Innovation in Water Management: Designing a Recyclable Water Resource System with Permeable Pavement
Abstract
:1. Introduction
2. Permeable Pavement Water Resource Recycling System Model
3. Materials and Methods
3.1. Rainfall and Runoff in Pingtung Area
3.2. Experiments with a Small-Scale 3D Model of the Permeable Pavement Water Resource Recycling System
3.3. Soil Column Experiments
4. Results and Discussion
4.1. Small-Scale 3D Model Results
4.2. Soil Column Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, P.S.; Yang, T.C.; Wu, C.K. Impact of climate change on water resources in southern Taiwan. J. Hydrol. 2002, 260, 161–175. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lee, C.M. Designing an optimal water supply portfolio for Taiwan under the impact of climate change: Case study of the Penghu area. J. Hydrol. 2019, 573, 235–245. [Google Scholar] [CrossRef]
- Yeh, H.F.; Chen, H.Y. Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach. J. Hydrol. 2022, 610, 127916. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Lin, A.Y.C.; Tsai, Y.T. Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 2009, 407, 3793–3802. [Google Scholar] [CrossRef]
- Yu, T.H.; Lin, A.Y.C.; Wang, X.H.; Lin, C.F. Occurrence of β-blockers and β-agonists in hospital effluents and their receiving rivers in southern Taiwan. Desalination Water Treat. 2011, 32, 49–56. [Google Scholar] [CrossRef]
- Yang, C.P.; Chiang, P.C.; Chang, E.E.; Lin, T.F.; Kao, C.M. Using a systematic approach to develop water quality management strategies in the Nankan River, Taiwan. Desalination Water Treat. 2013, 51, 6808–6823. [Google Scholar] [CrossRef]
- Lai, Y.C.; Tu, Y.T.; Yang, C.P.; Surampalli, R.Y.; Kao, C.M. Development of a water quality modeling system for river pollution index and suspended solid loading evaluation. J. Hydrol. 2013, 478, 89–101. [Google Scholar] [CrossRef]
- Lin, J.L.; Karangan, A.; Huang, Y.M.; Kang, S.F. Eutrophication factor analysis using Carlson trophic state index (CTSI) towards non-algal impact reservoirs in Taiwan. Sustain. Environ. Res. 2022, 32, 25. [Google Scholar] [CrossRef]
- Li, J.; Mao, Y.; Ouyang, J.; Zheng, S. A review of urban microclimate research based on citespace and VOSviewer analysis. Int. J. Environ. Res. Public Health 2022, 19, 4741. [Google Scholar] [CrossRef]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban heat island: Causes, consequences, and mitigation measures with emphasis on reflective and permeable pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Lin, J.Y.; Yuan, T.C.; Chen, C.F. Water retention performance at low-impact development (LID) field sites in Taipei, Taiwan. Sustainability 2021, 13, 759. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Gulbaz, S.; Kazezyilmaz-Alhan, C.M. Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. J. Hydrol. Eng. 2016, 22, D4016003. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Fu, D.; Pathirana, A. Transitioning to sponge cities: Challenges and opportunities to address urban water problems in China. Water 2018, 10, 1230. [Google Scholar] [CrossRef]
- Luo, K.; Wang, Z.; Sha, W.; Wu, J.; Wang, H.; Zhu, Q. Integrating sponge city concept and neural network into land suitability assessment: Evidence from a satellite town of shenzhen metropolitan Area. Land 2021, 10, 872. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Li, Y.; Deng, C.; Pan, B. Evaluating hydrological and environmental effects for low-impact development of a sponge city. Pol. J. Environ. Stud. 2020, 29, 1205–1218. [Google Scholar] [CrossRef]
- Zhao, H.; Zou, C.; Zhao, J.; Li, X. Role of low-impact development in generation and control of urban diffuse pollution in a pilot sponge city: A paired-catchment study. Water 2018, 10, 852. [Google Scholar] [CrossRef]
- Coffman, L.S. Low-impact development: An alternative stormwater management technology. In Handbook of Water Sensitive Planning and Design; France, R.L., Ed.; Lewis: Washington, DC, USA, 2002; pp. 97–124. [Google Scholar]
- Davis, A.L. Green engineering principles promote low impact development. Environ. Sci. Tec. 2005, 9, 338A–344A. [Google Scholar] [CrossRef]
- Li, J.; Deng, C.; Li, Y.; Li, Y.; Song, J. Comprehensive benefit evaluation system for low-impact development of urban stormwater management measures. Water Resour. Manag. 2017, 31, 4745–4758. [Google Scholar] [CrossRef]
- Fiori, A.; Volpi, E. On the effectiveness of LID infrastructures for the attenuation of urban flooding at the catchment scale. Water Resour. Res. 2020, 56, e2020WR027121. [Google Scholar] [CrossRef]
- Lin, J.Y.; Chen, C.F.; Ho, C.C. Evaluating the effectiveness of green roads for runoff control. J. Sustain. Water Built Environ. 2018, 4, 04018001. [Google Scholar] [CrossRef]
- Chen, C.F.; Lin, J.Y.; Ho, C.C.; Kuo, C.T. Performance Evaluation of Combined LID Facilities on Runoff Reduction—A case of Taipei tech campus in Taiwan. In Proceedings of the International Low Impact Development Conference 2018, Nashville, TN, USA, 12–15 August 2018; pp. 223–229. [Google Scholar]
- Cheng, Y.Y.; Lo, S.L.; Ho, C.C.; Lin, J.Y.; Yu, S. Field Testing of Porous Pavement Performance on Runoff and Temperature Control in Taipei City. Water 2019, 11, 2635. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P.S. Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water Air Soil Pollut. 2021, 232, 344. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.Y.; Demarie, F. Facilitators and barriers of applying low impact development practices in urban development. Water Resour. Manag. 2017, 31, 3795–3808. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Our Built and Natural Environments: A Technical Review of the Interactions between Land Use, Transportation, and Environmental Quality; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Hein, D.K. Permeable Pavement Design and Construction Case Studies in North America. In Proceedings of the 2014 Conference and Exhibition of the Transportation Association of Canada, Montreal, QC, Canada, 21–24 September 2014; pp. 1–12. [Google Scholar]
- Bedan, E.S.; Clausen, J.C. Stormwater runoff quality and quantity from traditional and low impact development watersheds. J. Am. Water Resour. Assoc. 2009, 45, 998–1008. [Google Scholar] [CrossRef]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and verification of SWMM for low impact development. J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhai, Y.J.; Wei, Y.Y.; Mao, Y.F. Evaluation of the effects of low-impact development practices under different rainy types: Case of Fuxing Island Park, Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 6706–6716. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Stormwater Technology Fact Sheet. Bioretention; Office of Water: Washington, DC, USA, 1999; EPA 832-F-99-012.
- USEPA (US Environmental Protection Agency). Stormwater Technology Fact Sheet. Porous Pavement; Office of Water: Washington, DC, USA, 1999; EPA 832-F-99-023.
- USEPA (US Environmental Protection Agency). Low Impact Development (LID). A Literature Review; Office of Water: Washington, DC, USA, 2000; EPA 841-B-00-005.
- Lee, L.Y.; Tan, L.; Wu, W.; Yeo, S.K.Q.; Ong, S.L. Nitrogen removal in saturated zone with vermicompost as organic carbon source. Sustain. Environ. Res. 2013, 23, 85–92. [Google Scholar]
- Sambito, M.; Severino, A.; Freni, G.; Neduzha, L. A Systematic Review of the Hydrological, Environmental and Durability Performance of Permeable Pavement Systems. Sustainability 2021, 13, 4509. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Liao, Z.; Zhang, K.; Schmidt, A.R.; Tao, T. Laboratory analysis on the surface runoff pollution reduction performance of permeable pavements. Sci. Total Environ. 2019, 691, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Verma, R.K. SCS-CN methodology further modified. Water Supply 2023, 23, 2604–2622. [Google Scholar] [CrossRef]
- Young, D.F.; Munson, B.R.; Okiishi, T.H.; Huebsch, W.W. Introduction to Fluid Mechanics, 5th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Xu, X.; Sun, C.; Qu, Z.; Huang, Q.; Ramos, T.B.; Huang, G. Groundwater recharge and capillary rise in irrigated areas of the upper yellow river basin assessed by an agro-hydrological model. Irrig. Drain. 2016, 64, 587–599. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, Z.; Sun, H.; Li, H.; Liu, Q.; Liu, H. Capillary Rise in Layered Soils. Appl. Sci. 2023, 13, 3374. [Google Scholar] [CrossRef]
- Al-Obaidi, A.H.; Alsalih, D. Experimental Investigation of Capillary Rise in Unsaturated Gypseous Soils. E3S Web Conf. 2023, 427, 01016. [Google Scholar] [CrossRef]
SystemType | Flood Protection | Long-Duration Water Storage | Water Filtration | Reuse of Rainfall Runoff | Drainage | Reduces Heat Island Effect |
---|---|---|---|---|---|---|
Bioretention system | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ |
Permeable pavement Water resource Recycling system | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Bare Ground | Impermeable Asphalt Concrete | Permeable Pavement | |
---|---|---|---|
SCS(CN) | 87 | 89 | 60 |
Imperv | 2 | 100 | 15 |
N-Imperv | 0.05 | 0.011 | 0.011 |
N-Perv | 0.05 | 0.012 | 0.011 |
Width (m) | 10 | 10 | 10 |
Drainage Area (ha) | 1 | 1 | 1 |
Slope (%) | 1 | 1 | 1 |
Soil Properties | Analysis Results |
---|---|
Specific gravity of soil solids, Gs | 2.65 |
Liquid limit, LL (%) | 30 |
Plastic limit, PL (%) | 26 |
Plasticity index, PI (%) | 4 |
Optimum moisture content, OMC (%) | 24 |
Maximum dry unit weight, γdmax (g/cm3) | 1.55 |
Soil classification | ML |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-R.; Chen, X.-R.; Huang, H.-X.; Yeh, H.-F. Innovation in Water Management: Designing a Recyclable Water Resource System with Permeable Pavement. Water 2024, 16, 2109. https://doi.org/10.3390/w16152109
Yang S-R, Chen X-R, Huang H-X, Yeh H-F. Innovation in Water Management: Designing a Recyclable Water Resource System with Permeable Pavement. Water. 2024; 16(15):2109. https://doi.org/10.3390/w16152109
Chicago/Turabian StyleYang, Shu-Rong, Xing-Rong Chen, Hao-Xuan Huang, and Hsin-Fu Yeh. 2024. "Innovation in Water Management: Designing a Recyclable Water Resource System with Permeable Pavement" Water 16, no. 15: 2109. https://doi.org/10.3390/w16152109
APA StyleYang, S. -R., Chen, X. -R., Huang, H. -X., & Yeh, H. -F. (2024). Innovation in Water Management: Designing a Recyclable Water Resource System with Permeable Pavement. Water, 16(15), 2109. https://doi.org/10.3390/w16152109