Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra. Development 2000, 127, 4669–4680. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.E.; Burnett, A.L.; Haynes, J.F.; Osborne, D.G.; Spear, M.L. Histological and ultrastructural study of the muscular and nervous systems in Hydra. II. Nervous system. J. Exp. Zool. 1968, 167, 295–331. [Google Scholar] [CrossRef] [PubMed]
- Dupre, C.; Yuste, R. Non-overlapping neural networks in Hydra vulgaris. Curr. Biol. 2017, 27, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Taralova, E.; Dupre, C.; Yuste, R. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire. eLife 2018, 7, e32605. [Google Scholar] [CrossRef] [PubMed]
- Trembley, A. Mémoires Pour Servir à L’histoire d’un Genre de Polypes d’eau Douce, à Bras en Forme de Cornes; Chez Jean & Herman Verbeek: Leide, The Netherlands, 1744; p. 324. [Google Scholar]
- Naik, S.; Unni, M.; Sinha, D.; Rajput, S.S.; Reddy, P.C.; Kartvelishvily, E.; Solomonov, I.; Sagi, I.; Chatterji, A.; Patil, S.; et al. Differential tissue stiffness of body column facilitates locomotion of Hydra on solid substrates. J. Exp. Biol. 2020, 223 Pt 20, jeb232702. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.D. Developmental Biology of Hydra. Annu. Rev. Ecol. Syst. 1974, 5, 45–62. [Google Scholar]
- Galliot, B.; Chera, S. The Hydra model: Disclosing an apoptotic origin of regenerative mechanisms. Trends Cell Biol. 2010, 20, 514–523. [Google Scholar] [CrossRef]
- Honegger, T.G.; Schmid, V. Sexual reproduction in freshwater coelenterates: Observations on egg formation and fertilization in Hydra. Zool. Sci. 2010, 27, 1–8. [Google Scholar]
- Tardent, P. The differentiation of germ cells in Cnidaria. In The Origin and the Evolution of Sex; Monroy, A., Halvorson, H., Eds.; Alan Liss, Inc.: New York, NY, USA, 1985; pp. 163–197. [Google Scholar]
- Holstein, T.W.; Hess, M.W.; Salvenmoser, W. Preparation techniques for transmission electron microscopy of Hydra. Methods Cell Biol. 2010, 96, 285–306. [Google Scholar] [CrossRef]
- Wiltshire, K.; Boersma, M.; Meyer, B. Grazer-induced changes in the desmid Staurastrum. Hydrobiologia 2003, 491, 255–260. [Google Scholar] [CrossRef]
- Merle, P.L.; Sabourault, C.; Richier, S.; Allemand, D.; Furla, P. Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic. Biol. Med. 2007, 42, 236–246. [Google Scholar] [CrossRef]
- Beach, M.J.; Pascoe, D. The role of Hydra vulgaris (Pallas) in assessing the toxicity of freshwater pollutants. Water Res. 1998, 32, 101–106. [Google Scholar] [CrossRef]
- Kalafatić, M.; Kopjar, N. Response of Green Hydra to the Treatment with Different Pesticides under Laboratory Conditions. Z. Angew. Zool. 1994, 2, 213–223. [Google Scholar]
- Kalafatić, M. Regeneration and asexual reproduction of Hydra oligactis treated with different pesticides. Biologia 1997, 52, 475–480. [Google Scholar]
- Kovačević, G.; Kalafatić, M.; Ljubešić, N.; Šunjić, H. The effect of chloramphenicol on the symbiosis between alga and hydra. Biologia 2001, 56, 605–610. [Google Scholar]
- Arkhipchuk, V.V.; Blaise, C.; Malinovskaya, M.V. Use of hydra for chronic toxicity assessment of waters intended for human consumption. Environ. Pollut. 2006, 142, 200–211. [Google Scholar] [CrossRef]
- Rachamim, T.; Sher, D. What Hydra can teach us about chemical ecology—How a simple, soft organism survives in a hostile aqueous environment. Int. J. Dev. Biol. 2012, 56, 605–611. [Google Scholar] [CrossRef]
- Yonge, C.M. Ecology and physiology of reef building corals. In Perspectives in Marine Biology; Buzzati-Traverso, A., Ed.; University California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1958; pp. 117–136. [Google Scholar]
- Ye, S.; Badhiwala, K.N.; Robinson, J.T.; Cho, W.H.; Siemann, E. Thermal plasticity of a freshwater cnidarian holobiont: Detection of transgenerational effects in asexually reproducing hosts and symbionts. ISME J. 2019, 13, 2058–2067. [Google Scholar] [CrossRef]
- Ye, S.; Bhattacharjee, M.; Siemann, E. Thermal tolerance in green Hydra: Identifying the roles of algal endosymbionts and hosts in a freshwater holobiont under stress. Microb. Ecol. 2019, 77, 537–545. [Google Scholar] [CrossRef]
- Bathia, J.; Schröder, K.; Fraune, S.; Lachnit, T.; Rosenstiel, P.; Bosch, T.C.G. Symbiotic Algae of Hydra viridissima Play a Key Role in Maintaining Homeostatic Bacterial Colonization. Front. Microbiol. 2022, 13, 869666. [Google Scholar] [CrossRef]
- Karntanut, W.; Pascoe, D. Effects of removing symbiotic green algae on the response of Hydra viridissima (Pallas 1776) to metals. Ecotoxicol. Environ. Saf. 2005, 60, 301–305. [Google Scholar] [CrossRef]
- Karntanut, W.; Pascoe, D. The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa). Chemosphere 2002, 47, 1059–1064. [Google Scholar] [CrossRef]
- Kovačević, G.; Kalafatić, M.; Ljubešić, N. Effects of Norflurazon on Green and Brown Hydra. Folia Biol. 2009, 57, 91–96. [Google Scholar] [CrossRef]
- Vogg, M.C.; Galliot, B.; Tsiairis, C.D. Model systems for regeneration: Hydra. Development 2019, 146, dev177212. [Google Scholar] [CrossRef]
- Badhiwala, K.N.; Primack, A.S.; Juliano, C.E.; Robinson, J.T. Multiple neuronal networks coordinate Hydra mechanosensory behavior. eLife 2021, 10, e64108. [Google Scholar] [CrossRef]
- Gierer, A.; Bode, H.; Berking, S.; Schaller, H.; Trenkner, E.; Hansmann, G.; David, C.N.; Flick, K. Regeneration of hydra from reaggregated cells. Nat. New Biol. 1972, 239, 98. [Google Scholar] [CrossRef]
- Gierer, A. The Hydra model—A model for what? Int. J. Dev. Biol. 2012, 56, 437–445. [Google Scholar] [CrossRef]
- Tomczyk, S.; Fischer, K.; Austad, S.; Galliot, B. Hydra, a powerful model for aging studies. Invertebr. Reprod. Dev. 2015, 59, 11–16. [Google Scholar] [CrossRef]
- Le, B.T.; Auer, K.M.; Lopez, D.A.; Shum, J.P.; Suarsana, B.; Suh, G.K.; Hedde, P.N.; Ahrar, S. Orthogonal-view microscope for the biomechanics investigations of aquatic organisms. HardwareX 2024, 18, e00533. [Google Scholar] [CrossRef]
- Hedde, P.N.; Le, B.T.; Gomez, E.L.; Duong, L.; Steele, R.E.; Ahrar, S. SPIM-Flow: An Integrated Light Sheet and Microfluidics Platform for Hydrodynamic Studies of Hydra. Biology 2023, 12, 116. [Google Scholar] [CrossRef]
- Quinn, B.; Gagné, F.; Blaise, C. Hydra, a model system for environmental studies. Int. J. Dev. Biol. 2012, 56, 613–625. [Google Scholar] [CrossRef]
- Zeeshan, M.; Murugadas, A.; Ghaskadbi, S.; Rajendran, R.B.; Akbarsha, M.A. ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 185–186, 1–12. [Google Scholar] [CrossRef]
- Zeeshan, M.; Murugadas, A.; Ghaskadbi, S.; Ramaswamy, B.R.; Akbarsha, M.A. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ. Pollut. 2017, 224, 54–69. [Google Scholar] [CrossRef]
- Murugadas, A.; Zeeshan, M.; Thamaraiselvi, K.; Ghaskadbi, S.; Akbarsha, M.A. Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach. Sci. Rep. 2016, 6, 29663. [Google Scholar] [CrossRef]
- Cera, A.; Cesarini, G.; Spani, F.; Scalici, M. Hydra vulgaris assay as environmental assessment tool for ecotoxicology in fres-hwaters: A review. Mar. Freshw. Res. 2021, 72, 745–753. [Google Scholar] [CrossRef]
- Galliot, B. Hydra, a fruitful model system for 270 years. Int. J. Dev. Biol. 2012, 56, 411–423. [Google Scholar] [CrossRef]
- Sarras, M.P., Jr. Components, structure, biogenesis and function of the Hydra extracellular matrix in regeneration, pattern formation and cell differentiation. Int. J. Dev. Biol. 2012, 56, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, D.; Karntanut, W.; Müller, C.T. Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris. Chemosphere 2003, 51, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.; Gagné, F.; Blaise, C. Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuata. Sci. Total Environ. 2009, 407, 1072–1079. [Google Scholar] [CrossRef]
- Johnson, E.M.; Gabel, B.E.G. Application of the Hydra Assay for Rapid Detection of Developmental Hazards. J. Am. Coll. Toxicol. 1992, 1, 57–71. [Google Scholar] [CrossRef]
- Wilby, O.K.; Newall, D.R.; Tesh, J.M. A hydra assay as a pre-screen for teratogenic potential. Food Chem. Toxic. 1986, 24, 651–652. [Google Scholar] [CrossRef]
- Gellner, K.; Praetzel, G.; Bosch, T.C.G. Cloning and expression of a heat-inducible hsp70 gene in two species of Hydra which differ in their stress response. Eur. J. Biochem. 1992, 210, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Hyne, R.V.; Rippon, G.D.; Ellender, G. pH-Dependent uranium toxicity to freshwater Hydra. Sci. Total Environ. 1992, 125, 159–173. [Google Scholar] [CrossRef]
- Pollino, C.A.; Holdway, D.A. Potential of two Hydra species as standard toxicity test animals. Ecotoxicol. Environ. Saf. 1999, 43, 309–316. [Google Scholar] [CrossRef]
- Karntanut, W.; Pascoe, D. A comparison of methods for measuring acute toxicity to Hydra vulgaris. Chemosphere 2000, 41, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.; Gagné, F.; Blaise, C. Oxidative metabolism activity in Hydra attenuata exposed to carbamazepine. Fresen Environ. Bull. 2004, 13, 783–788. [Google Scholar]
- Pachura-Bouchet, S.; Blaise, C.; Vasseur, P. Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environ. Toxicol. 2006, 21, 388–394. [Google Scholar] [CrossRef]
- Murugadas, A.; Mahamuni, D.; Nirmaladevi, S.D.; Thamaraiselvi, K.; Thirumurugan, R.; Akbarsha, M.A. Hydra as an alterna-tive model organism for toxicity testing: Study using the endocrine disrupting chemical Bisphenol A. Biocatal. Agric. Biotechnol. 2019, 17, 680–684. [Google Scholar] [CrossRef]
- Blaise, C.; Gagne, F.; Ferard, J.F.; Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 2008, 23, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of Carbon Nano-Onions on Hydra vulgaris as a Model Organism for Nanoecotoxicology. Nanomaterials 2015, 5, 1331–1350. [Google Scholar] [CrossRef]
- Kovačević, G.; Želježić, D.; Horvatin, K.; Kalafatić, M. Morphological features and comet assay of green and brown Hydra treated with aluminium. Symbiosis 2007, 44, 145–152. [Google Scholar]
- Murphy, F.; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 2018, 234, 487–494. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Sangeetha, S.; Felix, L.; Kay, P.; Pugazhendhi, A. A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 256, 109320. [Google Scholar] [CrossRef]
- Venâncio, C.; Barbosa, C.; Lopes, I. Glyphosate and Roundup® Ready Effects in Hydra viridissima: New Data in an Old Issue. Sustainability 2023, 15, 12428. [Google Scholar] [CrossRef]
- Domazet-Lošo, T.; Klimovich, A.; Anokhin, B.; Anton-Erxleben, F.; Hamm, M.J.; Lange, C.; Bosch, T.C. Naturally occurring tumours in the basal metazoan Hydra. Nat. Commun. 2014, 5, 4222. [Google Scholar] [CrossRef] [PubMed]
- Hartl, M.; Mitterstiller, A.M.; Valovka, T.; Breuker, K.; Hobmayer, B.; Bister, K. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc. Natl. Acad. Sci. USA 2010, 107, 4051–4056. [Google Scholar] [CrossRef]
- Hess, F.D. Light-dependent herbicides: An overview. Weed Sci. 2000, 48, 160–170. [Google Scholar] [CrossRef]
- Korać, P.; Dotlić, S.; Matulić, M.; Zajc Petranović, M.; Dominis, M. Role of MYC in B Cell Lymphomagenesis. Genes 2017, 8, 115. [Google Scholar] [CrossRef]
- Moreau, X.; Claeys-Bruno, M.; Andraud, J.P.; Macarie, H.; Martínez, D.E.; Robin, M.; Sergent, M.; De Jong, L. Hydra bioassay for the evaluation of chlordecone toxicity at environmental concentrations, alone or in complex mixtures with dechlorinated byproducts: Experimental observations and modeling by experimental design. Environ. Sci. Pollut. Res. 2022, 29, 91017–91035. [Google Scholar] [CrossRef]
- Ziuzina, D.; Sarangapani, C.; Bourke, P. Hydra as a Model for Screening Ecotoxicological Effects of Plasma-Treated Water. Plasma Med. 2018, 8, 225–236. [Google Scholar] [CrossRef]
- Demir, E.; Kansız, S.; Doğan, M.; Topel, Ö.; Akkoyunlu, G.; Kandur, M.Y.; Turna Demir, F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physio-logy of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int. J. Mol. Sci. 2022, 23, 9121. [Google Scholar] [CrossRef] [PubMed]
- Fatima, J.; Ara, G.; Afzal, M.; Siddique, Y.H. Hydra as a research model. Toxin Rev. 2024, 43, 157–177. [Google Scholar] [CrossRef]
- Želježić, D.; Kovačević, G.; Matijević, A.; Korać, P.; Caput Mihalić, K. Does the Symbiotic Relationship Between Hydra viridissima and Photoautotrophic Alga Provide an Evolutionary Advantage in Protecting DNA against Damage by the Cytotoxic or Genotoxic Mode of Action of Environmental Stressors? Bull. Environ. Contam. Toxicol. 2024, 112, 56. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Srivastava, R.; Agrawal, U.R.; Tewari, R.R. An insight into the genotoxicity assessment studies in dipterans. Mutat. Res. Rev. Mutat. Res. 2017, 773, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Holstein, T.-W. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev. Biol. 2022, 487, 74–98. [Google Scholar] [CrossRef] [PubMed]
- Schaible, R.; Scheuerlein, A.; Dańko, M.J.; Gampe, J.; Martínez, D.E.; Vaupel, J.W. Constant mortality and fertility over age in Hydra. Proc. Natl. Acad. Sci. USA 2015, 112, 15701–15706. [Google Scholar] [CrossRef]
- Perros, T.; Biquet-Bisquert, A.; Meriem, Z.B.; Delarue, M.; Joseph, P.; Marcq, P.; Cochet-Escartin, O. Mechanical characterization of regenerating Hydra tissue spheres Mechanics of regenerating Hydra. Biophys. J. 2024, 123, 1792–1803. [Google Scholar] [CrossRef]
- Ghaskadbi, S. Hydra: A powerful biological model. Reson 2020, 25, 1197–1213. [Google Scholar] [CrossRef]
- Fukuhori, N.; Kitano, M.; Kimura, H. Toxic effects of bisphenol A on sexual and asexual reproduction in Hydra oligactis. Arch. Environ. Contam. Toxicol. 2005, 48, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Depledge, M.; Fraser, R.; Johnson, A.; Hutchison, G.; Matthiessen, P.; Murphy, R.; Owens, S.; Sumpter, J. Key actions for a sustainable chemicals policy. Environ. Int. 2020, 137, 105463. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EU Biodiversity Strategy for 2030: Bringing Nature back into Our Lives. Directorate-General for Environment; Publications Office of the European Union: Strasbourg, France, 2021; Available online: https://data.europa.eu/doi/10.2779/677548 (accessed on 7 May 2024).
- Bosch, T.C.G.; Miller, D.J. The holobiont imperative: Perspectives from early emerging animals. In The Hydra Holobiont: A Tale of Several Symbiotic Lineages 79; Springer: Wien, Austria, 2016. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosoenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef]
- Guerrero, R.; Margulis, L.; Berlanga, M. Symbiogenesis: The holobiont as a unit of evolution. Int. Microbiol. 2013, 16, 133–143. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota; Springer: New York, NY, USA, 2013; p. 178. ISBN 978-3-319-04240-4. [Google Scholar]
- Bosch, T.C.; Grasis, J.A.; Lachnit, T. Microbial ecology in Hydra: Why viruses matter. J. Microbiol. 2015, 53, 193–200. [Google Scholar] [CrossRef]
- Bosch, T.C.G.; Anton-Erxleben, F.; Augustin, R.; Franzenburg, S.; Fraune, S. Hydra Go Bacterial. In Beneficial Microorganisms in Multicellular Life Forms; Rosenberg, E., Gophna, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- He, J.; Bosch, T.C.G. Hydra’s Lasting Partnership with Microbes: The Key for Escaping Senescence? Microorganisms 2022, 10, 774. [Google Scholar] [CrossRef]
- Lachnit, T.; Bosch, T.C.G.; Deines, P. Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development—An Evolutionary Perspective. mBio 2019, 10, e00355-19. [Google Scholar] [CrossRef]
- Hartl, M.; Glasauer, S.; Valovka, T.; Breuker, K.; Hobmayer, B.; Bister, K. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis. Biol. Open 2014, 3, 397–407. [Google Scholar] [CrossRef]
- Lechable, M.; Tang, X.; Siebert, S.; Feldbacher, A.; Fernández-Quintero, M.L.; Breuker, K.; Juliano, C.E.; Liedl, K.R.; Hobmayer, B.; Hartl, M. High Intrinsic Oncogenic Potential in the Myc-Box-Deficient Hydra Myc3 Protein. Cells 2023, 12, 1265. [Google Scholar] [CrossRef]
- Hartl, M.; Glasauer, S.; Gufler, S.; Raffeiner, A.; Puglisi, K.; Breuker, K.; Bister, K.; Hobmayer, B. Differential regulation of myc homologs by Wnt/β-Catenin signaling in the early metazoan Hydra. FEBS J. 2019, 286, 2295–2310. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, G.; Korać, P.; Želježić, D.; Sertić Perić, M.; Peharec Štefanić, P.; Sirovina, D.; Novosel, M.; Gottstein, S. Hydra for 21st Century—A Fine Model in Freshwater Research. Water 2024, 16, 2114. https://doi.org/10.3390/w16152114
Kovačević G, Korać P, Želježić D, Sertić Perić M, Peharec Štefanić P, Sirovina D, Novosel M, Gottstein S. Hydra for 21st Century—A Fine Model in Freshwater Research. Water. 2024; 16(15):2114. https://doi.org/10.3390/w16152114
Chicago/Turabian StyleKovačević, Goran, Petra Korać, Davor Želježić, Mirela Sertić Perić, Petra Peharec Štefanić, Damir Sirovina, Maja Novosel, and Sanja Gottstein. 2024. "Hydra for 21st Century—A Fine Model in Freshwater Research" Water 16, no. 15: 2114. https://doi.org/10.3390/w16152114
APA StyleKovačević, G., Korać, P., Želježić, D., Sertić Perić, M., Peharec Štefanić, P., Sirovina, D., Novosel, M., & Gottstein, S. (2024). Hydra for 21st Century—A Fine Model in Freshwater Research. Water, 16(15), 2114. https://doi.org/10.3390/w16152114